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Tight-binding (TB) models exploited in calculating band structure of monolayer transition-metal dichalco-
genides (TMDCs), namely MX2 (M = Mo and W; X = S, Se and Te), can be divided into two groups: one is
based on group theory and the other uses Slater-Koster (SK) method. The former in general is lack of flexibility
to be extended to confined finite systems with lower symmetry, e.g., nanoribbons (NRs) and quantum dots.
Unlike ubiquitous TB models, here we present an improved scheme of the flexible SK TB method in which
the second-nearest-neighbor M-M and X-X hopping terms are included. Its improvement, being of comparable
accuracy to first-principles calculations, is clearly elucidated through a comprehensive comparison between our
results and those produced by widely accepted TB models in literature for monolayer MoS2. Besides, its high
flexibility allows us to successfully extend our TB model from monolayer TMDCs to the MoX2 (X = S, Se, and
Te) and WX2 (X = S and Se) NRs of both zigzag and armchair types. We find that the zigzag NR could be either
metallic or semiconducting, depending on the spin-orbit strength and band gap of its parent two-dimensional
bulk TMDC, which is in contradiction to the usual consensus concerning TMDC NRs which exhibit the metallic
behavior only. For a certain Fermi level, remarkably, we discovered that the MoS2 NRs demonstrate quantum
valley Hall effect, while others only present topological insulator phase.
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I. INTRODUCTION

Monolayer transition-metal dichalcogenides (TMDCs) de-
noted by MX2 (M = Mo, W; X = S, Se, Te) have attracted
enormous attention following the discovery of a direct band
gap at the two inequivalent K and K ′ valleys in the visible fre-
quency range [1–3] and the coupling of spin and valley degrees
of freedom [4–7] due to lattice inversion asymmetry along with
strong spin-orbit coupling (SOC) [3]. This leads to pumping
light-helicity-dependent valley (and spin) selective optical
transitions [3,4,8–11], and further allows for optical generation
of valley polarization (optical orientation) [8,12,13], valley
Hall effect [2,6], valley coherence [9,14–16], and optical
manipulation of valley pseudospin [17], which makes the
TMDCs promising candidates for electronic, optoelectronic,
spintronic, and valleytronic applications.

In recent years, both expensive first-principles calculations
on electronic structure, also called density functional theory
(DFT), and simple tight-binding (TB) model have been widely
used in the study of electronic structure of molecules and solids
[1,18–25]. In comparison with the former, the TB model is
typically two to three orders of magnitude faster. Therefore, it is
particularly useful for the finite systems which possess low ge-
ometric symmetry such as quantum dots, nanoribbons (NRs),
disordered and inhomogeneous samples, strained and/or bent
systems, and twisted multilayer materials, in which quantum
mechanical effects are significant, but the sheer number of
atoms in the system makes ab initio calculations impractical.
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For the nanostructured materials composed of the TMDCs, the
situation becomes even more critical. Because the conduction
and valence bands present a very rich orbital contribution, they
are made by hybridization of the d orbitals of the transition-
metal atom M , and the p orbitals of the chalcogen atom
X, which makes the first-principles simulation much more
challenging [22–25]. On the other hand, physically transparent
Hamiltonian matrices of the TB model constructed by means
of atomic orbitals lead to an intuitive interpretation for the elec-
tronic structure of complex systems. Hence, the TB calculation
can afford the results with underlying physics more transparent
than that of DFT. Another advantage of a TB description in
comparison with first-principles simulation is that it provides
a simple starting point for the further inclusion of many-body
electron-electron interaction and of the dynamical effects of
the electron-lattice interaction. Therefore, to explore physical
properties of the TMDCs, the TB model is highly demanded.
On the other hand, as known, owing to the two-dimensional
(2D) spatial confinement and reduced dielectric screening
as well as large electron and hole effective masses, the
TMDCs exhibit exceptionally strong Coulomb interactions,
which favor the formation of excitonic quasiparticles, e.g.,
excitons, trions, biexcitons, bound excitons, bound trions, etc.
Interestingly, some of them can exist even at room temperature.
To understand the excitonic behaviors stemmed from these
quasiparticles, and valley (locked with spin) dynamics, exten-
sive experimental studies, including photoluminescence (PL),
time-resolved PL, Raman spectroscopy, ultrafast transient
absorption spectroscopy, and time-resolved Kerr rotation, have
been performed. Although a lot of experimental data have
been reported, understanding of the underlying mechanism
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of excitonic emissions and valley dynamics is still restricted
to the context of qualitative analysis due to lacking of a
comprehensive microscopic theory. As mentioned previously,
the outcome of TB calculation can act as starting point for
developing microscopic many-body theory. Hence, in this
context, the reliable TB model is also highly expected.

According to the way used to define hopping parameters,
the existing TB models in literature can be roughly classified
into two groups: one in which hopping parameters were defined
using group theory [1,21,24] and the other where Slater-Koster
(SK) two-center approximation [20,22,23,25–27] was utilized.
The former can give good fit to the results of DFT simulation,
but a large number of parameters are required. In addition,
orbital asymmetry [28] restrains the validity of this kind of
TB model to be applied to nanostructured materials due to
their finite sizes such as quantum dots and NRs, even though it
may work for strained bulk systems [29]. In stark contrast,
the latter can straightforwardly be extended to the systems
with lower geometric symmetry without relevant limitations
[22]. However, it does not provide reliable results for overall
band structure. Then, the developed TB models to date have
been limited either by accuracy or by lack of flexibility to be
extended to the heterostructured 2D systems. These urge us to
develop a TB model, taking into account the second-nearest-
neighbor M-M and X-X hoppings, which can make up for
these deficiencies.

On the other hand, the controlled fabrication of desirable
nanostructures such as TMDC NRs by means of either bottom-
up or top-down approaches have been achieved [30–32].
However, except for MoS2 NRs, no conclusive theoretical
study about the electronic structure, especially, the topological
properties of edge modes of the TMDC NRs, has been
performed. One of our goals is to reveal the topological features
of the TMDC NRs, including MoX2 (X = S, Se, and Te) and
WX2 (X = S and Se) NRs.

This paper is organized as follows. In Sec. II, we first present
our improved 11-band TB model for monolayer TMDCs
without/with SOC. Then, we discuss our DFT calculation and

FIG. 1. (a) Top view of monolayer transition-metal dichalco-
genides MX2. Blue and yellow spheres denote the metal (M)
and chalcogenide (X) atoms, respectively. The highlighted hexagon
indicates unit cell. (b) Sketch of the atomic structure of the monolayer
TMDCs. Six vectors �A±

i connect nearest-neighbor M and X atoms
with i = 1, 2, 3, separated by a distance l = a/

√
3 cos θ nm, a is

lattice constant and θ is the angle between M-X bond and the M

plane. (c) The first Brillouin zone and high-symmetry points �, K ,
and M of TMDCs in reciprocal space of the triangular lattice. Its
primitive lattice vectors are �b1 and �b2.

TABLE I. Lattice constant and angle θ between M-X bond and
the M plane used in our calculations [33,35,36], as shown in Fig. 1(b).

MoS2 MoSe2 MoTe2 WS2 WSe2

a (Å) 3.166 3.288 3.519 3.1532 3.282
θ (rad) 0.710 0.710 0.710 0.710 0.710

extend our TB model to zigzag NRs. Finally, we construct
the TB model for armchair NRs. In Sec. III, we show our
main results and give our discussion. A comparison between
the result of the DFT and that obtained by widely used eight
TB models in literature for monolayer MoS2 is given. The
advantages and drawbacks are analyzed for each of these
models, focusing on accuracy of its outcome and flexibility of
the model. We predict the band structures of the monolayer
MX2 and show how the SOC manifests itself in the band
structures. We also demonstrate the quantum valley Hall effect
in MoS2 NRs and topological insulator phases in other NRs.
The effects of chemical composition of the NRs on edge modes
are addressed. In Sec. IV, we summarize our main conclusion
and give our remarks. In Appendices A–D, we show our
detailed TB matrix elements.

II. SLATER-KOSTER TB MODEL FOR TMDCS

A. Crystal structure of monolayer TMDCs

A single-layer TMDC is composed of an inner layer of metal
M atoms ordered on a triangular lattice, which is sandwiched
between two layers of chalcogen X atoms located on the trian-
gular lattice of alternating hollow sites in a triangular prismatic
fashion. The X-M-X layers are bonded together by weak
van der Waals forces. Top view of monolayer transition-metal
dichalcogenides MX2 is shown in Fig. 1(a). The triangular
Bravais lattice is spanned by the basis vectors

�R1 = (a, 0, 0), �R2 =
(

a

2
,

√
3

2
a, 0

)
,

where a is lattice constant. The coordinates of the nearest
neighbors of a Mo atom are displayed in Fig. 1(b), where
θ is the angle between M-X bond and the M plane. The
experimental values of both a and θ are given in Table I
[33–36]. The reciprocal lattice, which is defined with respect
to the triangular Bravais lattice, is depicted in Fig. 1(c). It is
spanned by the vectors

�b1 = 4π√
3a

(√
3

2
,−1

2
, 0

)
, �b2 = 4π√

3a
(0, 1, 0).

The first Brillouin zone of the TMDC is hexagonal, and the
high-symmetry points �, K , and M are defined as follows:
� = (0, 0), K = ( 4π

3a
, 0), and M = ( π

a
,

√
3π

3a
).

The outermost shells of the Mo and S atoms are 4d and
3p orbitals, respectively. The subbands near the top of the
valence bands and the bottom of the conduction bands are
predominantly contributed by dz2 , dxy , dx2−y2 . Nevertheless,
the dxz, dyz orbitals of molybdenum, and the px , py , pz

orbitals of sulfide, as well as other inner orbitals are generally
found in the subbands with higher energy. This means that
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FIG. 2. Site-position coordinates of the monolayer transition-
metal dichalcogenides MX2. Blue and yellow spheres denote the
metal (M) and chalcogenide (X) atoms, respectively. The green
and red arrows represent the nearest-neighbor ( �Si) and next-
nearest-neighbor ( �Ci) M-M hopping vectors, respectively, where
i = 1, . . . , 6. The purple arrows indicate the nearest-neighbor M-X
hopping vectors ( �Aj ) with j = 1, . . . , 3. For illustration purpose, we
only draw hopping vectors �Aj . Note that actually each of them are
composed of two vectors �A±

j , with + (−) corresponding to the X

atoms in the upper (lower) plane. �R1 and �R2 are basis vectors.

the contribution to the low-energy bands mainly comes from
the dz2 , dxy , and dx2−y2 orbitals. Then, the interactions between
these d orbitals play an important role in low-energy subbands.
Hence, in contrast to the SK TB models in literature, we
added next-nearest-neighbor (NNN) interactions between M

atoms in our theory. Aside from six nearest-neighbor (NN) S
atoms (three on the top layer and the others on the bottom
layer) as indicated by �Ai vectors, i = 1, 2, 3, each Mo atom
also interacts with six NN Mo atoms, see �Sj , and six NNN
Mo-atoms, see �Cj with j = 1, . . . , 6 in Fig. 2. Notice that
in this view two S atoms sit on top of each other. Table II
summarizes the coordinates of hopping vectors considered in
our model.

B. Eleven-band TB model for spin-degenerate TMDCs

We focus on periodic crystals and denote the lattice vectors
by �R = �RI + �Rτ where I and τ label the unit cells and
the atoms (τ = Mo, St , and Sb with t and b indicating the
top and bottom layers) within the unit cell. Bloch functions
characterized by the crystal momentum �k are expanded in the
following way:

|τ, ατ , �k〉 = 1√
N

∑
�RI

ei�k·( �RI + �Rτ )φατ
(�r − �RI − �Rτ ), (1)

where N is the number of unit cells, and φατ
denotes the ατ

orbital of τ atom, including five d orbitals of the M atom and

TABLE II. Hopping vectors used in our model and their re-
spective coordinates relative to the site (m, n). �Ai represent the
nearest-neighbor M-X hopping vectors with i = 1, . . . , 3, �Si and
�Ci correspond to the nearest-neighbor and next-nearest-neighbor
M-M/X-X hopping vectors, respectively, as shown in Fig. 2, where
i = 1, . . . , 6, l = a/(

√
3 cos θ ), d = a

√
3, and θ = 0.710 rad and a

is lattice constant.

Vector Hopping Coordinates

�A±
1 (m, n) → (m, n + 1) l

(
0, cos θ, ± sin θ

)
�A±

2 (m, n) → (m − 1, n − 1) l
( −

√
3

2 cos θ, − 1
2 cos θ, ± sin θ

)
�A±

3 (m, n) → (m + 1, n − 1) l
(√

3
2 cos θ, − 1

2 cos θ, ± sin θ
)

�S1 (m, n) → (m + 2, n) a(1, 0, 0)
�S2 (m, n) → (m + 1, n + 2) a

(
1
2 ,

√
3

2 , 0
)

�S3 (m, n) → (m − 1, n + 2) a
( − 1

2 ,
√

3
2 , 0

)
�S4 (m, n) → (m − 2, n) a(−1, 0, 0)
�S5 (m, n) → (m − 1, n − 2) a

( − 1
2 , −

√
3

2 , 0
)

�S6 (m, n) → (m + 1, n − 2) a
(

1
2 , −

√
3

2 , 0
)

�C1 (m, n) → (m + 3, n + 2) d
(√

3
2 , 1

2 , 0
)

�C2 (m, n) → (m, n + 4) d (0, 1, 0)
�C3 (m, n) → (m − 3, n + 2) d

( −
√

3
2 , 1

2 , 0
)

�C4 (m, n) → (m − 3, n − 2) d
( −

√
3

2 ,− 1
2 , 0

)
�C5 (m, n) → (m, n − 4) d (0, −1, 0)
�C6 (m, n) → (m + 3, n − 2) d

(√
3

2 , − 1
2 , 0

)

six p orbitals of the two X atoms in the unit cell, i.e., (pt
x , pt

y ,
pt

z, d3z2−r2 , dx2−y2 , dxy , dyz, dzx , pb
x , pb

y , pb
z ). In this basis set,

the matrix form of the Hamiltonian reads as

〈τ ′, ατ
′, �k|H |τ, ατ , �k〉

=
∑

�RI

ei�k·( �RI + �Rτ − �Rτ ′ )tατ
′,ατ

( �RI + �Rτ − �Rτ ′ )+εατ
′,ατ

δατ
′,ατ

.

(2)

The dimension of the Hamiltonian matrix equals the total
number of orbitals of M and X atoms within the unit cell,
i.e., 11. εατ

′,ατ
denotes atomic energy of the τ atom, and

tατ
′,ατ

( �RI + �Rτ − �Rτ ′ ) are the corresponding hopping integrals
between the different orbitals, which are described in terms of
σ , π , and δ ligands, respectively. The Bloch eigenfunctions
|n, �k〉 are characterized by the index of the energy bands n

and Bloch wave number �k. They are expanded in terms of the
Bloch basis functions of Eq. (1) with coefficients Cm(n, k) as
follows:

|n, �k〉 =
∑
τ,ατ

Cm(n, �k)|τ, ατ , �k〉, (3)

where m is a compact index of (τ , ατ ). The TMDC crystal
lattice possesses mirror inversion symmetry around the central
layer under a z → −z. It allows us to perform a unitary
transformation, making the p orbitals of the top and bottom
layers of the X atoms be their symmetric and antisymmetric
combinations with respect to the z axis. The transformed
atomic orbital bases which are used in our TB model and their
symmetries under xy mirror reflection are listed in Table III.
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TABLE III. Atomic orbitals used in TB model and their symmetry
under xy mirror reflection (M1). t and b refer to the top- and
bottom-layer X atoms. The index number refers to the order of the
basis functions when we construct the Hamiltonian matrix. Even (odd)
indicates the parity of the basis functions.

Index Basis function M1

1 dz2

2 dxy

3 dx2−y2 Even
4 pe

z = 1√
2

(
pt

z − pb
z

)
5 pe

x = 1√
2

(
pt

x + pb
x

)
6 pe

y = 1√
2

(
pt

y + pb
y

)
7 dxz

8 dyz

9 po
z = 1√

2

(
pt

z + pb
z

)
Odd

10 po
x = 1√

2

(
pt

x − pb
x

)
11 po

y = 1√
2

(
pt

y − pb
y

)

In this way, the 11-band model is decoupled into a 6 × 6 block
with symmetry (antisymmetry) of the px and py (pz) orbitals
with respect to z → −z inversion, and a 5 × 5 block with
an opposite combination. With this arrangement we can fit
the bands related to the even and odd basis sets, separately.
Therefore, although the Hilbert space is reduced, both the
relevant conduction and valence bands around Fermi level
are still well accounted for. Then, the matrix elements of the
Hamiltonian for spinless fermions in TMDCs are given by

HTB =
(

HE 0
0 HO

)
, (4)

where HE/O referring to the matrix associated with the
even/odd basis set is given by

HE/O =
(

ME/O + H
E/O

M−M H
E/O

M−X

H
E/O †
M−X XE/O + H

E/O

X−X

)
, (5)

in which ME/O and XE/O stand for the onsite energy matrices,
H

E/O

M−M and H
E/O

X−X represent the hopping matrices between

the same type of atoms, and H
E/O

M−X denotes the hopping
matrices between different types of atoms. The corresponding
expressions are shown in Appendix A.

C. Spin-orbit coupling

With the knowledge of the spin-degenerate TMDC band
structure, we are ready to extend our study to the effect of
spin-orbit interaction, which is usually missing in the TB
calculation in literature. It can be done by adding the SOC
term in the Hamiltonian of the system. We assume that the
relativistic effects only affect intra-atomic Hamiltonian matrix
elements, i.e., the SOC is assumed to couple only intra-atomic
states with nonzero angular momentum. As demonstrated in
the previous section, in an appropriate symmetrized form, the
matrix of Hamiltonians can be divided into even HE and odd
HO subblocks. The TMDCs with SOC can be described by

TABLE IV. Atomic orbitals used in the TB model with SOC and
their symmetry under xy mirror reflection (M1). t and b refer to the
top- and bottom-layer X atoms. The index number refers to the order
of the basis functions when we construct the Hamiltonian matrix.
Even (odd) indicates the parity of the basis functions.

Index Basis function Spin M1

1 dz2 ↑
2 dxy ↑
3 dx2−y2 ↑ Even, ↑
4 pe

z = 1√
2

(
pt

z − pb
z

) ↑
5 pe

x = 1√
2

(
pt

x + pb
x

) ↑
6 pe

y = 1√
2

(
pt

y + pb
y

) ↑
7 dxz ↑
8 dyz ↑
9 po

z = 1√
2

(
pt

z + pb
z

) ↑ Odd, ↑
10 po

x = 1√
2

(
pt

x − pb
x

) ↑
11 po

y = 1√
2

(
pt

y − pb
y

) ↑
12 dz2 ↓
13 dxy ↓
14 dx2−y2 ↓ Even, ↓
15 pe

z = 1√
2

(
pt

z − pb
z

) ↓
16 pe

x = 1√
2

(
pt

x + pb
x

) ↓
17 pe

y = 1√
2

(
pt

y + pb
y

) ↓
18 dxz ↓
19 dyz ↓
20 po

z = 1√
2

(
pt

z + pb
z

) ↓ Odd, ↓
21 po

x = 1√
2

(
pt

x − pb
x

) ↓
22 po

y = 1√
2

(
pt

y − pb
y

) ↓

adding the following term in the HTB:

HSOC =
∑

α

λα

h̄
�Lα. �Sα, (6)

where λα is the intrinsic SOC strength for an α atom (α = M or
X type), �Lα is the atomic orbital angular momentum operator,
and �Sα is the electronic spin operator. Taking into account
the spin degree of freedom, the number of basis functions is
doubled, as shown in Table IV.

Explicitly, the matrix form of the Hamiltonian for the
monolayer TMDCs is given by

H =
(

HTB 0
0 HTB

)
+

(
H

↑↑
SO H

↑↓
SO

H
↓↑
SO H

↓↓
SO

)
, (7)

where

H
↑↑
SO =

(
H

↑↑
SO1 0
0 H

↑↑
SO2

)
, H

↑↓
SO =

(
0 H

↑↓
SO1

H
↑↓
SO2 0

)
,

H
↓↑
SO =

(
0 H

↓↑
SO1

H
↓↑
SO2 0

)
, H

↓↓
SO =

(
H

↓↓
SO1 0
0 H

↓↓
SO2

)
. (8)

The complete definition of the SOC matrices is shown in
Appendix B, and a separated set of SOC parameters are listed
in Table V. Since low-energy excitations belong exclusively
to the first block, the fit to DFT that we will present later will
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TABLE V. Atomic SOC parameters in eV for transition metals
(α = Mo, W) and chalcogenides (α = S, Se, Te).

α Mo W S Se Te

λα 0.0806 0.2754 0.0536 0.0820 0.1020

be performed within this section. We are solving a generalized
eigenvalue problem, where the description of the Hamiltonian
and overlap matrix for the TMDCs is attained by employing
a set of TB fitting parameters that describe the onsite orbital
energies, the two-center SK energy integrals, overlap integrals,
and SOC, which is assumed to couple only intra-atomic states
with nonzero angular momentum.

In analog to the spin-degenerate (zero SOC) case, first, we
perform DFT simulation, using QUANTUM ESPRESSO [18], with
GGA exchange-correlation functional, full-relativistic PBE
pseudopotentials, and Monkhorst-Pack 15 × 15 × 2. Then, we
implement our 22-band TB model. After that, we perform
the best fitting of our TB results to the DFT calculated band
splitting in the valence band around the K point. Finally, we
do overall band structure fitting to determine TB parameters.

D. Description of DFT calculation

To get a reference for making comparison, we have used
the DFT as implemented in QUANTUM ESPRESSO package
[18]. In this framework, the electronic wave functions are
expanded in a plane-wave basis set with the energy cutoff of
1360 eV. The core of atoms is replaced by pseudopotentials
with/without fully relativistic effects with an additional infor-
mation for spin-orbit calculations. The reference of valence
ground states for pseudopotential generation for S, Mo, Se,
Te, and W are (3s2, 3p4), (4s2, 4p6, 4d5, 5s1), (4s2, 4p4),
(4d1, 5s2, 5p4), and (5s2, 5p6, 5d4, 6s2), respectively. The
exchange-correlation effects are included through the general-
ized gradient approximation (GGA) proposed by Perdew et al.
(PBE) [37]. For the Brillouin-zone sampling, we used a grid
of 15 × 15 × 2 k points. The convergence criteria used for
self-consistent calculation was 10−8 atomic units.

E. TMDC zigzag NRs

When the geometry of the TMDCs is changed, interesting
phenomena and novel properties may arise [38]. For instance,
when the monolayer MoS2 is patterned into NR, it changes
from a semiconductor to metallic one. In addition, it also
exhibits ferromagnetic behavior [39,40]. In contrast, as the
MoS2 is going from monolayer bulk material to an armchair
NR, mid-gap edge states emerge, but they present nonmagnetic
and semiconducting characteristics. When the ribbon width
increases, the band gaps converge to a constant value of
0.56 eV. Although the physical properties of the MoS2 NRs
are widely studied both experimentally and theoretically, the
knowledge about other TMDC NRs is still in the early infancy.
As known, the most straightforward method to study finite-size
effects is a lattice model in real space. The ab initio simulations
and TB method are two powerful lattice-based models. In
comparison with the latter, the former method takes much
more computational time, especially for wider NRs. Here, as an

FIG. 3. Top view of lattice structure of monolayer MX2 in which
the zigzag and armchair directions are illustrated. The shaded area
indicates the unit cell of a zigzag NR. The positions of lattice sites
are defined by coordinates (m, n).

application, let us extend our TB model for monolayer TMDC
to the NRs to predict the overall band structures for five NRs
of the most studied monolayer TMDCs.

As we did in the case of monolayer bulk TMDCs, here we
also use the lattice coordinates shown in Fig. 2 to determine
the site positions of zigzag NRs. Nevertheless, now our unit
cell becomes much larger than that of former case because
of breaking translational symmetry along the x̂ direction. It
is illustrated by the shaded rectangular area in Fig. 3 which
is defined by m and n indices, where m = 1, 2, and n = 1,
2,...,nmax. The nmax corresponds to the number of the sites in
the unit cell. The low- (high-) energy band structure of the
system belongs to the even (odd) subspace [22]. In order to
reduce the computational cost, but do not lose essential physics,
only the even part of the Hamiltonian in the TB calculation of
zigzag NRs is required to get the band structure near the Fermi
level. In addition, since diagonal terms ∼LzSz are dominant
as compared to the off-diagonal spin-flip terms due to the fact
that such spin-flip processes involve virtual transitions towards
high-order energy states [22,41], spin-up and -down states in
this case are decoupled. This allows us to reduce further the
Hilbert space by dividing the spin-up and -down subspaces to
solve them separately. The Hamiltonian reads as

HZZ (τ ) =
(

MZZ (τ ) + HZZ
M-M HZZ

M-X

HZZ
X-M XZZ (τ ) + HZZ

X-X

)
. (9)

The complete definition of the Hamiltonian matrices for zigzag
NRs is shown in Appendix C.

F. TMDC armchair NRs

After studying zigzag NRs, let us turn our attention to the
armchair ones. We assume that the transport direction is in ŷ

direction and a confinement is applied along the x axis with a
width defined by mmax. The band gap and energy levels depend
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FIG. 4. Top view of lattice structure of monolayer MX2 in which
the zigzag and armchair directions are illustrated. The shaded area
indicates the unit cell of an armchair NR. The positions of lattice sites
are defined by coordinates (m, n).

on the width. As an example, we choose mmax = 200 to present
our TB outcome. In ananalog to the case of zigzag NRs, here we
also use the lattice coordinates shown in Fig. 2 to determine the
site positions. The unit cell is illustrated by shaded rectangular
area in Fig. 4 which is defined by m and n indices, where
m = 1, 2,...,mmax and n = 1, 2,...,4. Then, the number of the
sites in the unit cell is equal to 2mmax. In order to reduce the
computational cost, only the even part of the Hamiltonian in the
TB model is used to perform the calculation, as has been done
in zigzag NRs. Interestingly, in this approximation, the spin-up
and -down states become degenerated. Then, the Hamiltonian
reads as

HAC (τ ) =
(

MAC (τ ) + HZZ
M-M HAC

M-X
HAC

X-M XAC (τ ) + HAC
X-X

)
. (10)

The complete definition of the Hamiltonian matrices for
armchair NRs is shown in Appendix D.

III. RESULTS AND DISCUSSION

A. Band structure of MoS2 obtained by different TB models

In order to develop an improved TB model, we analyze
the advantage and disadvantage of seven widely accepted TB
models in literature by a comprehensive comparison between
the results of the TB and that of the DFT. They are the 3-band
nearest-neighbor (NN) TB model with 8 hopping parameters
and the 3-band TB model with up to third-nearest-neighbor
(TNN) hoppings and 19 parameters by Xiao et al. [21], 5-band
model with 28 parameters by Wu et al. [1], 6-band model with
11 parameters by Rostami et al. [22,27], 11-band TB model
with 12 parameters by Capeluti et al. [23], 11-band TB model
with 12 parameters by Ridolfi et al. [25], and 11-band TB
model with 36 parameters by Fang et al. [24]. To do so, first,
we have performed the first-principles calculation for the band

structure of the monolayer MoS2 (see Sec. II D). Then, we do
the same calculation, but by means of the aforementioned TB
models. The corresponding outcomes are shown in Fig. 5. The
red dots and blue curves represent the results of the former and
the latter, respectively. After that, we make a comprehensive
comparison between them.

Figures 5(a) and 5(b) plot the band structure of the mono-
layer MoS2, produced by the three-band model in which only
the d-atomic orbitals with the index number from 1 to 3 in
Table III are employed [21]. In Fig. 5(a), only the NN M-M
hoppings are accounted, while in Fig. 5(b) up to TNN M-M
hoppings are taken into consideration. Group theory is used
to define the hopping parameters. Notice that the NN model
gives rise to a well-fitted highest valence band (VB) (see the
blue curve and its related red dots). However, except for the
states nearby the K point, it does not produce an expected
band structure for the other energy bands, even for the lowest
conduction band (CB) [see Fig. 5(a)]. In contrast, the TNN
model with 19 parameters [see Fig. 5(b)] achieves much better
overall fit to the DFT results for all three energy bands,
including two CBs and one VB [21]. It hints that the NN and
TNN M-M hoppings play an important role [3,5,6,42]. On the
other hand, since only d orbitals of M atoms were employed in
a construction of these two models, they are not applicable to
the systems with defects introduced by X atoms in the lattice,
and are difficult to be extended to the confined finite systems
with low geometric symmetry.

Figure 5(c) depicts the band structure of the monolayer
MoS2 obtained by five-band model of Wu et al. [1]. The Bloch
wave functions of an electron are constructed by five d-atomic
orbitals with the index number from 1 to 3, 7, and 8 in Table III.
In this model, both the NN and TNN M-M hoppings are taken
into account, involving 28 parameters which are also defined by
the group theory. Notice that the five electronic bands including
four CBs and one VB, produced by this TB calculation, are
all well fitted to the DFT red dots. The improvement of the
five-band TB calculation in comparison with the three-band
model indicates that an increase in the number of d orbitals is
benefit to the precision of outcome. However, the flexibility of
the model is also limited due to asymmetry of d orbitals, as
previous cases [28].

Figure 5(d) displays the results obtained by Rostami et al.
[22] using six basis functions with index number from 1 to 6
in Table III and the SK two-center approximation to define 11
hopping parameters. Although not all of six energy bands are
well fitted, both the lowest CB and highest VB present good
curve fitting, especially in the vicinity of the K point. Hence,
it gives rise to reliable effective masses of both electron and
hole at the K point. Since the model is constructed directly in
real space of the TMDCs and few parameters generated, it can
be easily implemented and straightforwardly extended to other
structures such as the NRs [39].

Figure 5(e) shows the band structure of the monolayer
MoS2 produced by an 11-band model of Capellutti et al. [23].
Eleven basis functions wth index number from 1 to 11 in
Table III and the SK two-center approximation are utilized.
The main advantages of this model are small number of the
TB parameters (only 12) and easiness to be generalized to
the multilayer, the bulk, and other geometries. On the other
hand, since only the nearest-neighbor M-X, M-M , and X-X
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FIG. 5. Spin-degenerate band structures of monolayer MoS2 along the path M-�-K-M , obtained by DFT calculation (red dots) with
GGA-PBE pseudopotential and Monkhorst-Pack 15 × 15 × 2 from QUANTUM ESPRESSO [18] and by TB models (blue curves). (a) Three-band
nearest-neighbor model with 8 parameters by Xiao et al. [21], (b) 3-band third-nearest-neighbor model with 19 parameters by Xiao et al. [21],
(c) 5-band model with 28 parameters by Wu et al. [1], (d) 6-band model with 11 parameters by Rostami et al. [22,27], (e) 11-band model with
12 parameters by Capellutti et al. [23], (f) 11-band model with 12 parameters by Ridolfi et al. [25], (g) 11-band model with 36 parameters by
Fang et al. [24], and (h) 11-band model with 31 parameters in this work. In (e), (f), and (h), where the 11-band TB calculations are all based
on the SK method, the dotted green line bridging two green circles represents the location of Q point in momentum space.

hoppings are taken into account, as the model by Rostami et al.
[22], it hardly predicts an accurate band structure, except for
the lowest CB and the highest VB. For instance, in most of k

points, the curves of both higher-energy bands in the CB and
lower ones in the VB are far away from corresponding DFT
data (red dots).

Let us turn our attention to the band structure which is shown
in Fig. 5(f) calculated by the model of Ridolfi et al. [25]. This
model is similar with the one developed by Capellutti et al.
[23]. While its TB parameters are determined by fitting to DFT
data obtained by utilizing the HSE06 exchange-correlation
functional, instead of GGA-PBE.

Figure 5(g) plots outcome of the model proposed by Fang
et al. Eleven atomic orbitals with the index number from 1 to 11
in Table III are employed [24]. In this model, both the nearest-

and next-nearest M-X hoppings are taken into account, while
only nearest M-M and X-X hoppings are considered. The
group theory is used to define 36 TB parameters. Notice that
except for some points along the M-�-K-M path such as
around the � point, it predicts a well-fitted band structure for
all 11 electronic bands. Hence, generally speaking, it is a TB
model with the highest accuracy to date. However, as the other
TB models based on the group theory, it is also difficult to be
extended to the confined finite systems with low symmetry,
such as NRs and quantum dots [28].

In Fig. 5(h), we show the band structure calculated by our
proposed 11-band model in which we utilize all the basis
functions listed in Table III and the 31 SK parameters given in
Tables VI and VII. Since the existing SK models in literature
only include the NN M-M and X-X hoppings, they can only
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TABLE VI. SK even parameters in eV used in our TB calculation
for monolayer MX2. The index e/o indicates the even/odd part
of Hamiltonian, the Ee

d0 and Ee
d1 are onsite energies of dz2 and

dxy (dx2−y2 ) orbitals of M atom, respectively. Ee
s1 and Ee

s2 are
onsite energies of the pe

x (pe
Y ) and pe

Z orbitals of X atom. The V

hopping parameters represent the nearest-neighbor parameters for the
interactions of M-M , X-X, and M-X atoms, the K’s represent the
second-nearest neighbor M-M and X-X hopping parameters.

MoS2 MoSe2 MoTe2 WS2 WSe2

Ee
d0 −0.4939 −0.1276 −0.6630 −0.3609 −0.5558

Ee
d1 −0.2473 −0.2724 −0.2852 −0.7364 −1.934

Ee
s1 −4.5716 −6.1588 −0.5923 −5.0982 −2.9498

Ee
s2 −8.3498 −7.3399 −3.7035 −9.4019 −6.5922

V e
pdπ −1.2413 −1.4295 −0.6279 −1.2119 −0.9139

V e
pdσ 4.2398 3.4524 2.2362 5.2769 5.1750

V e
ppσ −0.0914 1.2630 0.8198 −0.3943 0.1311

V e
ppπ −0.4619 −0.4857 −0.2483 −0.4069 −0.2475

V e
ddσ −0.6717 −0.6674 −0.4795 −0.8942 −0.8697

V e
ddπ 0.5706 0.5573 −0.0934 0.7347 0.6206

V e
ddδ 0.2729 0.0970 0.1656 0.3417 0.3743

Ke
ppσ 0.3723 0.2372 0.1169 0.1415 0.1197

Ke
ppπ 0.0014 0.0249 0.2683 0.0261 0.1075

Ke
ddσ 0.0314 0.0776 −0.1493 0.0508 0.0443

Ke
ddπ 0.0961 0.0573 −0.0627 0.1278 0.0912

Ke
ddδ −0.0305 −0.04778 0.0360 −0.0091 −0.0447

produce reliable band structure for few energy bands. In this
work, we go one step further, the orbital symmetry and up
to next-NN hoppings between the M-M and X-X atoms are
taken into consideration. It is worth recalling that in the fitting
procedure, we notice that as other two-dimensional van der
Waals materials, the stronger interactions take place between

TABLE VII. SK odd parameters in eV used in our TB calculation
for monolayer MX2. The index e/o indicates the even/odd part of
Hamiltonian, Eo

d2 is onsite energy of dxz or dyz orbital of M atom, Eo
s1

and Eo
s2 are onsite energies of the po

x (po
y) and po

z orbitals of X atom,
respectively. The V ’s represent the nearest-neighbor parameters for
the interactions of M-M , X-X, and M-X atoms, the K’s represent
the second-nearest-neighbor M-M and X-X hopping parameters.

MoS2 MoSe2 MoTe2 WS2 WSe2

Eo
d2 0.5624 0.3046 0.0491 0.8877 0.6233

Eo
s1 −1.5251 −1.3298 −1.3905 −1.8175 −1.5016

Eo
s2 −0.6737 −0.9459 −0.0094 −1.0191 −1.4824

V o
pdπ −0.7614 −0.6811 −0.5048 −0.8115 −0.7688

V o
pdσ 2.2251 2.0197 1.8294 2.4044 2.1733

V o
ppσ 0.8131 0.9449 0.8459 0.8415 0.9703

V o
ppπ −0.2763 −0.3039 −0.4143 −0.2661 −0.2920

V o
ddσ −0.8950 −0.8950 −0.8950 −0.8950 −0.8950

V o
ddπ 0.0150 0.01637 0.3267 −0.0142 −0.0469

V o
ddδ 0.0497 0.0965 0.3033 0.0036 0.0923

Ko
ppσ −0.0395 −0.0293 0.0114 −0.0169 −0.0451

Ko
ppπ 0.0092 −0.0094 −0.0092 0.0262 0.0113

Ko
ddσ 0.0100 0.0100 0.0100 0.0100 0.0100

Ko
ddπ 0.0051 0.0140 −0.0617 −0.0135 0.0096

Ko
ddδ 0.0184 0.0354 0.1002 −0.0191 0.0140

atoms in the same plane. Hence, the next-NN M-X hopping
parameters are too small to be considered. The NN M-X
hoppings are good enough for the precision of TB calculation.
It is also worthy to remark that in order to get an accurate
band structure for energy bands close to Fermi level, we have
to sacrifice the precision of the others. In this way, we obtain
eight well-fitted energy bands [see Fig. 5(h)]. It is not difficult
to notice that in comparison with the band structure produced
by the other SK TB models, a significant improvement has
been achieved. Finally, it is also important to point out that
unlike TB model based on group theory, our model possesses
high flexibility. It is worth noting that our computed electronic
band structure fits well to the DFT calculation not only around
the K (K ′) point, but also around the Q point [cf. fittings along
the dotted green line connecting two green circles in Figs. 5(e),
5(f), and 5(h)], where all TB calculations are based on the SK
method, indicating the importance of the next-NN hopping
between the M-M and X-X atoms.

Through this comprehensive analysis of different TB mod-
els, we can then conclude that the accuracy of the outcome of
a TB model depends on the number of atomic basis functions,
whether only to NN or up to next-NN M-M and X-X hoppings,
and the way to build it. For the TB models using incomplete
basis function (less than 11 bases), the density of states as
well as other relevant physical quantities which depend on
the wave functions could not be properly described. Besides,
they are hardly generalized to study the disordered systems
such as the TMDCs with vacancies. Hence, the complete basis
functions are in high demand. On the other hand, because the
stronger interactions take place between atoms in the same
plane, both NN and next-NN M-M and X-X hoppings play
an important role. The SK models can be straightforwardly
extended to study the disordered TMDCs, the NR, and quantum
dots. Usually, the TB models based on group theory can provide
better fittings than that of corresponding SK models. However,
it is difficult to be extended to the confined finite systems with
lower symmetry.

B. Band structures of monolayer M X2 obtained
by DFT and our TB model

Figure 6 plots the electronic band structures of monolayer
MX2 from our nonrelativistic TB model in which no SOC
exists. They are 2D subbands with direct band gaps at band
edges located at the highly symmetric K and K

′
points in

momentum space. In valence bands, the subbands around
the � point are stemmed from the d0 orbital while subbands
around the K and K

′
valleys resulting from the d−2 and d2

orbitals, respectively. In contrast, in conduction bands, only
d0 orbital appears around the K and K

′
valleys. Notice that

for a given transition-metal species, as the atomic indices of
chalcogen species increase from S to Te, the conduction band
edge undergoes a conspicuous energy increase, accompanied
by a relatively smaller energy increase of valence band edge,
giving results to a reduction of energy gap. Since an increase in
the atomic indices of chalcogen atoms leads to a larger atomic
radius and decreased reactivity, the lattice constant is enlarged.
Then, the interatomic interaction strength becomes weakened.
Thus, a smaller band gap is expected. On the other hand, for a
given chalcogen species, Mo is more reactive than W due to the
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FIG. 6. Spin-degenerate band structures along the path M-�-K-M of monolayer MoS2 (a), MoSe2 (b), MoTe2 (c), WS2 (d), and WSe2 (e),
respectively, obtained by DFT calculation using QUANTUM ESPRESSO [18] with GGA-PBE pseudopotential and Monkhorst-Pack 15 × 15 × 2
(red dots) and by our TB model (blue curves).

intrinsic higher reactivity of 3d electrons in comparison with
4d electrons. Hence, the overall energy levels of Mo-based
TMDCs are lower than that of W-based ones.

The spin degeneracy can be effectively split by the intrinsic
SOC, as shown in Fig. 7 in which we show band structures
along the path M-�-K-M of monolayer MoS2 (a), MoSe2 (b),
MoTe2 (c), WS2 (d), and WSe2 (e), respectively, with spin-
orbit coupling, obtained by DFT calculation using QUANTUM

ESPRESSO [18] with GGA-PBE full-relativistic pseudopotential
and Monkhorst-Pack 15 × 15 × 2 (red dots), and by our TB
model (blue curves). The splitting is quite evident for valence
bands near the K and K

′
points. Nevertheless, it is small

elsewhere. In the K valley, the SOC drives spin-up and -down
states, respectively, shift up and move down by λ. Then, the
splitting between these two opposite spin states is equal to 2λ.
In the K

′
valley, however, the spin-up (down) state becomes a

lower- (higher-) energy state (not shown in Fig. 7). Hence, the
energy levels of spin-up and -down states are interchanged with
moving from valley K to K

′
due to time-reversal symmetry,

which enables the manipulation of the combined spin and
valley degrees of freedom in such an atomic thin layer. It is
interesting to recall that the ordering of the lowest spin-up and
-down states in the conduction band near the K and K

′
points

of the MoX2 is opposite to that of WX2 due to the SOC. Since
optical transitions do conserve the spin, different orderings of
electronic conduction bands have profound consequences on
their optical properties. For instance, the spin configuration
for the top valence band and the lowest conduction band of
the M dichalcogenides is parallel, between which the optical

transition is allowed. Then, the excitonic ground state is bright.
Nevertheless, for the W dichalcogenides, the corresponding
spin configuration is antiparallel. Then, the interband transition
is optically forbidden. Hence, the excitonic ground state is
dark.

To gain a deep insight into the features of the band structures
presented in Fig. 7, we have calculated density of states of the
monolayer MX2 whose outcome is depicted at right-hand side
in Fig. 8. For convenience, the corresponding band structure
is also exhibited (see the right-hand side of the figure). It
is worthwhile to remark that the contributions of the most
relevant orbitals (d3z2−r2 , dx2−y2 , dxy , px , py , pz) to the density
of states, shown in Fig. 8, reproduce the DFT results at the
most important points of the band structure. Therefore, our
TB model presents not only reliable band structure, but also
acceptable wave functions.

C. Topological features of TMDC NRs

Figure 9 shows the energy dispersions of MoS2, MoSe2,
MoTe2, WS2, and WSe2 zigzag NRs with the same width
defined by nmax = 200 along the y direction. To gain a deep
understanding of the band structure, let us focus our attention
on the states located at crossing points of dashed vertical line
with the energy band curves of the NR. For instance, the states
labeled by A, B, C, C′, and D in Fig. 9(b). We find that the A and
D are bulk states in the CB and VB, respectively, because their
orbital characters are consistent with that of the bulk spectrum.
While the other three states marked by B, C, and C′ are edge
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FIG. 7. Band structures along the path M-�-K-M of monolayer MoS2 (a), MoSe2 (b), MoTe2 (c), WS2 (d), and WSe2 (e), respectively,
with spin-orbit coupling, obtained by DFT calculation using QUANTUM ESPRESSO [18] with GGA-PBE full-relativistic pseudopotential and
Monkhorst-Pack 15 × 15 × 2 (red dots), and by our TB model (blue curves) for (a) MoS2, (b) MoSe2, (c) MoTe2, (d) WS2, and (e) WSe2,
respectively.

modes. Among them, the B state has mostly d-orbital character
while the C and C′ states are mostly from px and py orbitals of
sulfur atoms and dz2 orbitals of molybdenum atoms. Besides,
the C and C′ are located on one edge of the NR, but the B state
is on the opposite edge. Interestingly, an analogical analysis is
applicable to all the other TMDC NRs such as the one shown
in Fig. 9(d). Hence, there are three spin-splitted edge modes
plotted by blue (spin-up) and red (spin-down) dotted curves
within the bulk gap. Note that one-dimensional (1D) Dirac
cones are formed due to crossovers of different edge modes.
While the number and locations of these 1D Dirac cones for
the two spin and two valley flavors depend strongly on the
chemical composition of the MX2. In addition, also note that
some zigzag TMDC NRs such as MoS2, WS2, and MoTe2

are of metallic behavior. Nevertheless, others, e.g., MoSe2 and
WSe2, their edge modes exhibit finite gaps. In other words,
not all of the TMDC zigzag NRs present metallic behavior,
instead, they might be semiconducting. This is in contradiction
to the usual consensus concerning the zigzag TMDC NRs being
metallic [22,43,44]. It is worthy to recall that although the result
of the 11-band TB model by Fang et al. [24] does fit quite well
band structures of the monolayer TMDCs produced by the DFT
calculation, it could not predict zero-gap edge modes.

The upper panels in Fig. 10 display the zoom of the edge
modes around Fermi level of the monolayer TMDC NRs
indicated by a dashed horizontal line. A, B, C, and D are
crossing points of the energy dispersion curves with the Fermi
level. The probability distributions of these four edge states are
calculated by our TB model whose results are schematically

shown in the lower part of Fig. 10. We find that the number
of the states at Fermi level and their location depend strongly
on chemical composition of the NR. More specifically, there
are four edge states at Fermi level in MoS2 NR for each spin
component. Among them, A and D states are located in the
upper edge of the ribbon, while B and C states are in the
opposite edge as shown in Fig. 10(f). In contrast, only two
edge states A and D are found in either MoSe2 or MoTe2

NR. Both of them are located at the upper edge of the ribbon
[see Fig. 10(g)]. For the WS2 NR, there are also two edge
states. Nevertheless, they are located at the lower edge of the
ribbon. There are four edge states in the WSe2 NR, similar
to the MoS2 NR. However, the movement of an electron in
either B or C state in Fig. 10(i) is along an opposite direction
with the corresponding one in Fig. 10(f). Aside from these
differences, the most prominent distinctions among the five
NRs are in the following. At the first glare, Fig. 10(f) seems
similar to Fig. 10(i). Actually, they exhibit totally different
physics. In the former case (the MoS2 NR), the four edge
states are distributed in two 1D valleys in such a way that
A and B are in the valley V1, and C and D states in the V2, as
illustrated in inset of Fig. 10(f). As will be discussed below,
movement of electrons in these edge states leads to valley Hall
effect. In the latter case, however, no valley Hall effect could
be expected. Now, let us make an insight analysis for the edge
states in the MoS2 NR, shown in Fig. 10(f). It is intriguing to
note that the edge modes in different valleys circulate in two
opposite directions, leading to a weak topological insulator
phase for each spin flavor. Notice also that in each 1D valley
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FIG. 8. Band structure along the path M-�-K-M (left-hand side)
and corresponding density of states (DOS) (right-hand side) of the
monolayer MoS2 (a), MoSe2 (b), MoTe2 (c), WS2 (d), and WSe2 (e),
respectively, with spin-orbit coupling, obtained by TB calculation.
The green and blue curves correspond to the DOSs stemmed from p

and d orbitals, respectively. The red one represents the total DOS.

(see V1), both spins circulate in the same direction, therefore
the system is actually in a quantum valley Hall (QVH) phase
(for each spin), protected by the time-reversal symmetry. It is
closely analogous to the spin Hall effect with the spin-polarized
electrons replaced by valley-polarized carriers [2,6,45]. The
underlying physics can be understood as follows. Because
of the broken inversion symmetry in its crystal structure and
strong SOC, the MoS2 possesses two degenerate valleys, with
equal and opposite Berry curvature. Hence, electrons in the
two valleys experience effective magnetic fields which are

proportional to the Berry curvature with equal magnitude but
opposite sign [6,46]. As a result, electrons from different
valleys feel opposite Lorentz-type forces and move in opposite
directions perpendicular to the drift current, resulting in QVH.
Since the QVH originates from the coupling of the valley
pseudospin to the orbital motion of the electrons, its existence
is determined by physical parameters of the TMDC materials.
We also notice that for a given Fermi level (0.875 meV), only
the MoS2 NR presents the QVH.

In Fig. 11, we show the electronic structure of TMDC
armchair NRs with a width defined by nmax = 200. Because of
the spin degeneracy, only spin-up component is plotted. The
edge states within band gap are also observed. Their position
and shape depend on material. Unlike the zigzag NRs, the
armchair NRs present the gapped spectrum of the edge modes.
It arises from a combination of the effects of q2 mass term
in the continuum k · p model and a hybridization between
one-dimensional modes on two edges of the ribbon [47–49].
This hybridization can be also understood in terms of a mixing
of one-dimensional valleys (1D Dirac cones) on the edges [39].
For wide armchair NRs, the hybridization of these states on
the different edges is weak, then the gap of the edge modes
decreases.

IV. CONCLUSION

TB models exploited in calculating band structure of
TMDCs contain two groups: one is based on group theory
and the other uses SK two-center approximation, respectively.
The former is computationally efficient, but not flexible to be
extended to confined finite systems with lower symmetry such
as disordered systems, quantum dots, and NRs. In contrast,
the latter usually has high flexibility, but the accuracy of its
outcome is not desirable, especially for the energy bands away
from the Fermi level. Here, we present an improved scheme
of the flexible SK TB method in which the second-nearest-
neighbor M-M and X-X hopping terms are included. Its
improvement, being of comparable accuracy to first-principles
calculations, is clearly elucidated through a comprehensive
comparison between our results and those produced by widely
accepted TB models in literature for monolayer MoS2. We
afford transferable SK parameters including spin-orbit inter-
action strength for five different MX2 (M = Mo, W; X = S,
Se, Te), which allows readers who require high-precision TB
outcome to implement their own TB model straightforwardly.
In addition, we have employed our TB model to explore
the electronic structures and topological aspects of the five-
monolayer TMDC NRs. Finally, it is worth to remark that
our improved TB model not only can provide reliable band
structure of the monolayer TMDCs and their NRs, but also
can be easily applied to the other 2D materials and extended to
van der Waals heterostructures, quantum dots, nanotubes, the
2D materials with vacancy defects, and strain effect, etc.
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FIG. 9. Band structures of zigzag MoS2 (a), MoSe2 (b), MoTe2 (c), WS2 (d), and WSe2 (e) NRs along the x axis whose width is defined by
nmax = 200 along the y direction. The blue and red curves correspond to the spin-up and -down states, respectively. A, B, C, C′, and D are the
crossing points of dashed vertical line with the NR energy bands. The two inequivalent valleys K and K

′
are located at kxa/(2π ) = 1

3 and 2
3 ,

respectively, and a is the bulk’s lattice constant.

APPENDIX A: MATRIX ELEMENTS OF THE TB
HAMILTONIAN WITHOUT SOC

In this appendix, we show the matrix elements of the TB
Hamiltonian in the absence of SOC, which are listed below.
As we intend to list all matrix elements for our improved TB
model and the number of equations is large, the equations of the
same kind are group numbered in all appendices from A–D,
instead of being numbered one by one, for convenience of
differentiation.

ME =
⎛
⎝Ee

d0
0 0

0 Ee
d1

0
0 0 Ee

d1

⎞
⎠, MO =

(
Eo

d2
0

0 Eo
d2

)
,

XE =
⎛
⎝Ee

s2
0 0

0 Ee
s1

0
0 0 Ee

s1

⎞
⎠, XO =

⎛
⎝Eo

s2
0 0

0 Eo
s1

0
0 0 Eo

s1

⎞
⎠,

(A1)
where Ee

d0, Ee
d1, Eo

d2 are onsite energies of dz2 , dxy (dx2−y2 )
and dxz (dyz) orbitals of M atom, respectively:

H
E/O

M-X =
3∑

i=1

ei�k· �Ai H
E/O

M-X ( �Ai ),

H
E/O

M-M =
6∑

i=1

ei
��k· �Si H

E/O

M ( �Si ) +
6∑

i=1

ei�k· �Ci H
E/O

M ( �Ci ),

H
E/O

X-X = H
E/O

tb +
6∑

i=1

ei�k· �Si H
E/O

X ( �Si )

+
6∑

i=1

ei�k· �Ci H
E/O

X ( �Ci ), (A2)

with the tb index indicating the intralayer X-X hopping in
the top and bottom layers and the hopping vectors �Ai (i =
1, . . . , 3), �Sj , and �Cj (j = 1, . . . , 6) being given in Table II.
The involving even and odd hopping matrices are defined as
follows.

The even hopping matrices are written as

HE
M-X( �A1) =

⎛
⎝

√
2k2 0 2

√
2k1

0
√

2k3 0
2
√

2k10 0
√

2k8

⎞
⎠,

HE
M-X( �A2) =

⎛
⎝

√
2k2

√
2k0 −√

2k1√
2k6

√
2k4

√
2k5

−√
2k10

√
2k7

√
2k9

⎞
⎠,

HE
M-X( �A3) =

⎛
⎝

√
2k2 −√

2k0 −√
2k1

−√
2k6

√
2k4 −√

2k5

−√
2k10 −√

2k7

√
2k9

⎞
⎠,

HE
M ( �S1) =

⎛
⎝ t0 0 −2t2

0 t3 0
−2t2 0 t6

⎞
⎠ = HE

M ( �S4),
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FIG. 10. Upper panels: zoom of the edge states in zigzag nanorribons along the x axis and whose width is defined by nmax = 200 along the
y direction for (a) MoS2, (b) MoSe2, (c) MoTe2, (d) WS2, and (e) WSe2, respectively, shown in Fig. 9. The blue and red curves correspond to
the spin-up and -down states, respectively. The dashed horizontal line indicates assumed Fermi level. A, B, C, and D are the crossing points of
Fermi level with the NR energy bands. a is the bulk’s lattice constant. The lower panels are schematics of the locations of the edge states A, B,
C, and D. The arrows indicate directions of the velocity. The red and blue lines correspond to the spin-up and -down states, respectively.

HE
M ( �S2) =

⎛
⎝ t0 t1 t2

t1 t4 t5
t2 t5 t7

⎞
⎠ = HE

M ( �S5),

HE
M ( �S3) =

⎛
⎝ t0 −t1 t2

−t1 t4 −t5
t2 −t5 t7

⎞
⎠ = HE

M ( �S6),

HE
X ( �S1) =

⎛
⎝ pe

3 0 0
0 pe

0 0
0 0 pe

3

⎞
⎠ = HE

X ( �S4),

HE
X ( �S2) =

⎛
⎝ pe

3 0 0
0 pe

1 pe
2

0 pe
2 pe

4

⎞
⎠ = HE

X ( �S5),

HE
X ( �S3) =

⎛
⎝ pe

3 0 0
0 pe

1 −pe
2

0 −pe
2 pe

4

⎞
⎠ = HE

X ( �S6),

HE
M ( �C1) =

⎛
⎝ u0 u1 u2

u1 u4 u6

u2 u6 u7

⎞
⎠ = HE

M ( �C4),
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HE
M ( �C2) =

⎛
⎝ u0 0 u3

0 u5 0
u3 0 u8

⎞
⎠ = HE

M ( �C5),

HE
M ( �C3) =

⎛
⎝ u0 −u1 u2

−u1 u4 −u6

u2 −u6 u7

⎞
⎠ = HE

M ( �C6),

HE
X ( �C1) =

⎛
⎝ qe

1 0 0
0 qe

0 qe
2

0 qe
2 qe

3

⎞
⎠ = HE

X ( �C4),

HE
X ( �C2) =

⎛
⎝ qe

1 0 0
0 qe

1 0
0 0 qe

4

⎞
⎠ = HE

X ( �C5),

HE
X ( �C3) =

⎛
⎝qe

1 0 0
0 qe

0 −qe
2

0 −qe
2 qe

3

⎞
⎠ = HE

X ( �C6),

HE
tb =

⎛
⎝−he

2 0 0
0 he

1 0
0 0 he

1

⎞
⎠. (A3)

The odd hopping matrices read as

HO
M-X( �A1) =

(
0

√
2k15 0

−2
√

2k14 0
√

2k12

)
,

HO
M-X( �A2) =

(√
2k18

√
2k16

√
2k17√

2k14

√
2k11

√
2k13

)
,

HO
M-X( �A3) =

(−√
2k18

√
2k16 −√

2k17√
2k14 −√

2k11

√
2k13

)
,

HO
M ( �S1) =

(
t11 0
0 t8

)
= HO

M ( �S4),

HO
M ( �S2) =

(
t12 t10

t10 t9

)
= HO

M ( �S5),

HO
M ( �S3) =

(
t12 −t10

−t10 t9

)
= HO

M ( �S6),

HO
X ( �S1) =

⎛
⎝ po

3 0 0
0 po

0 0
0 0 po

3

⎞
⎠ = HO

X ( �S4),

HO
X ( �S2) =

⎛
⎝ po

3 0 0
0 po

1 po
2

0 po
2 po

4

⎞
⎠ = HO

X ( �S5),

HO
X ( �S3) =

⎛
⎝ po

3 0 0
0 po

1 −po
2

0 −po
2 po

4

⎞
⎠ = HO

X ( �S6),

HO
M ( �C1) =

(
u12 u11

u11 u9

)
= HO

M ( �C4),

HO
M ( �C2) =

(
u13 0
0 u10

)
= HO

M ( �C5),

HO
M ( �C3) =

(
u12 −u11

−u11 u9

)
= HO

M ( �C6),

HO
X ( �C1) =

⎛
⎝ qo

1 0 0
0 qo

0 qo
2

0 qo
2 qo

3

⎞
⎠ = HO

X ( �C4),

HO
X ( �C2) =

⎛
⎝ qo

1 0 0
0 qo

1 0
0 0 qo

4

⎞
⎠ = HO

X ( �C5),

HO
X ( �C3) =

⎛
⎝ qo

1 0 0
0 qo

0 −qo
2

0 −qo
2 qo

3

⎞
⎠ = HO

X ( �C6),

HO
tb =

⎛
⎝ ho

2 0 0
0 −ho

1 0
0 0 −ho

1

⎞
⎠. (A4)

In Eqs. (A3) and (A4), k, t , p, u, q, and h are the
hopping parameters defined in terms of the SK parameters
(see Tables VI and VII). The corresponding expressions of the
hopping parameters under the two-center approximation based
on a definition using the SK method shown in Tables VI and
VII, are listed below, with

k0 = 3

2
V e

pdπ cos θ sin2 θ

−
√

3

2
V e

pdσ cos θ

(
sin2 θ − 1

2
cos2 θ

)
,

k1 = −
√

3

2
V e

pdπ cos θ sin2 θ

+ 1

2
V e

pdσ cos θ

(
sin2 θ − 1

2
cos2 θ

)
,

k2 =
√

3 V e
pdπ cos2 θ sin θ + V e

pdσ cos θ
(

sin2 θ − 1

2
cos2 θ

)
,

k3 = V e
pdπ cos θ,

k4 = −3
√

3

8
V e

pdσ cos3 θ − 1

2
V e

pdπ cos θ

(
1 − 3

2
cos2 θ

)
,

k5 = −3

8
V e

pdσ cos3 θ −
√

3

2
V e

pdπ cos θ

(
1 − 1

2
cos2 θ

)
,
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FIG. 11. Band structures of armchair NRs along the y axis whose width is defined by nmax = 200 along the x direction for (a) MoS2, (b)
MoSe2, (c) MoTe2, (d) WS2, and (e) WSe2, respectively. The two inequivalent valleys K and K ′ are located at kxa/(2π ) = 1

3 and 2
3 , respectively.

a is the bulk’s lattice constant. Owing to the spin degeneracy in the armchair NRs, only spin-up component is plotted.

k6 = −
√

3

2
V e

pdπ cos2 θ sin θ + 3

4
V e

pdσ cos2 θ sin θ,

k7 = k5,

k8 = −
√

3

2
cos3 θ V e

pdσ − cos θ sin2 θ V e
pdπ ,

k9 = −
√

3

8
cos3 θ V e

pdσ + 1

2
V e

pdπ cos θ

(
1 + 1

2
cos2 θ

)
,

k10 = 1

2
V e

pdπ cos2 θ sin θ −
√

3

4
V e

pdσ cos2 θ sin θ,

k11 = −
√

3

2
V o

pdπ cos2 θ sin θ + 3

4
V o

pdσ cos2 θ sin θ,

k12 =
√

3 V o
pdσ cos2 θ sin θ + V o

pdπ (1 − 2 cos2 θ ) sin θ,

k13 =
√

3

4
V o

pdσ cos2 θ sin θ

+ V o
pdπ

(
1 − 1

2
cos2 θ

)
sin θ,

k14 = −
√

3

2
V o

pdσ sin2 θ cos θ

− 1

2
V o

pdπ (1 − 2 sin2 θ ) cos θ,

k15 = V o
pdπ sin θ,

k16 = 3
√

3

4
V o

pdσ cos2 θ sin θ + V o
pdπ

(
1 − 3

2
cos2 θ

)
sin θ,

k17 = −
√

3

2
V o

pdπ cos2 θ sin θ + 3

4
V o

pdσ cos2 θ sin θ,

k18 = −3

2
V o

pdσ sin2 θ cos θ

−
√

3

2
V o

pdπ (1 − 2 sin2 θ ) cos θ, (A5)

t0 = 3

4
V e

ddδ + 1

4
V e

ddσ ,

t1 = 3

8
V e

ddδ − 3

8
V e

ddσ ,

t2 = −
√

3

8
V e

ddδ +
√

3

8
V e

ddσ ,
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t3 = V e
ddπ ,

t4 = 3

16
V e

ddδ + 1

4
V e

ddπ + 9

16
V e

ddσ ,

t5 = −
√

3

16
V e

ddδ +
√

3

4
V e

ddπ − 3
√

3

16
V e

ddσ ,

t6 = 1

4
V e

ddδ + 3

4
V e

ddσ ,

t7 = 1

16
V e

ddδ + 3

4
V e

ddπ + 3

16
V e

ddσ ,

t8 = V o
ddδ,

t9 = 1

4
V o

ddδ + 3

4
V o

ddπ ,

t10 = −
√

3

4
V o

ddδ +
√

3

4
V o

ddπ ,

t11 = V o
ddπ ,

t12 = 3

4
V o

ddδ + 1

4
V o

ddπ , (A6)

p
e/o

0 = V e/o
ppσ ,

p
e/o

1 = 3

4
V e/o

ppπ + 1

4
V e/o

ppσ ,

p
e/o

2 = −√
3

4
V e/o

ppπ +
√

3

4
V e/o

ppσ ,

p
e/o

3 = V e/o
ppπ ,

p
e/o

4 = 1

4
V e/o

ppπ + 3

4
V e/o

ppσ , (A7)

u0 = 3

4
Ke

ddδ + 1

4
Ke

ddσ ,

u1 = 3

8
Ke

ddδ − 3

8
Ke

ddσ ,

u2 =
√

3

8
Ke

ddδ −
√

3

8
Ke

ddσ ,

u3 = −
√

3

4
Ke

ddδ +
√

3

4
Ke

ddσ ,

u4 = 3

16
Ke

ddδ + 1

4
Ke

ddπ + 9

16
Ke

ddσ ,

u5 = Ke
ddπ ,

u6 =
√

3

16
Ke

ddδ −
√

3

4
Ke

ddπ + 3
√

3

16
Ke

ddσ ,

u7 = 1

16
Ke

ddδ + 3

4
Ke

ddπ + 3

16
Ke

ddσ ,

u8 = 1

4
Ke

ddδ + 3

4
Ke

ddσ ,

u9 = 3

4
Ko

ddδ + 1

4
Ko

ddπ ,

u10 = Ko
ddπ ,

u11 = −
√

3

4
Ko

ddδ +
√

3

4
Ko

ddπ ,

u12 = 1

4
Ko

ddδ + 3

4
Ko

ddπ ,

u13 = Ko
ddδ, (A8)

q
e/o

0 = 1

4
Ke/o

ppπ + 3

4
Ke/o

ppσ ,

q
e/o

1 = Ke/o
ppπ ,

q
e/o

2 = −
√

3

4
Ke/o

ppπ +
√

3

4
Ke/o

ppσ ,

q
e/o

3 = 3

4
Ke/o

ppπ + 1

4
Ke/o

ppσ ,

q
e/o

4 = Ke/o
ppσ , (A9)

h
e/o

1 = V e/o
ppπ ,

h
e/o

2 = V e/o
ppσ . (A10)

APPENDIX B: SOC MATRICES OF THE TB
HAMILTONIAN

In this appendix, we show the SOC matrices for the TB
Hamiltonian, which are written as

H
↑↑
SO1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 iλM 0 0 0
0 −iλM 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 − i

2λX

0 0 0 0 i
2λX 0

⎞
⎟⎟⎟⎟⎟⎠,

H
↑↑
SO2 =

⎛
⎜⎜⎜⎜⎝

0 − i
2λM 0 0 0

i
2λM 0 0 0 0

0 0 0 0 0
0 0 0 0 − i

2λX

0 0 0 i
2λX 0

⎞
⎟⎟⎟⎟⎠,

075202-16



BAND STRUCTURE OF MONOLAYER TRANSITION-METAL … PHYSICAL REVIEW B 98, 075202 (2018)

H
↑↓
SO1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√

3
2 λM i

√
3

2 λM 0 0 0

−i λM

2
λM

2 0 0 0
λM

2 i λM

2 0 0 0

0 0 0 − λX

2 i λX

2

0 0 λX

2 0 0

0 0 −i λX

2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H
↑↓
SO2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
3

2 λM i λM

2 − λM

2 0 0 0

−i
√

3λM

2 − λM

2 −i λM

2 0 0 0

0 0 0 0 − λX

2 i λX

2

0 0 0 λX

2 0 0

0 0 0 −i λX

2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

H
↓↑
SO1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3

2 λM i
√

3
2 λM 0 0 0

−i λM

2 − λM

2 0 0 0

− λM

2 i λM

2 0 0 0

0 0 0 λX

2 i λX

2

0 0 − λX

2 0 0

0 0 −i λX

2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H
↓↑
SO2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−
√

3
2 λM i λM

2
λM

2 0 0 0

−i
√

3λM

2
λM

2 −i λM

2 0 0 0

0 0 0 0 λX

2 i λX

2

0 0 0 − λX

2 0 0

0 0 0 −i λX

2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

H
↓↓
SO1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 −iλM 0 0 0
0 iλM 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 i

2λX

0 0 0 0 − i
2λX 0

⎞
⎟⎟⎟⎟⎟⎠,

H
↓↓
SO2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 i
2λM 0 0 0

− i
2λM 0 0 0 0

0 0 0 0 0

0 0 0 0 i
2λX

0 0 0 − i
2λX 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B1)

where λM and λX stand for the SOC strength for M and X

atoms, respectively.

APPENDIX C: TB MATRIX ELEMENTS FOR ZIGZAG
NANORIBBONS

In this appendix, we show the matrix elements of the TB
Hamiltonian for zigzag nanoribbons:

MZZ (τ ) = (
ME + τH SOC

M

)|m, n〉〈m, n|,

XZZ (τ ) = (
XE + HE

tb + τH SOC
X

)|m, n〉〈m, n|, (C1)

with

H SOC
M =

⎛
⎝0 0 0

0 0 iλM

0 −iλM 0

⎞
⎠,

H SOC
X =

⎛
⎝0 0 0

0 0 −i λX

2
0 i λX

2 0

⎞
⎠. (C2)

HZZ
M-M = HZZ

M1 |m, n〉〈m, n| + HZZ
M4 |m, n〉〈m, n + 4|

+HZZ
M2 (|m, n〉〈m + 1, n + 2|

+ |m, n〉〈m − 1, n + 2|)
+HZZ

M3 (|m, n〉〈m + 1, n − 2|
+ |m, n〉〈m − 1, n − 2|)
+HZZ

M5 |m, n〉〈m, n − 4|, (C3)

with

HZZ
M1 = HE

M ( �S1)eikx
�S1.x̂ + HE

M ( �S4)eikx
�S4.x̂ ,

HZZ
M2 = HE

M ( �S2)eikx
�S2.x̂ + HE

M ( �S3)eikx
�S3.x̂

+HE
M ( �C1)eikx

�C1.x̂ + HE
M ( �C3)eikx

�C3.x̂ ,

HZZ
M3 = HE

M ( �S5)eikx
�S5.x̂ + HE

M ( �S6)eikx
�S6.x̂

+HE
M ( �C4)eikx

�C4.x̂ + HE
M ( �C6)eikx

�C6.x̂ ,

HZZ
M4 = HE

M ( �C2)eikx
�C2.x̂ ,

HZZ
M5 = HE

M ( �C5)eikx
�C5.x̂ . (C4)

HZZ
X-X

= HZZ
X1 |m, n〉〈m, n| + HZZ

X4 |m, n〉〈m, n + 4|
+HZZ

X2 (|m, n〉〈m + 1, n + 2| + |m, n〉〈m − 1, n + 2|)
+HZZ

X3 (|m, n〉〈m + 1, n − 2| + |m, n〉〈m − 1, n − 2|)
+HZZ

X5 |m, n〉〈m, n − 4|, (C5)

with
HZZ

X1 = HE
X ( �S1)eikx

�S1.x̂ + HE
X ( �S4)eikx

�S4.x̂ ,

HZZ
X2 = HE

X ( �S2)eikx
�S2.x̂ + HE

X ( �S3)eikx
�S3.x̂

+HE
X ( �C1)eikx

�C1.x̂ + HE
X ( �C3)eikx

�C3.x̂ ,

HZZ
X3 = HE

X ( �S5)eikx
�S5.x̂ + HE

X ( �S6)eikx
�S6.x̂

+HE
X ( �C4)eikx

�C4.x̂ + HE
X ( �C6)eikx

�C6.x̂ ,

HZZ
X4 = HE

X ( �C2)eikx
�C2.x̂ ,

HZZ
X5 = HE

X ( �C5)eikx
�C5.x̂ , (C6)
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HZZ
M-X = HZZ

MX2|m, n〉〈m − 1, n − 1|
+HZZ

MX2|m, n〉〈m + 1, n − 1|
+HZZ

MX1|m, n〉〈m, n + 1|, (C7)

HZZ
X-M = HZZ†

MX2|m, n〉〈m + 1, n + 1|
+HZZ†

MX2|m, n〉〈m − 1, n + 1|
+HZZ†

MX1|m, n〉〈m, n − 1|, (C8)

with

HZZ
MX1 = HE

M−X( �A1)eikx
�A1.x̂ ,

HZZ
MX2 = HE

M−X( �A2)eikx
�A2.x̂ + HE

M−X( �A3)eikx
�A3.x̂ , (C9)

where τ is the spin index, τ = 1 (−1) corresponds to the spin-
up (spin-down) states.

APPENDIX D: TB MATRIX ELEMENTS FOR ARMCHAIR
NANORIBBONS

In this appendix, we show the matrix elements of the TB
Hamiltonian for armchair nanoribbons:

MAC (τ ) = (
ME + τH SOC

M

)|m, n〉〈m, n|, (D1)

XAC (τ ) = (
XE + HE

tb + τH SOC
X

)|m, n〉〈m, n|. (D2)
HAC

M-M

= HAC
M1 |m, n〉〈m, n| + HAC

M2 |m, n〉〈m + 2, n|
+HAC

M4 (|m, n〉〈m + 1, n − 2| + |m, n〉〈m + 1, n + 2|)
+HAC

M5 (|m, n〉〈m − 1, n − 2| + |m, n〉〈m − 1, n + 2|)
+HAC

M6 (|m, n〉〈m + 3, n + 2| + |m, n〉〈m + 3, n − 2|)
+HAC

M7 (|m, n〉〈m − 3, n + 2| + |m, n〉〈m − 3, n − 2|)
+HAC

M3 |m, n〉〈m − 2, n|, (D3)

with

HAC
M1 = HE

M ( �C2)eiky
�C2.ŷ + HE

M ( �C5)eiky
�C5.ŷ ,

HAC
M2 = HE

M ( �S1)eiky
�S1.ŷ ,

HAC
M3 = HE

M ( �S4)eiky
�S4.ŷ ,

HAC
M4 = [

HE
M ( �S2)eiky

�S2.ŷ + HE
M ( �S6)eiky

�S6.ŷ
]
,

HAC
M5 = [

HE
M ( �S3)eiky

�S3.ŷ + HE
M ( �S5)eiky

�S5.ŷ
]
,

HAC
M6 = [

HE
M ( �C1)eiky

�C1.ŷ + HE
M ( �C6)eiky

�C6.ŷ
]
,

HAC
M7 = [

HE
M ( �C3)eiky

�C3.ŷ + HE
M ( �C4)eiky

�C4.ŷ
]
, (D4)

HAC
X-X

= HAC
X1 |m, n〉〈m, n| + HAC

X2 |m, n〉〈m + 2, n|
+HAC

X4 (|m, n〉〈m + 1, n − 2| + |m, n〉〈m + 1, n + 2|)
+HAC

X5 (|m, n〉〈m − 1, n − 2| + |m, n〉〈m − 1, n + 2|)
+HAC

X6 (|m, n〉〈m + 3, n + 2| + |m, n〉〈m + 3, n − 2|)
+HAC

X7 (|m, n〉〈m − 3, n + 2| + |m, n〉〈m − 3, n − 2|)
+HAC

X3 |m, n〉〈m − 2, n|, (D5)

with

HAC
X1 = HE

X ( �C2)eiky
�C2.ŷ + HE

X ( �C5)eiky
�C5.ŷ ,

HAC
X2 = HE

X ( �S1)eiky
�S1.ŷ ,

HAC
X3 = HE

X ( �S4)eiky
�S4.ŷ ,

HAC
X4 = HE

X ( �S2)eiky
�S2.ŷ + HE

X ( �S6)eiky
�S6.ŷ ,

HAC
X5 = HE

X ( �S3)eiky
�S3.ŷ + HE

X ( �S5)eiky
�S5.ŷ ,

HAC
X6 = HE

X ( �C1)eiky
�C1.ŷ + HE

X ( �C6)eiky
�C6.ŷ ,

HAC
X7 = HE

X ( �C3)eiky
�C3.ŷ + HE

X ( �C4)eiky
�C4.ŷ . (D6)

HAC
M-X

= HAC
MX1|m, n〉〈m, n − 3| + HAC

MX1|m, n〉〈m, n + 1|
+HAC

MX2|m, n〉〈m − 1, n − 1|
+HAC

MX3|m, n〉〈m + 1, n − 1|, (D7)

HAC
X-M

= H
†AC

MX1|m, n〉〈m, n + 3| + H
†AC

MX1|m, n〉〈m, n − 1|
+H

†AC

MX2|m, n〉〈m + 1, n + 1|
+H

†AC

MX3|m, n〉〈m − 1, n + 1|,
(D8)

with

HAC
MX1 = HE

M-X( �A1)eiky
�A1.ŷ ,

HAC
MX2 = HE

M-X( �A2)eiky
�A2.ŷ ,

HAC
MX3 = HE

M-X( �A3)eiky
�A3.ŷ . (D9)

The τ index and the SOC matrix are the same as those for the
zigzag nanoribbon.
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