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Two components of donor-acceptor recombination in compensated semiconductors: Analytical
model of spectra in the presence of electrostatic fluctuations
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We report numerical and analytical studies of the donor-acceptor recombination in compensated semiconduc-
tors. Our calculations take into account random electric fields of charged impurities that are important in the
nonzero compensation case. We show that the donor-acceptor optical spectrum can be described as a sum of
two components: monomolecular and bimolecular. In the low compensation limit, we develop two analytical
models for both types of recombination. Also our numerical simulation predicts that these two components of
the photoluminescence spectra can be resolved under certain experimental conditions.
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I. INTRODUCTION

The donor-acceptor (DA) optical transition is due to a tunnel
recombination between distant impurity pairs [1]. If radii of
both impurity states are comparable with the lattice constant,
then the spectrum of DA recombination appears as a set of
narrow lines that corresponds to discreet positions of impurities
in a crystal lattice. If one of the impurity states (the donor,
for instance) is shallow and can be described with the hydro-
genlike wave function with radius ab, then DA recombination
corresponds to a broad spectrum. The probability p of the
transition exponentially decreases with interimpurity distance
r . The photon energy h̄ω increases due to Coulomb interaction
e2/εr between the ionized donor and acceptor in the final state:

p = p0 exp

(
−2r

ab

)
, (1)

h̄ω = Eg − Ed − Ea + e2

εr
. (2)

Here Eg is the band gap of the material, Ed and Ea are the
donor and acceptor binding energies, and p0 is a part of the
matrix element that does not depend on distance. For short
we use the denotation E = h̄ω − (Eg − Ed − Ea ), which we
call the transition energy in the rest of the paper.

It is easy to derive the spectral dependence of the transition
probability P (E) [1–3]. The probability to find a donor at
a distance r from an arbitrary acceptor equals Nd4πr2dr ,
where Nd is the concentration of donors. Calculating dr =
(dr/dE)dE from Eq. (2) and using Ed = e2/(2εab ), we obtain

P (E)dE = 32πp0Nda
3
b

(
Ed

E

)4

exp

(
−4Ed

E

)
dE

Ed

. (3)

This expression is normalized per one photoexcited acceptor.
Using the same approach, one can describe the kinetic prop-

erties of DA recombination. After an optical pumping pulse,
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the nearest DA pairs recombine faster, producing photons with
higher energies. Distant pairs recombine slowly, therefore the
DA luminescence line shifts with time to long wavelengths
[1,4,5].

Such an approach is acceptable in the case of infinitely
low compensation. In the presence of compensation, the DA
luminescence spectrum is broadened by random electric fields
of ionized impurities. The impact of these fields is a nontrivial
question of solid-state physics. In additional to fundamental
aspects, the problem of the DA spectrum is interesting for
modern technology applications. Nowadays, new semicon-
ductor compounds constantly come into view and attract a
lot of attention as perspective materials for optoelectronics
and photovoltaics. Any new semiconductor material under
development contains an unknown concentration of impurities
and has an indefinite compensation. It is a common problem to
distinguish electrostatic fluctuations due to ionized impurities
from other causes of disorder [6,7]. Therefore, a detailed
understanding of DA recombination will be useful for the
characterization of novel semiconductor materials [6–9].

In earlier studies, DA recombination was analytically de-
scribed using a model of screened electrostatic fluctuations,
which is acceptable in the case of heavily doped compensated
semiconductors. In this approach, one uses some phenomeno-
logical parameters such as a screening radius, which is not
so easy to determine [10–12]. Another method to describe DA
recombination is a numerical simulation based on an algorithm
of electrostatic energy minimization. Using this approach, a
spectrum of the DA photoluminescence line was simulated
in the limit of low pump intensities [13]. The numerical
simulation provides a reasonable agreement of the calculated
spectrum broadening with obtained experimental results.

The aim of our study is to generalize the method of
numerical simulation for arbitrary pump intensities and to
analyze simulation results using an analytical approach. In the
thermal equilibrium state without optical pumping at T = 0,
all states of major impurities below the chemical potential
μ are neutral while all states above μ are ionized. Here we
call such neutral impurities “equilibrium impurities.” Under
optical pumping, part of the ionized impurities became neutral.
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FIG. 1. The energy band diagram under different conditions.
Photoexcited impurities neutralized via optical pumping are marked
with sparkles. (a) The case of low pump intensities. Photoexcited
nonequilibrium donors and acceptors are rare and distant, therefore
photoexcited nonequilibrium acceptors recombine with equilibrium
donors. (b) The case of high pump intensities. Photoexcited nonequi-
librium donors and acceptors recombine with each other.

We call such neutral impurities “nonequilibrium impurities.”
We will show that the spectrum of DA recombination can be
considered as a sum of two different components. One of these
components corresponds to recombination of nonequilibrium
minor impurities and equilibrium major impurities. The other
is due to the recombination of nonequilibrium donors and
acceptors with each other. Corresponding transitions are shown
in Figs. 1(a) and 1(b), respectively.

Hereby, we virtually divide all DA transitions into bi-
molecular and monomolecular contributions. In the limit of
low compensation, we derive two analytical models for the
broadening of both DA transition components, taking into
account random electrostatic fields of ionized impurities.

It should be pointed out that realistic spectra of DA recom-
bination depend on kinetic parameters such as a generation
rate, a band-to-donor electron capture rate, and the probability
of the thermal ionization of impurities. In general, two terms
contribute to fluctuations of the optical transition energy: the
fluctuations of the initial state energy and the fluctuations of the
final state energy. Equation (2) contains only one fluctuating
term e2/εr due to fluctuations of the distance between ionized
impurities in the final state. On the contrary, in the case of
band-gap fluctuations (alloy fluctuations, for instance) only
the energy of the initial state fluctuates. It is easier to take
kinetic processes into account if one considers only one kind
of fluctuation. This was done for the case of DA transition [1]
as well as for the case of band-gap fluctuation [14]. The DA
recombination in the presence of electrostatic fluctuations de-
pends on both terms of fluctuations. This makes a simultaneous
consideration of the impact of random electric fields and kinetic
parameters sufficiently more difficult. For this reason, in most
of our numerical simulations and in the analytical analysis we
neglect any processes besides the radiative recombination. It
corresponds to the experimental condition of low temperatures
and fast recombination rates. In trying to qualitatively estimate
the influence of kinetics, we consider separately the possibility
of energy relaxation processes after the optical excitation in our
numerical simulation.

II. NUMERICAL SIMULATION

We numerically simulate the energy distribution of donors
and acceptors in compensated semiconductors at a temper-
ature T = 0 using the energy minimization algorithm via
one-electron hopping [15,16]. Every random realization is a

cubic volume with periodic boundary conditions containing
randomly distributed donors and acceptors. For definiteness
here we discuss the case of an n-type semiconductor. In our
calculations, the number of donors equals nd = 10 240 due
to a computer memory limitation. The number of acceptors
is defined as na = Knd , where K is a compensation. In
the paper, we present results calculated using the optimal
donor concentration Nda

3
b = 0.01, which is close to the metal-

insulator transition. In the case of larger concentrations, our
approach is not applicable because we consider the insulator
state. Numerical simulations for lower concentrations are an
extremely time-consuming process due to an exponentially
small overlap integral in Eq. (1). For every random realization,
we find the so-called pseudo-ground energy state using a pro-
cedure described by Shklovskii and Efros in Chap. 14 of [17].
The procedure identifies a state with a local minimum of energy
performing a sequence of one-electron hops that decrease the
total energy of the system. The obtained pseudo-ground state
is not a global minimum, and the total energy can still be
decreased via multielectron hopping. As an experiment, we
considered two-electron hopping in our calculation. However,
it significantly increased the calculation time and had no
influence on the spectra of DA recombination.

Initially all acceptors are charged negatively, na donors are
charged positively, and nd − na donors are neutral. We find an
occupied donor with maximum one-electron potential energy
εi and an empty donor with a minimum one. If the energy of the
occupied state exceeds the energy of the empty one, we transfer
the electron and repeat this procedure for other electrons until
it is possible. After every electron transfers, we recalculate all
one-electron potential energies εi for all impurities.

Then we consider one-electron hops, which can minimize
the total electrostatic energy of the DA system. The energy
difference of a one-electron hop is equal to

�ij = εj − εi − e2

εrij

.

We find a pseudo-ground state completing all possible hops
with negative �ij .

Next we numerically calculate the spectra of DA recom-
bination using the following algorithm. To simulate optical
pumping of the DA system in the pseudo-ground state, we
neutralize part of the donors and acceptors and again recal-
culate all one-electron potential energies. In a strict sense,
part of the neutralized impurities depend monotonically on
pump intensity via the kinetic parameters of a system. For
simplicity’s sake, we refer to the percentage of neutralized
donors and acceptors as pump intensity I . We numerically
simulate an energy distribution of the DA transition probability
by means of summation of all transitions between all occupied
donors and acceptors using Eq. (1) and the following formula:

h̄ω = Eg − Ed − Ea + e2

εrij

+ (εi − εj ).

To obtain smooth spectrum curves, we average data over
about 100 000 random realizations. We program our simu-
lation using CUDA parallel computing to improve the perfor-
mance. We emphasize that our model has only three inde-
pendent dimensionless parameters: a concentration Nda

3
b , a
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FIG. 2. DA luminescence spectra numerically simulated for dif-
ferent pump intensities. Concentration of donors Nda

3
b = 0.01, com-

pensation K = 0.1. Pump intensities I are equal to 1, 1.56%; 2,
6.25%; 3, 25%; 4, 50%; 5, 85%; 6, 95%; and 7, 100%, P0 =
32πp0Nda

3
b/Ed .

compensation K , and a pump intensity I , which is equal to the
percentage of photoexcited acceptors.

Results of the DA recombination spectra simulation de-
pending on pump intensity are presented in Fig. 2. At low pump
intensities, the dominating component of the spectra is due to
a recombination of photoexcited acceptors with equilibrium
neutral donors. It is strongly broadened by an electric field of
positively charged donors. This component is located on the
low-energy side of the spectrum because these transitions occur
at longer distances. While the pump intensity increases, the
component of photoexcited carriers grows at the high-energy
side. An interplay of these components leads to a high-energy
shift of the spectrum maxima with increasing pump intensity.
Random electric fields broaden the low-energy tail. The high-
energy tail is due to a recombination of the closest DA pairs.
The influence of random fields on the high-energy part of the
spectra is weak, and one can describe it as ∼E−4 similarly
to Eq. (3). At high pump intensities, the influence of random
electric fields decreases due to photoneutralization of charged
impurities. A simple validation test of our algorithm is to
simulate the case of 100% pump intensity. In this case, all
impurities are neutral, random electric fields are absent, and
the result coincides with Eq. (3), as shown in Fig. 2 with a
dashed line.

As mentioned above, this algorithm neglects the kinetic
behavior of the DA system. To estimate the role of energy
relaxation, we repeat the energy minimization procedure after
the photoexcitation and before the spectra calculation. We
considered separately a relaxation of only electrons or only
holes. The results of these simulations will be discussed in
Sec. IV.

III. ANALYTICAL CALCULATION OF LUMINESCENCE
SPECTRA

In the limit of low compensation, all ionized impurities
form complexes due to Coulomb correlation (Chap. 3 of [17]).

Generally an acceptor forms a pair with the nearest donor.
Such pairs are called 1-complexes with respect to the number
of charged donors per one acceptor. Approximately 97.4% of
acceptors form 1-complexes; however, some acceptors form
0-complexes, and in the vicinity of some acceptors there are
two charged donors that form a 2-complex.

Here we considered the donor-acceptor luminescence of
1-complexes. At low pumping, an acceptor captures the pho-
toexcited hole from the valence band, and the nearest donor
remains charged; therefore, a hole recombines with the next
neutral donor. Taking into account the influence of the charged
donor on the transition energy, and neglecting the electric
fields of other more distant impurities, we can describe the
shape of the spectral line of such transitions analytically. This
component of DA recombination is a monomolecular process,
and we call this part a three-center model.

At high pump intensities, the probability of simultaneous
filling of a donor and acceptor from one 1-complex increases.
Because of the higher overlap of the wave functions, the
recombination of such pairs dominates in the spectrum. The
influence of electric fields on the transition energy in this case
can be taken into account statistically, using the distribution of
the electric field in a model of randomly located dipoles formed
by ionized donors and acceptors. In this model, we assume
that the electric field does not vary at a distance between the
donor and the acceptor, which is correct for the limit of small
compensation.

In the analytical model, we neglect the energy relaxation of
charge carriers on impurities. In a certain approximation, this
is equivalent to the high recombination rate when all trapped
carriers recombine earlier than they are thermally activated
back to the band.

We consider a random distribution of photoexcited carriers
among DA pairs. This means that the probability to neutralize
an impurity is proportional to I . Therefore, the probability to
obtain a neutral DA pair is proportional to I 2, while the prob-
ability to obtain a partly neutralized DA pair is proportional to
I (1 − I ). To compare spectra with different pump intensities,
we normalize results by I . This means that we multiply the
spectra in the three-center model by (1 − I ) while the spectra
in the random dipoles model have I coefficient.

A. The three-center model of the donor-acceptor recombination

At low pump intensities, we consider a three-center system
presented in Fig. 3 that consists of two donors and one
acceptor. Initially, the three-center system consists of the
ionized acceptor, the ionized donor that is the closest to
the acceptor, and the neutral equilibrium donor. Under the
condition of weak optical pumping, photoexcited holes and
electrons are rare and DA pairs mostly capture only one
type of carrier. Consequently, a recombination mainly occurs
between the photoexcited neutral acceptor and the neutral
equilibrium donor. In such a system, the positively charged
donor closest to the acceptor significantly changes the donor-
acceptor recombination energy, which is equal to

E12 = e2

εr1
+ e2

εr2
− e2

εr12
,
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FIG. 3. The three-center system consists of two donors and one
acceptor. The donor nearest to the acceptor is ionized, and the other
donor and the acceptor are neutral.

where

r12 =
√

r2
1 + r2

2 − 2r1r2 cos θ.

For the three-center system, the probability of the photon
emission with energy E can be calculated as

P (E) = p0(1 − I )
∫ +∞

0
Nd4πr2

1 dr1

∫ r1

0
Nd2πr2

2 dr2

×
∫ π

0
sin θdθδ(E − E12) exp

(
−2r1

aB

)

× exp

(
−4π

3
r3

2 Nd

)
.

The last factor in the integral describes the probability that
the donor at the distance r2 is the closest to the acceptor, and
therefore this particular donor is ionized. In our calculations,
this factor is always close to 1 because r1 and r2 are of the order
of the donor radius aB � N

−1/3
d .

We proceed from integration over the angle to integration
over the transition energy,

∂E

∂ cos θ
= − e2r1r2

ε
(
r2

1 + r2
2 − 2r1r2 cos θ

)3/2

= −
( ε

e2

)2
r1r2

(
e2

εr1
+ e2

εr2
− E

)3

,

P (E) = p0(1 − I )
∫ +∞

0
Nd4πr2

1 dr1

∫ r1

0
Nd2πr2

2 dr2

×
∫

dE
∂ cos θ

∂E
× δ(E − E12) exp

(
−2r1

aB

)

× exp

(
−4π

3
r3

2 Nd

)
.

The δ function allows us to calculate the energy integral

P (E) = 8πp0(1 − I )N2
d

(
e2

ε

)2

×
∫ +∞

0
r1 exp

(
−2r1

aB

)
dr1

∫ r1

0

r2 exp
(− 4π

3 r3
2 Nd

)
(

e2

εr1
+ e2

εr2
− E

)3 dr2.

(4)

FIG. 4. Luminescence spectra of equilibrium (curves 1 and 3)
and photoexcited (curves 2 and 4) electrons. Dashed lines show
spectra calculated analytically using Eqs. (4) and (5). Solid lines
are obtained by numerical simulations. Concentration of donors
Nda

3
b = 0.01, compensation K = 0.025, pumping I = 6.25%, P0 =

32πp0Nda
3
b/Ed .

Since further analytical integration is not possible, the
calculations were performed numerically under the conditions

E � e2

εr1
+ e2

εr2
− e2

ε(r1 + r2)
,

E � e2

εr1
+ e2

εr2
− e2

ε(r1 − r2)
.

It is also necessary to exclude from consideration the three-
center states in which both donors are charged and form the
2-complex. Such complexes form under the conditions

E − e2

εr1
> μ,

E − e2

εr2
> μ.

Here μ is a chemical potential. In the limit of low com-
pensation, the chemical potential can be found analytically,
μ = 0.99N

1/3
d e2/ε (Chap. 3 of [17]). There is no analytical

expression for the chemical potential in the case of an inter-
mediate compensation, but it can be calculated numerically
[18].

Numerically simulated spectra of transitions between pho-
toexcited acceptors and equilibrium neutral donors and lu-
minescence spectra calculated in the three-center model are
shown in Figs. 4 and 5 (curves 1 and 3, correspondingly).
At low compensation (Fig. 4), our analytical calculations
are in good agreement with our simulation results. At high
compensation (Fig. 5), a difference between two curves arises.
The three-center model underestimates the broadening of the
low-energy tail, however a qualitative similarity still persists.

B. Random dipoles model

At high pumping, the main contribution to the lumines-
cence spectrum is made by the recombination of photoexcited
acceptors and donors from one 1-complex. The donor and
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FIG. 5. Luminescence spectra of equilibrium (curves 1 and 3) and
photoexcited (curves 2 and 4) electrons. Dashed lines show spectra
calculated analytically using Eqs. (4) and (5). Solid lines are obtained
by numerical simulations. Concentration of donors Nda

3
b = 0.01,

compensation K = 0.5, pumping I = 6.25%, P0 = 32πp0Nda
3
b/Ed .

acceptor within one pair are close to each other, so the transition
probability is much higher than for the centers from different
pairs. The main line broadening for closely located states is due
to random electric fields in the material. The transition energy
in an electric field F can be written as

E = e2

εr
+ eF r cos θ.

Here θ is the angle between the direction of the electric
field and the line connecting the donor and the acceptor. This
formula is valid if the electric field is constant on the scale of
the recombination length, which is well satisfied only for low
compensation. In the opposite case of high compensation, the
recombination length is comparable with the mean distance
between ionized impurities, therefore our approach is not
applicable.

An electrically neutral system of randomly distributed point
charges can be represented as a set of randomly oriented
dipoles. Such an approach for dipoles with equal dipole
moment modulus was first used by Holtsmark [19] to describe
electric fields in plasma. Shklovskii and coauthors consid-
ered a more general case when the magnitude of the dipole
moment modulus is also random for the photoconductivity
of compensated semiconductors [20]. In this case, the dis-
tribution function of a random electric field modulus F is
given by

f (F ) = 4

πFmd

(F/Fmd )2

[1 + (F/Fmd )2]2
.

Here Fmd is the most probable electric field,

Fmd = 2.515
KeN

2/3
d

ε
.

Then the probability of emission of a photon with energy
E can be calculated as

P (E) = p0I

∫ +∞

0
Nd2πr2dr exp

(
− 2r

aB

− 4π

3
r3Nd

)

×
∫ π

0
sin θdθ

∫ +∞

0
dFδ

[
E −

(
e2

εr
+ eF r cos θ

)]
×f (F ).

For further calculations, we will make a change of the
variable in the integral over the electric field to T = F cos θ .
We will separately consider the integral over θ in which we
will change the variable to x = cos θ and denote T/Fmd = α,

2
∫ π/2

0
sin θdθ

1

cos θ

(
T

Fmd cos θ

)2

[
1 +

(
T

Fmd cos θ

)2
]2

= 2
∫ 1

0

(α/x)2

[1 + (α/x)2]2

dx

x
= 1

1 + α2
.

Then the equation for the probability of transition can be
rewritten as

P (E) = 4p0INd

∫ +∞

0
r2dr exp

(
− 2r

aB

− 4π

3
r3Nd

)

×
∫ +∞

−∞
dT δ

[
E −

(
e2

εr
− eT r

)]
Fmd

F 2
md + T 2

.

After integration over T , we obtain the final equation, which
was calculated numerically,

P (E) = 4p0INd

∫ +∞

0
rdr exp

(
− 2r

aB

− 4π

3
r3Nd

)

× eFmdr
2

e2F 2
mdr

2 +
(

E − e2

εr

)2. (5)

Let us note that in the limiting case of 100% pumping, all
the impurity centers are neutral and do not produce random
Coulomb fields. In this case, Fmd → 0 and the fraction
1
π

eFmdr

e2F 2
mdr2+(E− e2

εr
)
2 converges to δ(E − e2

εr
). In this case, the

resulting formula (5) goes over into Eq. (3), which was obtained
without taking into account random fields.

In Figs. 4 and 5, the numerically simulated spectra of
transitions between photoexcited donors and acceptors are
compared with the results of analytical calculation in the
random dipoles model (curves 2 and 4, correspondingly). In
the case of low compensation, a good agreement of the results
is observed. There is a discrepancy between the analytical
calculation and the simulation results at the low-energy tail at
high compensation. Transitions with low energies correspond
to recombination of very distant DA pairs. For such DA pairs,
a magnitude of the electric field is not constant over the size
of the pair. As a result, the random dipoles model for such low
transition energies is not applicable because it overestimates
the line broadening.
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FIG. 6. Luminescence spectra of DA recombination before (curve
1) and after (curve 2) full relaxation of photoexcited minority carri-
ers. Concentration of donors Nda

3
b = 0.01, compensation K = 0.1,

pumping I = 1%, P0 = 32πp0Nda
3
b/Ed .

IV. DISCUSSION

Figures 4 and 5 show the DA recombination spectra for an
n-type semiconductor with a donor concentrationNda

3
b = 0.01

and a pump intensity I = 6.25% at different compensation
levels, calculated both by numerical simulation and analyti-
cally. The relaxation of photoexcited carriers was not taken
into account here.

In the numerical simulation of the photoluminescence spec-
trum, we separately calculated the luminescence of equilibrium
and photoexcited donors. As was said in the Sec. III, the first
case is well described by the three-center model, and the second
one corresponds to random dipoles.

Such a two-component description allows us to explain
the complicated behavior of DA recombination at different
experimental conditions. Monomolecular and bimolecular
components have different energy positions, and their interplay
leads to a high-energy shift of the DA line with increasing
pump intensity. This energy shift is one of the known features
of DA recombination, and it was observed experimentally [21].
In the limit of high pump intensity, the energy of the DA
transition coincides with the energy of a free electron to
acceptor recombination. In this case, these two lines overlap
and could be resolved only by different behavior in a magnetic
field.

The monomolecular component dominates at low pump
intensities, and its electrostatic broadening does not depend on
pump intensity. The broadening of a bimolecular component
decreases with the pump intensity, which is observed experi-
mentally at high pump intensities [22].

In the case of a fast recombination rate, when relaxation pro-
cesses could be neglected two components of DA recombina-
tion are strongly overlapped and cannot be spectrally resolved.
However, this situation can change if the energy relaxation
rate is comparable with the recombination rate. We obtain
the most demonstrative results of our numerical simulation
in the case when minority photoexcited carriers relax before
recombination while photoexcited majority carriers recombine
without relaxation. This case is close to the experimental
condition of a p-type semiconductor because trapped electrons
relax faster than holes. In Fig. 6 we present the results of such a
simulation: two components of DA recombination are clearly
resolved.

Two separate DA lines are often present in low-temperature
luminescence spectra of semiconductors [23,24]. A usual inter-
pretation of this result involves the presence of two different
kinds of impurity in a sample. However, our analysis shows
that two such components, especially close ones, can originate
from one kind of impurity.

V. CONCLUSION

The donor-acceptor luminescence spectra in compensated
semiconductors were calculated numerically and analytically.
The spectral and kinetic properties of luminescence at various
pump intensities, concentrations, and compensations were
studied. It was shown that the donor-acceptor recombination
line consists of two components: the recombination of photoex-
cited holes with photoexcited electrons, and the recombination
of photoexcited holes with equilibrium electrons. These two
components have different broadening mechanisms due to
Coulomb correlations and random electric fields. The spectral
form of both components in the low compensation limit has
been obtained analytically. Numerical simulation results show
that these simple analytical models not only agree with the
numerical simulation at low compensation, but they also qual-
itatively describe the spectra up to moderate compensations.
Taking into account the possibility of photoexcited carrier
relaxation, we show that the two components can be resolved
in the DA recombination spectra.
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