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We report on a comprehensive experimental and theoretical study of optical third harmonic generation (THG) on
the exciton-polariton resonances in the zinc-blende semiconductors GaAs, CdTe, and ZnSe subject to an external
magnetic field, representing a topic that had remained unexplored so far. In these crystals, crystallographic THG
is allowed in the electric-dipole approximation, so that substantial magnetic-field-induced changes of the THG
are unexpected: the symmetry reduction due to magnetic field, corresponding change of the selection rules, and
the Zeeman effect are expected to play a minor role. Surprisingly, we observe a strong enhancement of the THG
intensity by a factor of 50 for the 1s exciton-polariton in GaAs in magnetic fields up to 10 T. In contrast, the
corresponding enhancement is moderate in CdTe and almost absent in ZnSe. In order to explain this strong
variation, we develop a microscopic theory accounting for the optical harmonics generation on exciton-polaritons
and analyze the THG mechanisms induced by the magnetic field. The calculations show that the increase of THG
intensity is dominated by the magnetic field enhancement of the exciton oscillator strength, which is particularly
strong for GaAs in the studied range of field strengths. The much weaker increase of THG intensity in CdTe and
ZnSe is explained by the considerably larger exciton binding energies, leading to a weaker modification of their
oscillator strengths by the magnetic field.
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I. INTRODUCTION

In the broad field of fundamental and applied nonlinear
optics, the coherent processes of frequency conversion, such as
sum and difference frequency generation, are important tools
for studying light-matter interaction and measuring nonlinear
optical susceptibilities [1,2]. They have played a crucial role
as effective tools for extending the emission of coherent light
sources to longer or shorter wavelengths in the infrared or
the ultraviolet range, thus greatly expanding the availability
of such sources for important applications.

The second and third optical harmonic generation (SHG
and THG), as the lowest order nonlinear frequency conver-
sion processes, are generally characterized by relatively high
values of nonlinear susceptibilities in crystals. They have
been widely investigated and used for developing versatile
devices in nonlinear photonics. The SHG process is allowed
in the electric-dipole approximation for noncentrosymmetric
crystals. In the case of fulfilling the phase-matching condi-
tion, the transformation of the incident light with frequency
ω into SHG light with frequency 2ω can be highly effi-
cient. However, in crystals with inversion symmetry SHG
is forbidden. The higher order nonlinear process of THG at
frequency 3ω is much weaker, with typical susceptibilities
of the order |χ (3)| ∼ 10−24 m2/V2 as compared to |χ (2)| ∼
10−12 m/V for SHG [2]. However, the THG process is
allowed in solids of any symmetry, as well as in amorphous
materials, glasses, liquids, gases, and plasmas. Obviously, this
universality of THG does not release it from fulfillment of
the conservation laws of energy, wave vector, and angular
momentum.

Semiconductors have been always in the focus of optical
harmonic generation studies. However, the investigations per-
formed in the 1960s–1990s were mostly limited to single wave-
lengths or to narrow spectral ranges. Only recently, with the
availability of efficient optical parametric oscillators, spectro-
scopic studies of harmonics generation become more versatile.
In particular, spectroscopic investigations with high spectral
resolution at low temperatures and with application of electric
and magnetic fields opened new experimental opportunities
for obtaining important information on the role of excitons
in the processes of nonlinear light-matter interaction and the
relevant basis microscopic mechanisms [3,4]. Most of these
studies were devoted to SHG in prototype semiconductors
GaAs [5–7], CdTe [6], ZnO [8], (Cd,Mn)Te [9], EuTe, and
EuSe [10]. Recently, they were extended to two-dimensional
semiconductors WSe2 and MoS2 [11–13]. In contrast, up to
now spectroscopic studies of THG in semiconductors have
remained scarce, limited to reports for the magnetic semicon-
ductors EuTe and EuSe [14,15] and the electric field effect on
exciton THG in GaAs [7]. The involvement of the third-order
nonlinearity in the THG process allows one to study electronic
states which are hidden in lower-order processes [16]. Since
the THG process is allowed in all media in the electric-dipole
approximation, which is the strongest mechanism of light-
matter interaction, one might not expect a significant influence
of moderate external fields on the THG signals because the
Zeeman and symmetry reduction effects and corresponding
modification of the selection rules are unimportant for the
considered situation.

In this paper, we present a spectroscopic study of THG
involving the exciton-polariton states in GaAs, CdTe, and ZnSe
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semiconductors in an external magnetic field. These mate-
rials have the same noncentrosymmetric zinc-blende crystal
structure with Td as crystallographic point group, but their
exciton binding energy increases from 4.2 to 10 and 20 meV
going from GaAs to CdTe and further to ZnSe. We find, quite
unexpectedly, a strong increase of the THG intensity by a factor
of 50 in GaAs in magnetic fields up to 10 T. However, much
weaker effects are observed in CdTe and ZnSe. A theoretical
model for THG on exciton-polaritons and its modification by a
magnetic field is developed. It quantitatively describes the bulk
of experimental data and shows that the increase of the exciton
oscillator strength is the main factor in the THG intensity
increase by the magnetic field.

II. EXPERIMENTAL DETAILS

THG spectra were recorded in transmission geometry with
kω ‖ z, where z is the structure growth axis [001]. A sketch of
the experimental geometry is shown in Fig. 1. We used laser
pulses of 7 ns duration at 10 Hz repetition rate, generated by
an optical parametric oscillator pumped by the third harmonic
of a solid-state Nd:YAG (yttrium aluminum garnet) laser [6].
The laser photon energy h̄ω was tuned across a finite spectral
range at about Eg/3, where Eg is the semiconductor band-gap
energy. The energy per pulse was set to 0.3 mJ and the
diameter of the focusing spot on the sample to 0.5 mm. The
THG signals were spectrally separated from the fundamental
light by bandpass optical filters and a monochromator and
detected by a cooled charge-coupled-device (CCD) camera.
External magnetic fields up to 10 T were applied in two geome-
tries: the Voigt geometry B ⊥ kω, B ‖ [100] and the Faraday
geometry B ‖ kω ‖ [001]. The incoming light was linearly
polarized and the THG signal was measured either in parallel
(E3ω ‖ Eω) or perpendicular (E3ω ⊥ Eω) linear polarizations
relative to the incoming light polarization. For measuring
rotational anisotropy diagrams, the light polarization was
controlled by half-wave plates oriented at an azimuthal angle
ϕ. For ϕ = 0◦, the light is polarized along the y axis and for
ϕ = 90◦ along the x axis; see Fig. 1.

The most detailed studies were performed on a GaAs
sample. The 10-μm-thick GaAs layer was grown by the
gas phase epitaxy on a semi-insulating GaAs (001) sub-
strate [17]. Magnetic-field-induced SHG in GaAs was reported
in Refs. [5,6] and the electric field effect on SHG and THG
was shown in Ref. [7]. Experiments were also performed on a

FIG. 1. Sketch of the experimental geometry in the THG studies
of (001)-oriented GaAs, CdTe, and ZnSe samples.

CdTe epilayer and a ZnSe bulk sample. The 1-μm-thick CdTe
layer was grown by molecular-beam epitaxy on a GaAs (001)
substrate with a Cd0.8Mg0.2Te buffer layer [6]. The CdTe layer
was overgrown by a 50 nm Cd0.8Mg0.2Te cap layer to reduce
undesired surface effects. The ZnSe sample, a (001)-oriented
slab with a thickness of 2 mm, is a bulk crystal grown by the
Bridgman method.

The linear optical properties of exciton resonances were
assessed via reflectivity spectra measured with a halogen lamp.
A back reflection geometry with nearly normal light incidence
was chosen for that. In the Voigt geometry, the reflectivity was
measured for linear polarizations parallel or perpendicular to
the magnetic field direction, and in the Faraday geometry the
circularly polarized reflection was analyzed. All measurements
were performed for samples in contact with helium gas at a
temperature T = 5 K.

III. EXPERIMENTAL RESULTS

A. Reflectivity spectra at the 1s exciton in GaAs
in magnetic field

The linear optical properties of GaAs exciton-polaritons
in external magnetic fields are well studied experimentally
and theoretically [18–25]. In order to have reference data for
our THG results, we present in Fig. 2 the reflectivity spectra
measured in a magnetic field applied in the Faraday geometry.
The spectrum has a dip at the energy of the 1s exciton. More
precisely, this dip corresponds to the upper exciton-polariton
branch, while the lower branch is not resolved due to the
rather weak polariton effect in GaAs. The position of the upper
polariton branch is just slightly above the 1s exciton. The
evolution of the dip energy and its depth in external magnetic
field is directly related to the key exciton parameters. Here,
we are interested in energy position, diamagnetic shift, and
oscillator strength of the exciton resonances in a magnetic field.

The studied GaAs layer has high structural and optical
quality [17], which is confirmed by the narrow exciton lines in
the reflectivity spectra with widths of 0.3 meV; see Figs. 2(a)
and 3. With increasing magnetic field up to 10 T the exciton
resonance shifts to higher energy and splits. The line shifts
in the Faraday and Voigt geometries detected for various
polarizations are given in Fig. 2(c). The identification and
discussion of these lines, including the selection rules, can be
found in Refs. [18–20] on the basis of the complex valence
band structure resulting in geometry-dependent diamagnetic
shifts and Zeeman effects. Figure 2(b) shows the magnetic
field dependence of the amplitude of the reflectivity signal,
where the dip depth is normalized to its value at B = 0 for the
1s exciton resonance. The exciton oscillator strength increases
by a factor of 6 with the field growing from 0 to 10 T. We will
use this parameter for modeling the THG signals.

B. Third harmonic generation in GaAs

Reflectivity and THG spectra of GaAs in the vicinity of
the 1s exciton resonance measured at zero magnetic field
are shown in Fig. 3. As already noted above, the reflectivity
spectrum shows a pronounced resonance of the 1s exciton-
polariton with a minimum at 1.5153 eV, marked by the
arrow, corresponding to the upper polariton branch. The THG
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FIG. 2. (a) Reflectivity spectra in the vicinity of the 1s exciton in
GaAs measured as a function of applied magnetic fields at T = 5 K.
Spectra are shifted vertically for clarity. (b) Magnetic field dependence
of the amplitude of the reflectivity resonance normalized to its value at
B = 0, which reflects the growth of the exciton oscillator strength with
B. (c) Diamagnetic energy shifts of exciton-polariton components in
the Faraday and Voigt geometries. Symbols are experimental data and
lines are interpolations.

spectrum shows a single peak with a maximum at ER =
1.5161 eV and a full width at half maximum of 0.3 meV.
The THG peak is shifted by about 0.8 meV to higher energy
relative to the reflectivity minimum. THG signal is observed
only in the parallel configuration E3ω ‖ Eω, while no signal is
detected in the perpendicular configuration E3ω ⊥ Eω, which
is in accordance to the symmetry consideration in Sec. IV A
below. The rotational anisotropy of the THG intensity in zero
field is almost isotropic, see Fig. 7(a), and is discussed further in
Sec. IV.

In external magnetic field the THG peak of the 1s exci-
ton shifts to higher energies. Moreover, its intensity in the
E3ω ‖ Eω configuration drastically increases in the Voigt ge-
ometry (Eω ⊥ B) with the magnetic field strength ramped from
0 to 10 T; see Fig. 4(a). The enhancement factor depends on the
experimental geometry. The magnetic field dependencies of the
THG peak intensities are shown in Fig. 5. The enhancement is
50-fold in the Voigt geometry for Eω ⊥ B, 36-fold in the Voigt

FIG. 3. THG and reflectivity spectra of GaAs in the vicinity of
the 1s exciton resonance at zero magnetic field. T = 5 K.

geometry for Eω ‖ B, and 25-fold in the Faraday geometry;
see Figs. 4 and 5. Note that the THG linewidth is nearly
independent of the magnetic fields strength and, therefore, the
peak intensity corresponds well to the changes of the integral

FIG. 4. THG spectra measured in GaAs in the vicinity of the
1s exciton resonance for different magnetic fields with E3ω ‖ Eω.
(a) Voigt geometry with Eω ‖ [010], Eω ⊥ B. (b) Voigt geometry with
Eω ‖ [100], Eω ‖ B. (c) Faraday geometry with Eω ‖ [010].

075204-3



W. WARKENTIN et al. PHYSICAL REVIEW B 98, 075204 (2018)

FIG. 5. THG intensity in GaAs as a function of magnetic field
strength. THG amplitudes are normalized on the value at B = 0.
Experimental data for E3ω ‖ Eω are shown by symbols. The line is
the result of model calculations; see Sec. V for details.

THG intensity. As one can see in Fig. 5, the THG intensity
grows about quadratically with magnetic field.

The strong increase of the THG intensity induced by the
magnetic field is, at first glance, surprising. Strong magnetic-
field-induced optical harmonic signals were reported for the
exciton resonances in GaAs, CdTe, and ZnO [3,6,8]. However,
these effects were observed for the SHG and in geometries
where the SHG process was symmetry forbidden in zero mag-
netic field. The magnetic field modifies the system’s symmetry
and induces mechanisms for the optical harmonic generation,
which result in a strong increase of the SHG intensity. The
situation is fundamentally different for the THG process, as
it is symmetry allowed for the studied geometries at B = 0.
In this section we present detailed experimental data for the
THG signals at the exciton resonances of GaAs measured for
different geometries and rotational anisotropies of the THG
intensity. Reference THG data for CdTe and ZnSe are given in
Sec. III C.

One can clearly see from comparing the THG spectra at
B = 10 T in Figs. 4(a) and 4(b) that the THG peaks in the Voigt
geometry measured for the Eω ⊥ B and Eω ‖ B configurations
are split in energy by about 1 meV. This splitting matches
the splitting between the reflectivity peaks in these geometries
shown in Fig. 2(c). The THG peak in the Faraday geometry
is observed at nearly the same position as the one in the Voigt
geometry, Eω ⊥ B; compare Figs. 4(a) and 4(c).

The diamagnetic energy shifts of the THG lines are shown
in more detail in Fig. 6. The shift in the Faraday geometry
closely follows the experimental data in the Voigt geometry,
Eω ⊥ B. For comparison with the exciton resonances in the
linear optical spectra, we have added in Fig. 6 reference lines
mapping out the shifts of the resonances in reflectivity from
Fig. 2(c). One can see that the reflectivity and THG data shift
and split with increasing magnetic field in a very similar way.
The only difference is that the THG data show an energy offset

FIG. 6. Magnetic field dependence of exciton energies measured
in THG and reflectivity for GaAs in various experimental geometries.
All THG data are given for E3ω ‖ Eω. The same symbol types
correspond to the same data sets in Fig. 5. Symbols give THG
experimental data and solid lines give reference reflectivity data from
Fig. 2(c). The dashed-dotted line is the result of model calculations;
see Sec. V for details.

of about 1 meV, which is already present at B = 0 and varies
only slightly with the magnetic field. The correlated behavior of
the diamagnetic shifts in reflectivity and the THG peak shifts
confirms that the THG signals originate from excitons. The
energy shift between the reflectivity and the THG peaks points
toward the polaritonic nature of the observed effect. This will
be discussed in detail in Sec. IV.

Rotational anisotropies of the THG signal are sensitive to
the crystal symmetry and magnetic-field-induced modifica-
tions of the THG selection rules and hence provide important
information on the involved mechanisms of optical harmonic
generation and on the involved electronic states. To record
them, the THG signal is measured as a function of azimuthal
polarization angle ϕ of the incoming fundamental light and
the outgoing THG signal; see Fig. 1. The THG anisotropies in
GaAs are shown in Fig. 7 for magnetic fields of 0 and 10 T. In
the Faraday geometry, the THG diagram has isotropic shape
in the E3ω ‖ Eω configuration [Fig. 7(c)]. Only a very weak
signal is detected in the E3ω ⊥ Eω configuration [Fig. 7(d)].
This behavior is similar to that measured at zero magnetic field
[Figs. 7(a) and 7(b)].

In the Voigt geometry at B = 10 T the THG diagrams are
strongly modified. They have a twofold rotational symmetry
for the E3ω ‖ Eω configuration, and have different orientations
with respect to the magnetic field direction: perpendicular to
the field for the high-energy line at 1.5229 eV [Fig. 7(e)] and
parallel to it at low-energy line at 1.5221 eV [Fig. 7(h)]. It is
also interesting that the THG signal appears for the E3ω ⊥ Eω

configuration [Figs. 7(f) and 7(g)], while it is about three times
weaker compared to the parallel configuration. Here, the THG
diagrams demonstrate fourfold rotational symmetry with the
same orientation for both exciton lines. Details on modeling
the rotational anisotropies are given in Secs. IV and V.
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FIG. 7. Rotational anisotropies of the THG resonance in magnetic fields of B = 0 and 10 T in the Voigt and Faraday geometries measured
at the energies corresponding to the THG exciton peaks. Symbols are experimental data and black lines are fits discussed in Sec. V. Symbol
types correspond to the same data sets shown in Fig. 4. The data in panels (a,c) are fitted with Eq. (9) with the parameters C/A = 0.82 (a) and
C/A = 1 (b); in panels (e,h) with Eq. (33a) and in panels (f,g) with Eq. (33b).

We have also tested circular polarization of the excitation
laser for THG generation on exciton-polaritons in GaAs. The
results are shown in Fig. 8, from which one can conclude
that no THG signal is visible at B = 0. Also a magnetic field
of 10 T applied in the Faraday geometry, where the THG
signal induced by linearly polarized excitation is strongly
enhanced, but does not provide any detectable signal for
circularly polarized excitation. This is due to the giant linear
circular dichroism in the multiphoton absorption of cubic

FIG. 8. THG spectra in GaAs at T = 5 K, measured in magnetic
fields B = 0 and 10 T (Faraday geometry), to compare effects of linear
and circular polarization of the fundamental light. THG signals are
observed only for linearly polarized light (blue open circles); they are
absent for circularly polarized excitation (red closed and black open
circles).

semiconductors [26] (see also Sec. IV A), related to the fact
that in the three-photon absorption process (at k = 0 and
B = 0) the angular momentum conservation law does not
allow the absorption of three co-circularly polarized photons.
Our experiment shows that, within the measurement accuracy,
neither finite values of k nor finite magnetic fields relax this
exclusion principle.

It is instructive to compare the spectral positions of the
THG and SHG signals on exciton-polaritons in GaAs. As
SHG is absent for kω ‖ [001] at B = 0, we choose B = 10 T
for this comparison. The results are shown in Fig. 9 for the
Voigt geometry and for ϕ = 45◦, where both exciton polariton
states are visible in the THG spectrum. One sees the same two
states in the SHG spectrum, with energies very close to the
ones in the THG spectrum. Therefore, we conclude that the
exciton-polaritons can be excited by both SHG and THG.
Their close energies are due to the fact that the polariton shift
of the SHG and THG signals from the exciton resonance in
reflectivity is rather small in GaAs, and also due to the small
difference between the background refractive indices n(Eg/2)
and n(Eg/3) at half and at a third of the band gap energy; see
Sec. IV.

C. Third harmonic generation in CdTe and ZnSe

We also performed THG experiments for CdTe and ZnSe
samples in a magnetic field. They have the same zinc-blende
crystal structure as GaAs, but have larger exciton binding
energies of 10 and 20 meV in CdTe and ZnSe, respectively.
Correspondingly, the exciton Bohr radius decreases from
25 nm in GaAs to 10 nm in CdTe and 6 nm in ZnSe [27]. For
a smaller Bohr radius the effect of the magnetic field on the
exciton diamagnetic shift and the oscillator strength is reduced.
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FIG. 9. Comparison of SHG and THG spectra in GaAs measured
at B = 10 T in the Voigt geometry. ϕ = 45◦ and T = 5 K.

We choose the same crystal orientation as shown in Fig. 1, i.e.,
with kω ‖ [001]. The magnetic field is applied in the Voigt
geometry and measurements are performed in the E3ω ‖ Eω

polarization configuration.
The results for CdTe are shown in Fig. 10. Here the

reflectivity spectrum at B = 0, shown by the blue line, has

FIG. 10. THG and reflectivity spectra of CdTe in magnetic fields
B = 0 and 10 T at T = 5 K. The inset shows the magnetic field
dependence of the THG peak intensity for the Voigt geometry.

FIG. 11. THG and reflectivity spectra of ZnSe at zero magnetic
field and 10 T. The inset shows the magnetic field dependence of THG
peak intensity for the Voigt geometry. T = 5 K.

a pronounced exciton resonance at 1.597 eV. The THG spectra
are presented for B = 0 and 10 T. With increasing field, the
exciton line shows a diamagnetic shift from 1.5972 to 1.600 eV
and its integral intensity increases by a factor of 3.5; see the
inset in Fig. 10. Similar to GaAs, the magnetic-field-induced
enhancement of the THG intensity is present in CdTe, but the
effect is considerably smaller; compare with Fig. 5.

The results for ZnSe are shown in Fig. 11. The reflectivity
spectrum has the exciton resonance with its minimum at
2.803 eV. The THG peak at B = 0 is shifted to higher energy
by about 3.5 meV due to the exciton-polariton effect, which
is much stronger in ZnSe compared to GaAs. Due to the large
exciton binding energy of 20 meV and the compact exciton
size, the exciton diamagnetic shift in B = 10 T is almost
negligible. The THG integral intensity shown in the inset is
as well almost field independent and even demonstrates some
tendency to decrease for B changing from 6 to 10 T.

Comparing the results of the three studied materials, we can
draw a preliminary qualitative conclusion. As the strongest
THG intensity increase in a magnetic field is observed in
GaAs, where the exciton has the largest radius and is mostly
susceptible to the field, we conclude that the most likely mech-
anism involves excitons. We can assume that the magnetic-
field-induced increase of the exciton oscillator strength is
responsible for the THG intensity increase. In the next section
we demonstrate that this is exactly the case by providing a
theory of the THG on exciton-polaritons in semiconductors.

IV. THEORY OF THIRD HARMONIC GENERATION
ON EXCITON-POLARITONS

In this section we present the theoretical description
of the third harmonic generation on exciton-polaritons in
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semiconductors. In Sec. IV A we start with a brief outline of the
general approach to calculate the third harmonic generation on
excitons, disregarding the spatial dispersion and magnetic field
effects. In Sec. IV B the theory of the exciton-polariton effect
on the third harmonic generation is presented. Furthermore,
we discuss in Sec. IV C the manifestations of the exciton fine
structure and in Sec. IV D the magnetic field effects.

A. Third harmonic generation on excitons

We consider the third harmonic generation in bulk cubic
semiconductors at direct interband transitions. It is assumed
that the incident radiation frequency ω is close to one third of
the exciton resonance frequency ω0 = Eexc/h̄, where Eexc is the
exciton resonance energy. The third harmonic generation can
be treated as a process of three-photon excitation of exciton
followed by the coherent emission of a single photon of triple
frequency 3ω. We take into account only transitions with
virtual intermediate states in the lowest conduction and highest
valence bands, i.e., the three-photon absorption can be treated
as a three-step process v → c → v → c. To begin with, for
simplicity, we disregard the complex valence band structure of
GaAs-type semiconductors. Correspondingly, within the time-
dependent perturbation theory the compound matrix element
of the three-photon absorption reads

M (3)E3
ω = − ie3

ω3

(e · v̂)cv (e · v̂)vc(e · v̂)cv
(2h̄ω)2

E3
ω. (1)

Here e is the light polarization unit vector, v̂cv is the interband
matrix element of the velocity operator, andEω is the amplitude
of the fundamental harmonic within the crystal. Hereafter the
normalization volume is set to unity. Due to the significant
energy deficit relative to the band gap energy at the intermediate
steps of the three-photon absorption (1), one can neglect the
free carrier energy dispersion in the bands as well as the
radiation wave vector.

It follows from symmetry arguments [26] that the polar-
ization dependence of M (3) can be reduced to a simple form,
namely,

M (3) ∝ (e · e)(e · v̂)cv. (2)

Particularly, for circularly polarized light the three photon
absorption matrix element vanishes [26]. This is because we
consider only interband transitions, and the angular momentum
transferred to the crystal cannot be larger than unity for the�7 to
�6 transition and larger than 2 for the �8 to �6 transition, while
three circularly polarized photons carry an angular momentum
of 3. In what follows we assume that the fundamental harmonic
propagates along the cubic axis z ‖ [001] and the light is
linearly polarized in the (xy) plane. In this case one has

M (3) = − ie3

ω3

1

(2h̄ω)2

|p̃cv|2p̃cv

m3
0

, (3)

where p̃cv is the effective interband momentum matrix element
and m0 is the free-electron mass. Note that for transitions
from the �7 to �6 bands one obtains p̃cv = 〈S|p̂x |X 〉/√3,
while, neglecting the spin-orbit coupling completely (i.e., for
transitions �15 → �6), one has p̃cv = pcv ≡ 〈S|p̂x |X 〉. Here
S , X , Y , and Z are the orbital Bloch amplitudes of the

electron wave functions in the conduction and valence bands,
respectively.

The matrix element (3) does not depend on the electron
wave vector. Hence, in agreement with the symmetry argu-
ments, the three-photon absorption is allowed at the � point
of the Brillouin zone and the excitation of s excitons (with
invariant envelope functions) is possible. We focus on the 1s

exciton state and present the matrix element of its three-photon
excitation in the form

M (3)
excE

3
ω = �∗

1s (0)M (3)E3
ω, (4)

where �1s (r) is the wave function of the electron-hole relative
motion and r is the relative coordinate of the electron-hole pair.
In order to calculate the exciton contribution to the nonlinear
dielectric polarization P3ω we introduce the coefficients Cα ,
which describe the probability amplitudes of finding the exci-
ton with the microscopic dipole moment dα oscillating along
the Cartesian axes α = x, y, or z. The dielectric polarization
can be recast as

P 3ω
α = dCα + c.c., (5)

where d = ie�1s (0)h̄p̃∗
cv/(m0Eg ) is the exciton dipole mo-

ment matrix element. Neglecting the exciton energy dispersion
and the exciton-induced electromagnetic field (i.e., the polari-
ton effect), the coefficients Cα can be readily expressed in the
framework of time-dependent perturbation theory by means of
Eq. (4) in the form

Cα = M (3)
excE

3
α,ω

Eexc − 3h̄ω
. (6)

It is convenient to describe the nonlinear response of the
crystal in the absence of polariton effects by the fourth-rank
tensor χαβγ δ with α, . . . , δ being the Cartesian axes which
describes the third-order nonlinear susceptibility as

P 3ω
α = χαβγ δEβ,ωEγ,ωEδ,ω. (7)

The tensor χαβγ δ is symmetric to any permutation of the
last three indices. In the Td point symmetry group relevant
for the studied samples there are two linearly independent
components; see, e.g., Ref. [2]:

χααββ = χαββα = χαβαβ = A, α = β, (8a)

χαααα = C. (8b)

Based on the analysis of Eqs. (7) and (8), one can write the
rotation anisotropies for the THG intensities in the parallel,
I 3ω
‖ for E3ω ‖ Eω, and perpendicular, I 3ω

⊥ for E3ω ⊥ Eω, po-
larization geometries. To that end, we note that the orientation
of the electric field E3ω is the same as that of the polarization
vector P3ω in Eq. (7). As a result, we obtain

I 3ω
‖ (ϕ) ∝

∣∣∣∣C + 1

2
(A − C) sin2 2ϕ

∣∣∣∣
2

, (9)

I 3ω
⊥ (ϕ) ∝ 1

16
|(A − C) sin 4ϕ|2,

where ϕ is defined in Fig. 1. It follows from Eqs. (2) and (6)
that in the considered model, where the intraband transitions
(as well as the contributions of remote bands) are disregarded,
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the constants A and C are equal. Making use of Eq. (4) we
obtain analytically

A = C = e4

ω3

h̄|p̃cv|4|�1s (0)|2
m4

0Eg (h̄ω)2(Eexc − 3h̄ω)
∝ |�1s (0)|2

Eexc − 3h̄ω
. (10)

The susceptibility, as expected, has a resonance at 3h̄ω = Eexc

and is proportional to the probability of finding the electron
and hole within the same unit cell, |�1s (0)|2. One can see
that the prediction A = C in our model results in THG, I 3ω

‖ =
|C|2, for the parallel geometry and vanishing THG, I 3ω

⊥ = 0,
for the perpendicular geometry. The polariton effects which
we consider in the following subsection do not affect these
conclusions.

B. Polariton effects

In bulk semiconductors the light-matter interaction strongly
modifies the energy spectrum of the excitons and affects the
propagation of the radiation via the formation of exciton-
polaritons. This is particularly important for the excitonic
mechanism of the THG because the frequency of the third
harmonic, 3ω, is in the vicinity of excitonic resonances. This
requires an extension of the approach of Sec. IV A to account
for the polariton effect. In this subsection, for simplicity, we
consider the transitions between the bands �7 → �6, where
the exciton is characterized by a single translational mass M .
In this case the polariton dispersion curve consists of two
branches, the lower (LPB) and upper (UPB) one; see Figs. 12(a)
and 12(b). The more complex case of �8 → �6 is considered
in Sec. IV C; see also Fig. 13.

To that end we present the nonlinear polarization P3ω and
the induced electric field E3ω ≡ E� at the third harmonic
frequency � = 3ω as a sum of a particular solution of the
inhomogeneous set of Schrödinger and Maxwell equations
and the general solution of the homogeneous equations in
order to account for the boundary conditions at the crystal
surfaces. First, we address the inhomogeneous solution which
describes the THG in the infinite crystal. The coefficients
Cα and the electric field E+

α,� oscillating as exp(−i�t ) (the
so-called positive frequency term) satisfy the coupled system
of equations

(
Eexc + h̄2K2

2M
− h̄� − ih̄γ

)
Cα = dE

(+)
α,� + M (3)

excE
3
α,ω,

(11a)[
�

c
nb(�) − K

]
E+

α,� = − 2π

nb(�)

�

c
dCα. (11b)

Here c is the speed of light, M is the translational exciton
mass, K is the exciton wave vector equal to 3kω, kω is the
wave vector of the incident radiation, i.e., of the fundamental
harmonic, nb ≡ nb(�) is the background refraction index
that is weakly dependent on the frequency and related the
background dielectric constant εb(�) found by neglecting the
1s exciton resonance, and h̄γ is the nonradiative damping rate
of the exciton. Note that Eq. (11a) is the Schrödinger equation
for the exciton probability amplitudesCα , while Eq. (11b) is the
Maxwell equation for the electric field written in the resonant

FIG. 12. (a) and (b) Schematics of the three-photon excitation
process of exciton-polaritons contributing to the THG for nb(ω) <

nb(�) and nb(ω) > nb(�), respectively.

approximation. Here and in what follows we assume that the
difference of the refractive indices at the fundamental and third
harmonic frequencies is small, |nb(ω) − nb(�)| � nb(ω).

We introduce the bare-exciton Green’s function

G(�,K ) = 1

h̄� − Eexc − h̄2K2

2M
+ ih̄γ

, (12)

which allows us to present the solution of the set (11) in the
compact form

E+
α,� = 2π

nb(�)
dM (3)

excE
3
α,ω

G(�,K )

nb(�) − cK
�

− 2π
nb (�)d

2G(�,K )
.

(13)

It is noteworthy that the poles of Eq. (13) correspond to the
transversal polariton modes:

ε(�,K ) =
(

cK

�

)2

= n2
b(ω), (14)
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FIG. 13. Dispersion of exciton and exciton-polariton states in
GaAs for K ‖ [001] after Ref. [31]. Exciton-polariton dispersion
for UPB, MPB, and LPB is shown by solid lines. Dispersion of
the longitudinal |1, 0〉 exciton is given by dashed-dotted line and
of the dark |2, 0〉 and |2,±2〉 excitons by dashed lines. The green
line represents the light dispersion with h̄ck/nb(ω). In its crossing
points with the exciton and exciton-polariton states the THG signals
are principally possible, while at B = 0 they are forbidden for the
longitudinal and dark excitons with projections 0 and ±2, and only
weakly allowed for the MPB.

where the dielectric susceptibility which accounts for the
exciton resonance reads, in the resonant approximation,

ε(�,K ) = εb(�) + 4πd2

Eexc + h̄2K2

2M
− h̄� − ih̄γ

. (15)

The numerator in Eq. (15) can be conveniently recast as

4πd2 = h̄ωLT εb(Eexc/h̄) ∝ |�1s (0)|2, (16)

where h̄ωLT is the exciton longitudinal-transverse splitting.
In order to analyze the spectral dependence of the THG

effect we substitute the function (12) into Eq. (13) and obtain
in the vicinity of 3h̄ω ≈ Eexc

E+
α,� ∝ |�1s (0)|2

nb(�) − nb(ω)

E3
α,ω

3h̄ω − h̄�∗(3q )
, (17)

where

h̄�∗(K ) = Eexc + h̄2K2

2M
+ h̄ωLT

2

nb(Eexc/h̄)

nb(�) − nb(ω) − ih̄γ
.

(18)

Equations (17) and (18) demonstrate that the field of the third
harmonic as a function of the fundamental frequency has a
resonance at

3ω = Re{�∗(3kω )}. (19)

It follows from Eq. (18) that the THG resonance is shifted
from the exciton resonance frequency Eexc/h̄ due to (i) the

mechanical exciton dispersion, h̄2K2/2M , and (ii) the po-
lariton effect described by the second term in Eq. (18). The
interpretation of the polariton shift immediately follows from
the conservation laws of energy and momentum, which are
fulfilled in the third-order nonlinear process. In fact, the THG is
most efficient when the energy of the three photons 3ω matches
the polariton energy at the wave vector 3kω; see Fig. 12. Indeed,
making use of the dispersion equation (14) and noting that at
the resonance cK/� = ckω/ω = nb(ω), we obtain Eq. (18).
For a large value of M the physical root of this equation reads

ω = �∗(3kω )/3.

Another root corresponds to an unrealistically high energy and
is unphysical. Notably, in the three-photon resonant absorp-
tion, an exciton-polariton is generated at the upper polariton
branch, UPB, if nb(ω) < nb(�) [Fig. 12(a)], and at the lower
branch, LPB, if nb(ω) > nb(�) [Fig. 12(b)]. We stress that
the polariton effect allows one to fulfill the phase matching
condition and results in the strong enhancement of the THG
signal at the exciton-polariton resonances.

Interestingly, if nb(ω) = nb(�), e.g., if the frequency dis-
persion of the background dielectric constant is absent, then
the exciton resonance in the third harmonic vanishes, namely,

E+
α,� = −M (3)

excE
3
α,ω

d
. (20)

In this regime of full synchronization the left-hand side of
Eq. (11b) vanishes, the coefficient Cα and, hence, the left-hand
side of Eq. (11a) vanish as well, and we immediately obtain
Eq. (20). In fact, this means that the light dispersion crosses
neither the upper nor the lower polariton branches.

Now we briefly analyze the propagation of the third har-
monic light in the bounded crystal slab. To illustrate the most
important effects it is sufficient to consider a semi-infinite
crystal occupying the half-space z > 0. Let the fundamental
harmonic be incident at the z = 0 boundary. Since the fre-
quency ω lies in the transparency region, there are no additional
light waves at this frequency and, moreover, we can disregard
the absorption of the fundamental harmonic. Thus, the incident
field inside the crystal is given by

Eα,ωe−iωt+ikωz + c.c.,

where the amplitude Eα,ω of the transmitted light is found from
the standard Fresnel boundary conditions. The field of the third
harmonic consists of three contributions: the solution Eq. (13)
or (17) of the inhomogeneous set (11), and two polariton waves
satisfying the homogeneous set (11), as follows:

Eα,�(z, t ) = (
E+

α,�eiKz + E
(1)
α,�eiK1z + E

(2)
α,�eiK2z

)
e−i�t .

(21)

Here the wave vectors K1,2 are determined from Eq. (14) and
K1 is chosen to be closest to the 3kω. The fields E

(1)
α,� and E

(2)
α,�

can be found from the boundary conditions for the electric
field, which require continuity of the tangential components of
the electric field and the normal components of the magnetic
field, namely,

Er = E+
α,� + E

(1)
α,� + E

(2)
α,�, (22a)

−�

c
Er = KE+

α,� + K1E
(1)
α,� + K2E

(2)
α,�, (22b)
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where Er is the third harmonic generated at the boundary
and propagating out of the crystal towards z → −∞. The
third boundary condition required because of the spatial
dispersion,

0 = dE
(1)
α,�

h̄� − Eexc − h̄2K2
1

2M

+ dE
(2)
α,�

h̄� − Eexc − h̄2K2
2

2M

+ dE+
α,� − M (3)

excE
3
α,ω

h̄� − Eexc − h̄2K2

2M

, (23)

is the Pekar condition for the exciton polarization vanishing at
the boundary, P3ω(z = 0) = 0, meaning that the exciton cannot
leave the crystal [28].

Equations (22) and (23) allow us to calculate the fields
within the crystal. For the typical parameters the reflected field
Er is small and, instead of the two conditions (22), one can use
the requirement

0 = E+
α,� + E

(1)
α,� + E

(2)
α,�, (24)

which states that the field of the total third harmonic is zero at
z = 0. Making use of Eqs. (24) and (23) we obtain

Eα,�(z, t ) = E+
α,�eiKz−i�t − E+

α,�[G(�,K ) − G(�,K2)] + (
M (3)

excE
3
α,ω/d

)
G(�,K )

G(�,K1) − G(�,K2)
eiK1z−i�t

−E+
α,�[G(�,K1) − G(�,K )] − (

M (3)
excE

3
α,ω/d

)
G(�,K )

G(�,K1) − G(�,K2)
eiK2z−i�t . (25)

Equation (25) generalizes the standard expressions for the
harmonic generation in crystals [29,32] to account for the
exciton-polariton effects.

For the heavy translational mass M , where the spatial
dispersion is unimportant, but the frequency dispersion of the
background dielectric constant can be important, the wave with
the wave vector K2 is not excited, and Eq. (25) can be reduced
to

Eα,�(z, t ) = 2π

nb(�)
dM (3)

excE
3
α,ωe−i�t

× G(�, 0)

nb(�) − nb(ω) − 2π
nb (�)d

2G(�, 0)
(eiKz − eiK1z)

∝ |�1s (0)|2(eiKz − eiK1z)

K − K1
. (26)

Generally, the wave vectors of the polaritons K1 =
3kω

√
ε(3ω)/nb(ω) and K = 3kω are not equal, thus the

intensity of the third harmonic inside the crystal, I 3ω ∝
sin2 [(K − K1)z] oscillates as a function of coordinate. This
is because the phase matching condition is not fulfilled at
3ω = �∗ in Eq. (18), i.e., where K1 = K . Exactly at the
THG resonance (neglecting damping) K1 = K and the de-
nominator in Eq. (26) vanishes, which corresponds to the
phase-matching condition due to the exciton-polariton. Hence,
one has to consider the limit of 3ω → �∗ and, making use
of the l’Hospital rule, one obtains Eα (z, t ) ∝ z and the THG
intensity I 3ω ∝ |Eα,�(z, t )|2 increasing quadratically with the
coordinate.

C. Role of exciton fine structure

Let us now analyze the modifications of Eqs. (3) and (4)
with allowance for the complex valence band structure. In
zinc-blende structure the complex valence band is formed
of the �8 and the spin-orbit split �7 subbands, while the
conduction band bottom transforms according to the �6 spinor
representation. The s-exciton states transform according to the

reducible representation

�6 ⊗ �8 = E ⊕ F1 ⊕ F2, (27)

where the states belonging to the E and F1 irreducible repre-
sentation are dark, while the three states belonging to the F2

representation are optically active in the dipole approximation.
The intermediate states for the �8 → �6 three-photon transi-
tion can be both in the same �8 or in the split-off �7 band. The
matrix element of the three-photon excitation of the optically
active states reads

M (3)
excE

3
α,ω = − i�∗

1s (0)e3

ω3

|pcv|2pcv

3m3
0

×
[

2

(2h̄ω)2
+ 1

2h̄ω(2h̄ω + �so)

]
E3

α,ω, (28)

where �so is the valence band spin-orbit splitting, pcv =
〈S|p̂x |X 〉. Accounting for the valence band structure does
not change the polarization dependence of the matrix element
and the relation between the components of the susceptibility
tensorA = C in Eqs. (8). The mixing of the exciton statesE and
F1 with optically active states F2 due to the nonzero exciton
wave vector and the external magnetic field is discussed in
Sec. IV D.

In Secs. IV A and IV B the model of the THG involved only
three optically active exciton states transforming according to
the irreducible representation F2 of the Td point symmetry
group; see Eq. (27). The fine structure of the �6 ⊗ �8 exciton
at rest (K = 0) is controlled by the short-range exchange
interaction: Its isotropic part splits otherwise eightfold de-
generate exciton state into the triplet F2 corresponding to the
angular momentum F = 1 and the fivefold degenerate state
with F = 2. Due to the cubic anisotropy the F = 2 state
splits into a doublet and a triplet transforming according to
the representations E and F1, respectively. In what follows we
neglect this small anisotropic splitting and use the notations
|F,Fz〉 to denote the exciton states, with Fz = −F,−F +
1, . . . , F being the component of the total angular momentum.
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The states with F = 1 are bright, while the five states
with F = 2 are inactive in the dipole approximation; these
dark states lie energetically below the bright triplet. For
an exciton at motion, where its center-of-mass wave vector
K = 0, the bright and dark states become mixed and the dark
states become allowed in the dipole transitions. Disregarding
cubic anisotropy effects for K ‖ z, only states with the same
component Fz are mixed, making the states |2,±1〉 optically
active. Introducing, in analogy withCα the amplitudesDα (α =
x, y) of the corresponding linear combinations of |2,±1〉
states, we have, instead of the material equation (11a), the set of
equations

(
Eexc + h̄2K2

z

2M1
− h̄� − ih̄γ

)
Cα + βK2

z Dα

= dE+
α,� + M (3)

excE
3
α,ω, (29a)(

Eexc − � + h̄2K2
z

2M2
− h̄� − ih̄γ

)
Dα + βK2

z Cα = 0,

(29b)

where � is the dark-bright splitting at K = 0. The effective
masses M1,2 and the mixing parameter β can be calculated
by the method developed in Ref. [30]. These quantities are
related to the complex valence band structure of GaAs-type
semiconductors.

Figure 13 shows dispersion of exciton and exciton-polariton
states in GaAs for the spectral range of the 1s exciton. Results
are plotted for K ‖ [001] after Figs. 1 and 3 in Ref. [31],
where the following parameters were chosen: energy of 1s

exciton without coupling with light of 1.5150 eV, dielectric
constant ε = 12.55, M = 0.183, h̄ωLT = 80 μeV [33], and
exchange splitting of 100 μeV. The upper, middle, and lower
exciton-polariton branches (UPB, MPB and LPB, respectively)
are shown by solid lines. Other exciton states are not coupled
with the light. The dispersion of the longitudinal |1, 0〉 exciton
is traced by a dashed-dotted line and those of the dark, |2, 0〉
and |2,±2〉, excitons are shown by dashed lines.

THG signals are principally possible at the energies where
the light dispersion with h̄ckω/nb(ω), shown by a green line
in Fig. 13, crosses the exciton-polariton or exciton states. The
state |2,±1〉 is dark at K = 0. However, at nonzero K , the
K2

z terms induce an admixture of the |1,±1〉 bright states
to the |2,±1〉 states. This allows their interaction with light
resulting in the MPB polaritons. Our estimates show that for
the particular case of GaAs the mixing described by Eqs. (29)
is weak and the polariton effect on the |2,±1〉 states in zero
magnetic field is negligible. In the Td point symmetry group
an additional small K-linear mixing of the bright and dark
excitons with angular momentum components ±1 is possible
with the extra terms ∝ i[K × D] and i[K × C] in Eqs. (29a)
and (29b), respectively. This mixing is also small and can
be disregarded. The states with momentum components 0
and ±2 are strictly forbidden at zero magnetic field. Thus,
the light coupling to the F = 2 excitons due to the complex
valence band structure effects is of minor importance and the
intersection points of the photon dispersion with the curves
that stem from F = 2 excitons, i.e., from intersections of light

dispersion with the MPB, do not provide a sizable contribution
to the THG in GaAs; see also the discussion below.

D. Effects of external magnetic field

Now we turn to the effects of the external magnetic field on
the THG from exciton-polaritons. The magnetic field modifies
the exciton states in semiconductors by inducing diamagnetic
shifts of the exciton states, changing the exciton oscillator
strengths, providing Zeeman splittings of excitons, and also
mixing dark and bright excitons. It is instructive to distinguish
between the effects that are even and odd in the magnetic field
B and also separately analyze the Faraday (B ‖ K) and the
Voigt (B ⊥ K) geometries.

1. Faraday geometry

As above we assume that K ‖ z and B ‖ z. For the analysis
of the odd effects in the field it is sufficient to restrict ourselves
to B-linear contributions. The main effect here is the Zeeman
effect which results in the mixing of x- and y-polarized
excitons and, eventually, in the splitting of the bright exciton
states into the σ+ and σ− polarized states observed in the
reflectivity spectra; see Fig. 2(a). Microscopically, the Zeeman
effect can be described by the terms ∝ [C × B]α in the material
equation (11a) for Cα , which leads to a magnetic-field-induced
correction to the third-order nonlinear susceptibility (Faraday
effect) as

δP3ω ∝ P3ω × B, (30)

where P3ω is given by Eq. (7).
Moreover, the B-linear term mixes the |2,±1〉 states with

the |1,±1〉 states and additionally activates the MPB po-
laritons. A sufficiently strong magnetic field gives rise to
two exciton branches related to the heavy-hole and light-hole
states (with the momentum projections ±3/2 and ±1/2 onto
the field direction, respectively). The field-activated excitons
manifest themselves as additional peaks in the reflectivity
spectrum at the low-energy side of the exciton resonance; see
Fig. 2(a). However, for the chosen experimental conditions the
contribution of these states to the THG effect is minor and
unobservable in experiment. Note that while the mixing term
is linear in B, the effect is even in the magnetic field due to the
zero field splitting of the exciton levels.

Now we turn to the effects even in the magnetic field.
The most pronounced effects are related to the field induced
variation of the exciton energy, i.e., to the diamagnetic shift,
and the enhancement of the exciton oscillator strength. The
diamagnetic shift can be included as the B2

z dependence of the
bright exciton energy [19],

Eexc(Bz) = Eexc(0) + αB2
z , (31a)

where α ∼ e2a2
B/μc2 with μ being the reduced electron-

hole mass and aB the exciton Bohr radius. The diamagnetic
shift related to the exciton Rydberg EB is controlled by the
dimensionless parameter

Eexc(Bz) − Eexc(0)

EB

∼ a4
B

l4
B

, (31b)
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where lB = √
h̄c/e|Bz| is the magnetic length. Hence, the

larger the exciton Bohr radius, the stronger is the effect of
magnetic field. It is also important that the magnetic field sig-
nificantly modifies the 1s exciton wave function by shrinking
it in the (xy) plane. As a result, the exciton wave function at
the coinciding electron and hole coordinates �1s (0) increases,
resulting in the increase of the exciton oscillator strength,

h̄ωLT (Bz) = h̄ωLT (0) + α′B2
z , (31c)

with parameter α′. The relative variation of the exciton oscil-
lator strength

h̄ωLT (Bz) − h̄ωLT (0)

h̄ωLT (0)
= |�1s (Bz)|2 − |�1s (0)|2

|�1s (0)|2 ∼ a4
B

l4
B

,

(31d)

is controlled by the same dimensionless parameter as the
diamagnetic energy shift, Eq. (31b). We note that in GaAs at
B = 10 T the ratio aB/lB ≈ 3 and the perturbation approach
in Eqs. (31a) and (31c) is inapplicable. Correspondingly, the
strong diamagnetic shift (of about 6 meV) and a substantial
increase of the h̄ωLT by a factor of ∼6 in GaAs are clearly
visible in the reflectivity data, Fig. 2(c). For CdTe and ZnSe
the effect is accordingly smaller due the smaller Bohr radii in
these semiconductors; see insets in Figs. 10 and 11.

The rotational anisotropy of the third harmonic generation
in the Faraday configuration is simple. Within our model the
induced polarization P3ω follows the incident field Eω but, due
to the Faraday effect described by Eq. (30), P3ω is generally
no longer parallel to Eω. Thus for the configuration with
parallel polarizer and analyzer (E3ω ‖ Eω) the THG intensity
is independent of their common orientation. A signal in the
crossed polarizations E3ω ⊥ Eω is expected due to the Faraday
effect; it vanishes at B = 0 and is also invariant under the
polarizer/analyzer rotation.

2. Voigt geometry

A transversal magnetic field (B ⊥ K, B ‖ x) can also
activate longitudinal and dark excitons with projections 0 and
±2 on the direction of K. For instance, in the B-linear regime,
due to the Zeeman effect, the longitudinal exciton with Cz = 0
is mixed with the transverse excitons, acquiring a nonzero
oscillator strength. In this way, the exciton |1, 0〉 became active
both in the linear optical response and in the THG. To describe
this mixing it is sufficient to add in Eq. (11a) terms of the form
∝ [C × B]α , which at B ‖ x mix the Cy and Cz amplitudes
(similarly as Cx and Cy for B ‖ z). The contribution of the
|1, 0〉 state is expected to be polarized perpendicular to the
magnetic field, P3ω ⊥ B.

Furthermore, the magnetic field in the Voigt geometry
also mixes the F = 1 and F = 2 excitons. The contribution
of the |2, 0〉 state mixed with the bright state is expected
to be polarized parallel to the magnetic field, P3ω ‖ B. The
dark |2,±2〉 states are mixed with the bright |1,±1〉 ones
acquiring thereby the polarization properties of the latter.
Again, although mixing is induced by the B-linear terms, the
effect is even due to the zero field fine energy splitting.

A further increase of the magnetic field gives rise to further
mixing and splitting of the states as well as, similarly to the
Faraday geometry, to the diamagnetic shift, Eq. (31a), and

the variation of the oscillator strength, Eq. (31c), even, with
magnetic field. Here we present only the results for strong
enough magnetic fields, where the diamagnetic shifts of the
exciton states exceed by far h̄ωLT . In this regime one can
disregard, in first approximation, the fine structure of the
excitons at B = 0 as well as the exciton dispersion (i.e., set
K = 0) and use the approach of Ref. [19]. Thus, the octuplet
of exciton states gives rise to two states with the microscopic
dipole moment P3ω ‖ B and four states with P3ω ⊥ B. We
neglect for simplicity the splitting within the doublet and
quartet of states and focus only on effects quadratic in magnetic
field [19]. The analysis shows that, for the state polarized
perpendicular to the magnetic field, the dependence of the
diamagnetic shift and the oscillator strength on the field is the
same as for the Faraday geometry, Eqs. (31). By contrast, for
the state polarized parallel to the field, the diamagnetic shift
and the variation of oscillator strength are different. As a result,
instead of Eqs. (31) for B ‖ x ‖ [100] we have

Eexc(Bx ) = Eexc(0) +
{

αB2
x , P3ω ‖ y,

α‖B2
x , P3ω ‖ x,

(32a)

h̄ωLT (Bx ) = h̄ωLT (0) +
{

α′B2
x , P3ω ‖ y,

α′
‖B

2
x , P3ω ‖ x,

(32b)

with the additional parameters α‖ and α′
‖. The calculations

[19] show that α > α‖. As a result, the higher state in the Voigt
geometry is polarized perpendicular to the magnetic field and
diamagnetic shift is the same as for the Faraday geometry. The
lower state is polarized parallel to the magnetic field. This is
in agreement with our experimental results in Figs. 4, 7(e),
and 7(h). This polarization dependence is also apparent in the
experimental data on reflectivity; see Fig. 2.

Due to the fact that, in the considered model, the states are
active either for P3ω ⊥ B or for P3ω ‖ B, the THG rotational
anisotropies have simple forms. For instance, for E3ω ‖ Eω

I 3ω
‖ (ϕ) ∝

{
cos4 ϕ, P3ω ‖ y,

sin4 ϕ, P3ω ‖ x,
(33a)

where ϕ is defined in Fig. 1, while for E3ω ⊥ Eω fourfold
symmetry

I 3ω
⊥ ∝ cos2 ϕ sin2 ϕ = 1

8 (1 − cos 4ϕ), (33b)

is expected. The same rotation anisotropy is expected for the
THG signal if it comes from the |1, 0〉 and |2, 0〉 activated
states.

Let us summarize the results of the magnetic field effects on
the THG involving exciton-polariton states. The THG intensity
increase is expected to be provided by the growth of the exciton
oscillator strength. The spectral shift of THG line to higher
energies is mainly contributed by the exciton diamagnetic shift,
but also partly by repulsion of the UPB and LPB polaritons due
to increase of the oscillator strength. The stronger changes in
magnetic field are expected for materials having excitons with
larger Bohr radius and smaller exciton binding energy. The
obvious scaling factor here is the ratio of the exciton Bohr
radius to the magnetic length.
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V. DISCUSSION

In this section we present the comparison between the
experimental data and the developed theory and discuss the
obtained results. First, we focus on the main effects which
largely do not depend on the experimental geometry: The
THG intensity strongly increases with growing magnetic field;
see Figs. 4 and 5. The largest effect is observed in GaAs
and becomes progressively weaker in CdTe and ZnSe, where
the exciton Bohr radii are smaller. A qualitative explanation
already follows from Eqs. (31c) and (32b): The magnetic field
shrinks the exciton wave function and increases its oscillator
strength. While the dip in the reflectivity spectrum ∝ |�1s (0)|2,
the intensity of the third harmonic is proportional to |�1s (0)|4;
see Eqs. (10), (17), and (26). Thus, the approximately sixfold
increase of the amplitude of the exciton resonance in the
reflectivity of GaAs, Fig. 2(b), should result in an about 36-fold
increase of the THG intensity. This is in good agreement with
the experimental data in Figs. 4 and 5, where enhancement
ranging from 25 to 50 times is seen. In accordance with
Eqs. (31b) and (31d) the enhancement of the exciton oscillator
strength and, therefore, the THG intensity is controlled by the
ratio of the Bohr radius to the magnetic length. Correspond-
ingly, in CdTe and ZnSe, where the excitons Bohr radii are
smaller, the THG enhancement is weaker: It is about threefold
in CdTe [Fig. 10], and is absent in ZnSe [Fig. 11].

In order to provide a quantitative comparison with exper-
iment in GaAs, we have extracted the relative values of the
exciton oscillator strength and diamagnetic shift as a function
of magnetic field from the amplitude of the exciton resonance
in the reflectivity [Fig. 2(b)]. Then, we calculated after Eq. (17)
the THG spectra and their evolution in magnetic field. From
these spectra we extracted the magnetic field dependencies
of the THG enhancement factor and the THG peak energy.
They are given by the dashed-dotted lines in Figs. 5 and
6 for comparison with experiment. The agreement between
experiment and theory is good. Note that for a fully quantitative
description of the data, i.e., for accounting for the difference
between the Faraday and Voigt geometries, the exciton fine
structure needs to be fully taken into consideration, which is
beyond the scope of the present paper.

The THG rotational anisotropies shown in Fig. 7 are in
line with our model predictions. At zero magnetic field, in
agreement with Eqs. (9) and (10), the THG signal is detected
only in the parallel configuration of polarizer and analyzer
(E3ω ‖ Eω) and is absent in the perpendicular configuration
(E3ω ⊥ Eω); see Figs. 7(a) and 7(b). For the parallel con-
figuration an isotropic diagram with A = C is expected. The
experimental data in Fig. 7(a) slightly deviate from an isotropic
dependence giving the ratio C/A ≈ 0.82. The deviation might
be due to the contribution of the remote bands, which are
neglected in our model.

In the Faraday geometry the strongly enhanced THG sig-
nal in the parallel configuration becomes perfectly isotropic
[Fig. 7(c)]. It is well fitted with A = C. Additionally, a small
signal appears in the E3ω ⊥ Eω configuration [Fig. 7(d)] due
to the Faraday effect, i.e., the rotation of the THG polarization
plane described by Eq. (30).

The anisotropies of the magnetic-field-enhanced THG sig-
nals in the Voigt geometry are also in good agreement with

the developed model. More specifically, in agreement with
Eqs. (32) and (33), the twofold rotational symmetry in the
parallel configuration, E3ω ‖ Eω, is observed. For the higher
energy exciton state the intensity is maximal for the polariza-
tion perpendicular to B [Fig. 7(e)], while for the lower one
it is maximal for the polarization parallel to B [Fig. 7(h)].
In the E3ω ⊥ Eω (perpendicular) configuration the rotational
anisotropy for both exciton states has the same fourfold shape,
Figs. 7(f) and 7(g). This is in agreement with the model
predictions of Eq. (33b).

For understanding of all the details of the resonant third
harmonic generation in bulk semiconductors, the exciton-
polariton effect plays an important role. Particularly, the energy
of the THG resonance in the spectrum is determined mainly
by the polariton effects, see Eq. (18) and Fig. 12, and is
particularly sensitive to the dispersion of the background
dielectric constant. However, the basic features of the THG
intensity and polarization dependence on magnetic field can
be understood in a simplified approach, where the polariton
effects are disregarded. Particularly, as demonstrated above,
the magnetic field enhancement of the THG and the rotational
anisotropies of the THG are readily understood by accounting
for the exciton contribution only. Finally, we note that the
strength of the exciton-polariton effect is controlled by the
ratio of the exciton oscillator strength, h̄ωLT , and the exciton
damping, γ . That is why the exciton-polariton effect in the
studied semiconductors is important for the optically active 1s

ground exciton, which has the largest oscillator strength.

VI. CONCLUSIONS

In conclusion, magnetic-field-induced THG with well-
defined polarization properties and characteristic magnetic-
field dependencies is observed on the exciton-polariton
resonance in bulk GaAs. Although the THG is allowed in
the electric-dipole approximation, a strong enhancement of the
THG intensity by a factor of 50 at 10 T is found at the 1s exciton
resonance. The effect is much weaker in CdTe and ZnSe,
having the same crystal symmetry but larger exciton binding
energies. We developed a microscopic theory of THG on
exciton-polaritons, which accounts for the resonant properties,
and the modification of the exciton-polariton parameters in
external magnetic field. This theory shows that the resonant
enhancement of THG in the vicinity of the 1s exciton resonance
is provided by the fulfillment of the THG phase matching con-
dition due to the exciton-polariton dispersion. The magnetic
field enhancement of the THG intensity is directly related to
the increase of the exciton oscillator strength, which is large in
materials with smaller exciton binding energy and, therefore,
larger Bohr radius.
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