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The interaction of solid-state electronic spins with deformations of their host crystal is an important ingredient
in many experiments realizing quantum information processing schemes. Here, we theoretically characterize
that interaction for a nitrogen-vacancy (NV) center in diamond. We derive the symmetry-allowed Hamiltonian
describing the interaction between the ground-state spin-triplet electronic configuration and the local strain. We
numerically calculate the six coupling-strength parameters of the Hamiltonian using density functional theory,
and propose an experimental setup for measuring those coupling strengths. The importance of this interaction
is highlighted by the fact that it enables to drive spin transitions, both magnetically allowed and forbidden, via
mechanically or electrically driven spin resonance. This means that the ac magnetic field routinely used in a
wide range of spin-resonance experiments with NV centers could in principle be replaced by ac strain or ac
electric field, potentially offering lower power requirements, simplified device layouts, faster spin control, and
local addressability of electronic spin qubits.
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I. INTRODUCTION

The nitrogen-vacancy (NV) color center consists of a
nitrogen atom substituting a carbon atom adjacent to a vacancy
in diamond (see Fig. 1). In the negatively charged state, it shows
a broad fluorescence with zero-phonon line at 637 nm [1,2] and
possesses a spin S = 1 ground state [3–6]. The electron spin of
the NV center can be initialized, coherently manipulated, and
read out in optically detected magnetic resonance (ODMR)
experiments [7], even at the level of individual centers [8].
This electronic spin degree of freedom is robust even at
room temperature, and its coherence time is typically a few
microseconds in natural diamond [7], reaching milliseconds
in 12C enriched diamonds [9]. Because of these favorable
properties of the NV center, it provides a versatile and highly
coherent platform for the experimental realization of many
quantum information schemes. To maximize the potential of
these defects for various quantum communication [10–12],
quantum sensing [13–21], and quantum computing [22–24]
applications, it is crucial to understand the interaction of the
center’s electronic system with its environment, most notably
externally induced electromagnetic fields, and deformations of
the crystal lattice.

In this work, we provide a theoretical description of the
latter, i.e., the spin-strain interaction Hamiltonian of the spin-
triplet ground-state electronic configuration of the negatively
charged NV defect. Even though in recent years this interaction
has been studied intensively [19–21,25–37], to our knowledge
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the correct and complete form of the interaction Hamiltonian
of the ground-state spin-1 vector S and the 3 × 3 strain
tensor ε has not been established in the literature. To fill
this gap, we first derive the symmetry-allowed form of the
spin-strain interaction Hamiltonian [see Eq. (3)]. Second, we
present numerical results for the six coupling-strength pa-
rameters appearing in the spin-strain interaction Hamiltonian
(see Table I), which we compute using density functional
theory (DFT); we find reasonable agreement with experimental
results (see Table II). Third, we propose a setup to measure
those two coupling-strength parameters which have not been
experimentally characterized yet (Sec. V). Finally, we discuss
how the spin-strain interaction can contribute to various ap-
plications of NVs in quantum information schemes (Sec. VI).
In particular, our results can be applied to design electrical or
mechanical schemes to control the magnetically allowed spin
transitions of these defects, potentially offering lower power
requirements, simplified device layouts, faster spin control, and
local addressability of spin qubits.

We formulate our results in terms of the spin-stress interac-
tion as well. We emphasize that our qualitative considerations
apply more generally to the whole family of spin-1 electronic
states of defects with C3v symmetry. Finally, we note that
throughout this work, we describe the interaction between the
spin and the mechanical deformation in the framework of linear
elasticity theory.

II. PRELIMINARIES

We choose the cubic reference frame such that its origin co-
incides with the vacancy, and the nitrogen is at (a/4, a/4, a/4),
with a being the width of the cubic cell. The coordinates
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FIG. 1. Nitrogen-vacancy (NV) center in the diamond lattice
(Bravais cell depicted as a cube in black). {X, Y, Z} defines the
cubic reference frame and {x, y, z} defines the NV reference frame.
Deformation of the diamond crystal is visualized in red for εxx = 0.1
strain component. We use this high strain only for sake of clarity.

in the cubic frame are referred to as X, Y, Z (see Fig. 1).
The NV reference frame is defined via its three orthonor-
mal basis vectors ez = (1, 1, 1)/

√
3, ey = (1,−1, 0)/

√
2, and

ex = ey × ez. From now on, unless noted otherwise, we use the
NV frame, and x, y, and z refer to coordinates in the NV frame.
This choice of the reference frame implies that reflection upon
the xz plane is a symmetry of the structure. This reflection,
together with the threefold rotation around the z axis, generate
the point group C3v of the defect.

In the presence of a homogeneous magnetic field B =
(Bx, By, Bz), and in the absence of any electric field and strain,
the NV spin is described by the following Hamiltonian:

He/h = DS2
z + γe B · S, (1)

where h is Planck’s constant, D = 2.87 GHz is the zero-field
splitting, γe = 2.8 MHz/G is the electron gyromagnetic ratio,
and S = (Sx, Sy, Sz) is the vector of spin-1 Pauli matrices. The
eigenstates and eigenvalues of Sz will be labeled according to
Sz|mSe〉 = mS |mSe〉, where mS ∈ {−1, 0,+1}.

The interaction Hamiltonian of a homogeneous electric field
E = (Ex,Ey,Ez) with the NV spin is constrained by the C3v

symmetry of the defect, and hence described by [27,38,39]

HE = HE0 + HE1 + HE2, (2a)

TABLE I. Spin-strain (h) and spin-stress (g) coupling-strength
parameters calculated from density functional theory. See Appendix B
for methodological details. Results are rounded to significant digits.

Parameter value (MHz/strain) Parameter value (MHz/GPa)

h43 2300±200 g43 2.4±0.2
h41 −6420±90 g41 −5.17±0.07
h25 −2600±80 g25 −2.17±0.07
h26 −2830±70 g26 −2.58±0.06
h15 5700±200 g15 3.6±0.1
h16 19660±90 g16 18.98±0.09

TABLE II. Spin-stress coupling-strength parameters: comparison
of density functional theory and experimental [34] results. Parameters
in the hybrid representation (a1, a2, etc.) are expressed in terms
of the parameters in the NV-frame representation (g41, etc.) in the
second column. Par. and expt. are abbreviations for “parameters” and
“experimental results.”

Par. Relation DFT (MHz/GPa) Expt. [34] (MHz/GPa)

a1
2g41+g43

3 −2.66±0.07 −4.4±0.2
a2

−g41+g43
3 2.51±0.06 3.7±0.2

b
−g15+√

2g16
12 1.94±0.02 2.3±0.3

c
−2g15−√

2g16
12 −2.83±0.03 −3.5±0.3

d
−g25+√

2g26
12 −0.12±0.01

e
−2g25−√

2g26
12 0.66±0.01

HE0/h = d‖S2
z Ez, (2b)

HE1/h = d ′
⊥[{Sx, Sz}Ex + {Sy, Sz}Ey], (2c)

HE2/h = d⊥
[(

S2
y − S2

x

)
Ex + {Sx, Sy}Ey

]
. (2d)

Here, the lower indices 0, 1, and 2 refer to the difference
in the electron spin quantum numbers (mS) connected by
the corresponding Hamiltonian; e.g., HE1 has nonzero matrix
elements between |0e〉 and | ± 1e〉. The coefficients d⊥ =
17 Hz cm/V and d‖ = 0.35 Hz cm/V have been inferred in
the experiment of Ref. [38]. However, to our knowledge,
the coefficient d ′

⊥ has not been quantified experimentally or
theoretically; nevertheless it is expected [27] to have the same
order of magnitude as d⊥.

Two remarks on the spin-electric interaction Hamiltonian
HE : (1) The presence of HE1 in the spin-electric Hamiltonian
is a clear indication that coherent Rabi oscillations within
the state pairs |0e〉 ↔ | + 1e〉 and |0e〉 ↔ | − 1e〉 can be
driven by an ac electric field. This means, in principle, that
any coherent-control experiment where these transitions are
driven by ac magnetic field can also be done by replacing
the ac magnetic field with an ac electric field, e.g., created
by a single metallic gate electrode. To our knowledge, this
opportunity which is routinely exploited for various solid-state
spin systems [40–43] and is known as electrically driven
spin resonance or electric dipole spin resonance, has been
overlooked in the literature in the context of the magnetically
allowed |0e〉 ↔ | + 1e〉 and |0e〉 ↔ | − 1〉 transitions of NVs
and similar defects with C3v symmetry. Since electric control
might bring significant advantages over magnetic control (sim-
plified device layout, well-confined control fields allowing for
local spin addressability, lower power requirements, etc.), this
observation provides a strong motivation to characterize the
coupling-strength parameter d ′

⊥ of HE1 both experimentally
and theoretically. (2) The experimental setup we propose in
Sec. V to measure spin-stress and spin-strain coupling-strength
parameters can be easily adopted to measure d ′

⊥.

III. SPIN-STRAIN HAMILTONIAN

In our understanding, the spin-strain interaction Hamil-
tonians used in the literature to characterize the NV (and
similar defects with C3v symmetry) are incomplete. A
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central result of this work is the most general form of this
Hamiltonian that is compatible with the C3v symmetry of the
NV. We find that this general symmetry-allowed Hamiltonian
is characterized by six independent real coupling-strength
parametersh41, h43, h25, h26, h15, h16, and has the following
form:

Hε = Hε0 + Hε1 + Hε2, (3a)

Hε0/h = [h41(εxx + εyy ) + h43εzz]S
2
z , (3b)

Hε1/h = 1
2

[
h26εzx − 1

2h25(εxx − εyy )
]{Sx, Sz}

+ 1
2 (h26εyz + h25εxy ){Sy, Sz}, (3c)

Hε2/h = 1
2

[
h16εzx − 1

2h15(εxx − εyy )
](

S2
y − S2

x

)
+ 1

2 (h16εyz + h15εxy ){Sx, Sy}, (3d)

where εij = (∂ui/∂xj + ∂uj/∂xi )/2 denotes the strain tensor
and u(r) is the displacement field. Similarly to Eq. (2), the
subscripts 0, 1, and 2 here refer to the difference in the electron
spin quantum numbers mS connected by the corresponding
Hamiltonian. We present an elementary derivation of Eq. (3),
as well as a derivation based on group representation theory,
in Appendix A.

Note that the symmetry-allowed form of the spin-stress
interaction, i.e., when the mechanical deformation is char-
acterized by the 3 × 3 stress tensor σ instead of strain ε, is
completely analogous to Eq. (3). In what follows, we adopt a
notation for the spin-stress Hamiltonian Hσ that is analogous
to Eq. (3), with the substitutions ε 	→ σ and h 	→ g:

Hσ = Hσ0 + Hσ1 + Hσ2, (4a)

Hσ0/h = [g41(σxx + σyy ) + g43σzz]S
2
z , (4b)

Hσ1/h = 1
2

[
g26σxz − 1

2g25(σxx − σyy )
]{Sx, Sz}

+ 1
2 (g26σyz + g25σxy ){Sy, Sz}, (4c)

Hσ2/h = 1
2

[
g16σxz − 1

2g15(σxx − σyy )
](

S2
y − S2

x

)
+ 1

2 (g16σyz + g15σxy ){Sx, Sy}. (4d)

Many recent works (e.g., Refs. [19,21,31]) rely on heuristic
spin-strain Hamiltonians built on an unjustified analogy be-
tween strain and electric field. That approach does not take
into account the 3 × 3 tensor structure of strain, therefore, it
provides an incorrect description of the spin-strain interaction,
even in the absence shear strain. A recent work [34] uses a
spin-stress Hamiltonian based on the 3 × 3 stress tensor σ ;
their Hamiltonian includes four real parameters a1, a2, b,
and c. That Hamiltonian is equivalent to our Hσ0 + Hσ2,
but incomplete as it lacks the symmetry-allowed term Hσ1

analogous to Eq. (3c); we provide more details on its relation to
our results in Sec. IV. We note that using the incomplete Hσ0 +
Hσ2 Hamiltonian in Ref. [34] is justified as an approximation
since the term Hσ1 is a small perturbation in the magnetic-field
range addressed in those experiments. We also remark that in a
very recent work [44], a spin-phonon interaction Hamiltonian
incorporating matrix elements between |0e〉 and | ± 1e〉 has
been used to describe spin relaxation in NVs.

IV. SPIN-STRAIN PARAMETERS FROM DENSITY
FUNCTIONAL THEORY

We use DFT to numerically compute the six coupling-
strength coefficients h41, etc., appearing in the spin-strain
Hamiltonian (3). The calculations include spin-spin in-
teractions, but exclude spin-orbit effects (for details, see
Appendix B.) Methodological details are presented in
Appendix B. The results are summarized in Table I. Therein,
we also present the spin-stress coupling-strength coefficients
g41, etc., which we obtain from the h values using the stiffness
tensor of bulk diamond (see Appendix C).

In Table II, we compare the numerical DFT results of Table I
to the experimental results of Ref. [34]. In Ref. [34], four out of
the six independent spin-stress coupling-strength parameters
of the spin-stress interaction Hamiltonian were measured.
Reference [34] defines these four spin-stress coupling-strength
parameters, denoted as a1, a2, b, c, in a “hybrid” representa-
tion, where the spin-stress Hamiltonian is expressed in terms of
the NV-frame components of the spin vector (Sx, Sy, Sz) and
the cubic-frame components of the stress tensor (σXX, σXY ,
etc.). To be able to make a comparison between our DFT
results and the experimental ones, we now take the notations
of Ref. [34], and introduce d, e, Nx , Ny , to express our spin-
stress Hamiltonian Hσ in Eq. (4) in this hybrid representation:

Hσ0/h = MzS
2
z , (5a)

Hσ1/h = Nx{Sx, Sz} + Ny{Sy, Sz}, (5b)

Hσ2/h = −Mx

(
S2

x − S2
y

) + My{Sx, Sy}, (5c)

where

Mz = a1(σXX + σYY + σZZ )

+ 2a2(σYZ + σZX + σXY ), (6a)

Nx = d(2σZZ − σXX − σYY )

+ e(2σXY − σYZ − σZX ), (6b)

Ny =
√

3[d(σXX − σYY ) + e(σYZ − σZX )], (6c)

Mx = b(2σZZ − σXX − σYY )

+ c(2σXY − σYZ − σZX ), (6d)

My =
√

3[b(σXX − σYY ) + c(σYZ − σZX )]. (6e)

The relations between the hybrid-representation parameters
(a1, a2, b, c, d, e) and the NV-frame parameters (g41, etc.)
are given in the first two columns of Table II. Importantly, Hσ0

and Hσ2 are identical to the spin-stress Hamiltonian in Eqs. (1)
and (2) of Ref. [34].

In Table II, the DFT results for the cubic-frame spin-strain
coupling-strength parameters are listed in the third column,
whereas the experimental values [34] are listed in the fourth
column.1 According to Table II, the signs of the DFT and
experimental results are the same, and for all four parameters

1Note that with respect to the values quoted in Ref. [34], the values
in the fourth column of Table II have an inverted sign because of the
different sign convention for the stress tensor: we assign a negative
stress to compression.
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determined from the experiment, the order of magnitude
matches well with that of the DFT result. This suggests that
the DFT method applied here captures the key mechanism
of interaction between the electron spin and the mechanical
deformation, and gives confidence in the predictions for the
previously omitted parameters d and e.

V. POSSIBLE METHODS TO MEASURE THE SPIN-STRESS
PARAMETERS

To our knowledge, the spin-stress coupling strength pa-
rameters g25 and g26 have not yet been measured. In this
section, we propose a method that allows to determine those
in an experiment which combines the controlled application
of mechanical stress and ODMR. The method, inspired by
the experiment of Ref. [45], requires a finite magnetic field
along the NV axis, which tunes the system to the ground-
state level anticrossing (GSLAC) where the | − 1e〉 and |0e〉
electronic states are approximately degenerate, Bz ≈ Bg ≡
D/γe ≈ 1024 G. In that setting, mechanical stress can induce
strong mixing of the spin eigenstates of the coupled electron-
nuclear system via the coupling-strength parameters g25 and
g26. In turn, the spin dynamics governed by this mixing can be
detected in a time-resolved fashion, via photoluminescence-
based optical readout of the NV spin system. First, in Sec.
V A, we introduce our model, and show that the mechanical
stress can be thought of as an extra contribution to the external
magnetic field [see Eq. (12)]. Second, in Sec. V B, we describe
an arrangement that can be used to determine the axial spin-
stress coupling-strength parameters g41 and g43. Third, in Sec.
V C, we outline the experiment to determine the transverse
coupling-strength parameters g25 and g26.

A. Effective magnetic field due to mechanical stress

The measurement schemes described here work in the
vicinity of the GSLAC, where the | − 1e〉 and |0e〉 electronic
spin levels are nearly degenerate. This is where the stress-
induced terms of Hσ1, which are typically much smaller than
the zero-field spin splitting D, are most effective in mixing
these two electronic spin states. Due to the presence of the
N nuclear spin and hyperfine interaction, there is a hyperfine
structure of the energy spectrum at the GSLAC [46]. This
is illustrated for the case of an 14N nuclear spin in Fig. 2:
instead of two electron spin levels crossing at Bz = Bg , there
are six levels, with two level pairs showing hyperfine-induced
anticrossings. We focus on the case when the N atom of
the NV center is an 14N; the analysis can be generalized
straightforwardly for the 15N case [45,47].

We assume that a magnetic field Bz ≈ Bg is applied, aligned
with the NV axis. Formally we write the magnetic field
vector as B = (Bx, By, Bz), but we will consider only the case
Bx = By = 0. The nine-dimensional Hamiltonian describing
the coupled electron-nuclear system in the presence of the
magnetic field and mechanical stress reads as

H = He + Hσ + Hn + Hhf , (7)

where He is defined in Eq. (1), Hσ is defined in Eq. (4),
Hn describes the nuclear Zeeman effect and the quadrupole

FIG. 2. Level structure of the 14NV at the GSLAC as a function of
the axial magnetic field Bz. All transverse magnetic field components
and stress are zero, Bx = By = 0, σ = 0. The circle marks the cross-
ing that serves to identify the stress coupling coefficients g25, g26. The
levels coupled by the hyperfine interaction are shown with the same
color (red solid; light blue dashed). The arrows indicate the bright
radio-frequency magnetic transitions at the corresponding values of
the magnetic field. In the absence of mechanical stress, the dashed
lines are invisible in optically detected magnetic resonance.

moment of the I = 1 spin of the 14N via

Hn/h = −γnBzIz + QI 2
z , (8)

and Hhf describes the hyperfine interaction via

Hhf /h = A||SzIz + A⊥(SxIx + SyIy ). (9)

We use the eigenstates of Iz as the basis for the nuclear
spin states, labeled according to Iz|mIn〉 = mI |mIn〉, where
mI ∈ {−1, 0,+1}. Note that in Hn we use B = (0, 0, Bg ) for
simplicity. The literature values of the coefficients [48–51] are
Q = −4.95 MHz, A‖ = −2.14 MHz, A⊥ = −2.7 MHz.

The six low-energy eigenstates of the 9 × 9 Hamiltonian H

are shown in Fig. 2 as a function of the axial magnetic field Bz,
in the vicinity of the GSLAC. For this plot, zero stress is as-
sumed. Solid lines highlight the three levels that will be utilized
to determine the spin-stress coupling-strength parameters. In
Fig. 2, anticrossings are induced by hyperfine interaction, but
far from the anticrossings the depicted energy eigenstates are
eigenstates of Sz and Iz to a good approximation, and therefore
are labeled accordingly, as |mSe,mIn〉.

When describing the effect of a nonzero mechanical
stress, it is possible and helpful to introduce the notion of an
effective magnetic field vector (�x,�y,�z), which describes
the combined effect of the actual magnetic field and the
stress-induced terms in the Hamiltonian. To see this, let
us first focus on the electronic degree of freedom and the
two-dimensional low-energy electron spin subspace at the
GSLAC. The electronic Hamiltonian in this two-dimensional
subspace is expressed using the corresponding projector
P = |0e〉〈0e| + |−1e〉〈−1e| as

PHeP = hγe

(
0 Bx−iBy√

2
Bx+iBy√

2
Bg − Bz

)
. (10)
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In the presence of a nonzero stress, described by the matrix
σ , this Hamiltonian generalizes to

P (He + Hσ )P = hγe

(
0 �x−i�y√

2
�x+i�y√

2
Bg − �z

)
, (11)

where we introduced the effective magnetic field components

�x = Bx + g25

4γe

(σxx − σyy ) − g26

2γe

σxz, (12a)

�y = By − g25

2γe

σxy − g26

2γe

σyz, (12b)

�z = Bz − g41

γe

(σxx + σyy ) − g43

γe

σzz. (12c)

These expressions reveal that the mechanical stress can be
thought of as an extra contribution to the applied magnetic
field.

B. Measuring the axial spin-stress parameters g41, g43

Our proposed experiment to determine g41 and g43 com-
bines a controlled application of static uniaxial stress, and
ODMR [45], in an axial magnetic field that tunes the NV
spin system to the GSLAC. Note that these coupling-strength
parameters have already been experimentally characterized by
a different method in Ref. [34].

The first stage of our proposed experiment is the observation
of certain parts of the hyperfine level structure shown in
Fig. 2. At this stage, no mechanical stress is applied, and a
conventional ODMR spectroscopy experiment [45] is carried
out, as explained below. In the vicinity of the GSLAC, at
(Bx, By, Bz) ≈ (0, 0, Bg ), the coupled electron-nuclear spin
system is initialized to the state |ψ (0)〉 = |0e,−1n〉 (blue solid
line in Fig. 2) with an optical pulse. Then, an ac magnetic
pulse of a given frequency f , amplitude Bac, and duration
τ is applied. On the one hand, if that magnetic pulse is
off resonant with respect to all energy eigenstates in Fig. 2,
then the spin system remains in its initial state |ψ (τ )〉 ∝
|0e,−1n〉. Then, a readout optical pulse at time t = τ will
result in significant photoluminescence which is measured.
Note that the photoluminescence after the readout pulse is
proportional to the occupation probability of the |0e〉 electron
spin state, i.e., to the quantity

∑
mI

|〈0e,mIn|ψ (τ )〉|2. On the
other hand, if the magnetic field pulse is resonant with one of
the transitions in Fig. 2, then it can change the initial state to
a state |ψ (τ )〉 that contains a reduced weight of the |0e〉 state,
and thereby the photoluminescence signal decreases.

To quantify this drop in the photoluminescence signal upon
resonant excitation, we will use the quantity

C = 1 −
∑

mI =−1,0,1

|〈0e,mIn|ψ (τ )〉|2, (13)

and call it the photoluminescence contrast. This quantity
characterizes how effective the magnetic pulse is in inducing
spin transitions: the value of C is zero for an off-resonant
magnetic pulse, and can take values between 0 and 1 for a
resonant magnetic pulse.

The black curves in Fig. 3(b) visualize the predicted out-
come of this experiment using the photoluminescence contrast
C (cf. Fig. 2 of Ref. [45]). Our Fig. 3(b) demonstrates that key
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FIG. 3. Effect of mechanical stress on the photoluminescence
contrast in optically detected magnetic resonance of an 14NV center.
Black: no stress, orange: σzz = 1 GPa. The curves show the depen-
dence of hyperfine transition frequencies as function of the axial
magnetic field Bz in the vicinity of the GSLAC. The thickness of each
curve is proportional to the photoluminescence contrast C [Eq. (13)];
maximal thickness corresponds to C = 1. (a) High-energy transitions
to |1e〉 spin states. (b) Low-energy transitions within the subspace of
|0e〉 and | − 1e〉.

features of the hyperfine structure of the spin levels of Fig. 2
can be mapped using this experimental technique. To generate
this plot, we calculated the five resonant transition frequencies
from the spectral gaps in Fig. 2. We plot these five curves
in Fig. 3(b), where the thickness of each curve is rescaled
by the corresponding photoluminescence contrast C. Hence,
the black curves in Fig. 3(b) reveal that for a given magnetic
field, at most two out of the five transitions are bright. The
bright transitions at three specific Bz values are also indicated
in Fig. 2. We calculated the photoluminescence contrast C

based on standard two-level Rabi dynamics in the rotating
wave approximation, assuming resonant driving frequency f ,
a magnetic pulse strength b = gμBBacτ/h = √

2/4, and the
ac magnetic field vector being aligned with the x axis. Note that
the above pulse strengthb corresponds to an exact electron-spin
π pulse away from the GSLAC.

The second stage of the experiment is to repeat this ODMR
spectroscopy in the presence of uniaxial z-directional strain,
σzz �= 0. The predicted photoluminescence contrast for the case
of σzz = 1 GPa is shown by the orange curves in Fig. 3(b).
Apparently, the spectrum shifts along the Bz axis. Measuring
this shift reveals the spin-stress coupling-strength parameter
g43. In fact, simple analytical expressions can be obtained for
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the locations of the ODMR resonances, including the effect
of the considered uniaxial strain. By projecting the 9 × 9
Hamiltonian H to the two-dimensional subspace of |0e, 0n〉
and | − 1e, 1n〉, and diagonalizing the resulting 2 × 2 Hamil-
tonian, we obtain the resonance frequencies corresponding to
the bright low-frequency transitions (blue → red transitions in
Fig. 2):

f± =
∣∣∣∣1

2

[
−A‖ + D

(
1 + γn

γe

)
− Q − γe�z

]

±
√

A2
⊥ + 1

4

[
A‖ − D

(
1 − γn

γe

)
− Q + γe�z

]2∣∣∣∣. (14)

For magnetic fields significantly below the GSLAC, e.g.,
around Bz = 1019 G in Fig. 3(b), the bright transition res-
onance frequency can be approximated by making a zeroth-
order expansion of f+ [see Eq. (14)] in A⊥, and substituting
Eq. (12c) to the result, yielding

f+ ≈ −A‖ + D − γeBz + g43σzz. (15)

This implies that g43 can be directly calculated from the
measured stress-induced shift of the resonance frequency at
a given magnetic field (e.g., Bz = 1019 G) via

g43 = f+(Bz, σzz) − f+(Bz, 0)

σzz

. (16)

The third and last stage of the experiment is to obtain
g41 by repeating this ODMR spectroscopy in the presence
of uniaxial stress along n = (1, 1, 0)/

√
2. In that case, the

stress tensor reads asσij = ninjσ , hence, the three components
σxx = σyy = σxy = σ/2 are nonzero. Because of the nonzero
off-diagonal component σxy , a nonzero effective magnetic
field component �y is present [see Eq. (12b)], seemingly
complicating the previous analysis. However, assuming that
our DFT predictions in Table I for the coupling-strength orders
of magnitude are correct, the effect of thisσxy-induced effective
transverse magnetic field component on the energy spectrum
can be neglected away from the anticrossing, e.g., at Bz = 1019
G. Therefore, in this situation the stress-induced shift of the
resonance frequency can be translated to the coupling-strength
parameter g41 via

g41 = f+(Bz, σ ) − f+(Bz, 0)

σ
. (17)

We note that these coupling-strength coefficients g41 and g43

can also be determined by utilizing the high-energy |1e, 1n〉
spin state at the GSLAC and the corresponding ∼6 GHz
ac magnetic field pulses. This is illustrated by Fig. 3(a),
where the photoluminescence contrast corresponding to the
|0e, 1n〉 → |1e, 1n〉 transition is shown in the absence (black)
and presence (orange) of z-directional mechanical stress. The
relation between the coupling-strength parameters and the shift
of the resonance frequency is the same as for the low-energy
transitions [see Eqs. (16) and (17)].

C. Measuring the transverse spin-stress parameters g25, g26

Here, we propose and quantitatively analyze a method for
measuring the transverse spin-stress coupling-strength coeffi-
cients g25, g26. Similarly to the method in the preceding sub-

section, this method also works in the vicinity of the GSLAC.
It is based on the experiment discussed and implemented in
Sec. IV of Ref. [45], where Larmor-precession spin dynamics
was used to precisely measure the magnetic-field component
perpendicular to the NV axis (see, e.g., their Fig. 3). Here, we
focus on how to measure the coupling strengths g25, g26 in
the case when the magnetic field is aligned with the NV axis.
Our method relies on the observation of Larmor-precession
spin dynamics, which is affected by stress via the spin-stress
interaction described by Eq. (4). The role of the transverse
magnetic field components Bx and By in the experiment of
Ref. [45] is played by the stress-induced transverse effective
magnetic field components �x and �y in our setup.

First, recall the experimental scheme of Ref. [45] for the
special case when Bz is tuned to the blue-red level crossing
in Fig. 2, Bz = Bc, denoted by a circle. The two states that
meet at the crossing are, to a good approximation, |0e, 1n〉 and
|χ〉 = 1√

1+α2 (α|0e, 0n〉 + | − 1e, 1n〉), where α = γeA⊥
Qγe−Dγn

≈
0.5. For the readout, it will prove important that the weight of
|χ〉 in the |0e〉 subspace is |〈0e, 0n|χ〉|2 ≈ 0.2, significantly
lower than 1. In the presence of a small transverse magnetic
field, the blue-red level crossing in Fig. 2 is split to an
anticrossing, due to a coupling Hamiltonian matrix element
between these states, which enters the two-level Hamiltonian
of |0e, 1n〉 and |χ〉 as

HL = hγe√
2(1 + α2)

(
0 Bx − iBy

Bx + iBy 0

)
. (18)

In this setup, the experiment starts with an optical pulse
that initializes the spin system in |ψ (0)〉 = |0e, 1n〉 at t = 0.
Because of the finite transverse magnetic field in Eq. (18),
this initial state is not an energy eigenstate, and therefore the
time evolution |ψ (t )〉 exhibits complete Larmor-precession
cycles between the two states |0e, 1n〉 and |χ〉. To observe this
Larmor precession, the photoluminescence contrast C(τ ) was
measured [45] as a function of the waiting time τ following the
initialization. This photoluminescence contrast C(τ ) reveals
the Larmor precession since the state |χ〉 is mostly outside
the |0e〉 subspace. The frequency of this Larmor precession is
derived from Eq. (18):

fL =
√

2

1 + α2
γe

√
B2

x + B2
y . (19)

Here, we suggest to adopt this scheme to characterize
the effective transverse magnetic field components �x and
�y defined in Eq. (12), and thereby measure the spin-stress
coupling-strength coefficients g25 and g26. For simplicity, we
make the following specifications. First, we take Bx = By = 0.
Second, for an arbitrary uniaxial stress σij = σninj , defined by
its direction n = (nx, ny, nz) and magnitude σ , we suggest to
tune Bz to the “virtual crossing point,” i.e., to a value Bz = B̃c,
where the energy eigenvalues of |0e, 1n〉 and |χ〉 would be
degenerate in the virtual situation when the transverse effective
magnetic field components are turned off, �x = �y = 0. That
is guaranteed for �z = Bc, which, together with Eq. (12c),
implies

B̃c = Bc + g41
(
n2

x + n2
y

) + g43n
2
z

γe

σ. (20)
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This simple expression reveals that this virtual crossing point
can be identified once the parameters g41 and g43 have been
measured, e.g., using the method of the preceding section.

At this virtual crossing point, the role of the transverse
effective magnetic fields �x and �y is completely analogous
to the role of Bx and By in Ref. [45]. Namely, they force
the spin system initialized in |0e, 1n〉 to exhibit complete
Larmor precessions between the states |0e, 1n〉 and |χ〉, with
the Larmor frequency [cf. Eq. (19)]

fL =
√

2

1 + α2
γe

√
�2

x + �2
y. (21)

From this, and using Eq. (12) for the effective magnetic fields,
we find

fL =

√√√√ g2
25
4 n4

⊥ + g2
26n

2
zn

2
⊥ + g25g26nxnz

(
3n2

y − n2
x

)
2(1 + α2)

|σ |,
(22)

with n⊥ =
√

n2
x + n2

y .
Our result (22) allows the identification of the coefficients

g25 and g26 by applying the uniaxial stress in different direc-
tions and then measuring the Larmor precession frequency.
For example, the absolute value of g25 can independently
be measured by applying the uniaxial stress in the direction
n = (1, 1, 0)/

√
2. In that case, Eq. (22) implies that this

coupling-strength parameter is deduced from the measured
Larmor frequency via

|g25| =
√

8(1 + α2)
fL

|σ | ≈ 3.17
fL

|σ | . (23)

Analogously, the absolute value of g26 can independently be
measured with the uniaxial stress applied in the direction n =
(
√

3, 1, 1)/
√

5; for that case, we find

|g26| =
√

10(1 + α2)

2

fL

|σ | ≈ 1.77
fL

|σ | . (24)

We note that this procedure only allows us to determine the
absolute values of the coupling-strength coefficients. Never-
theless, it is straightforward to generalize the above procedure
to determine the signs of the coefficients by utilizing a finite
transverse magnetic field. For example, following up on our
first example above, let us assume that we apply compressive
uniaxial strain σ < 0 along n = (1, 1, 0)/

√
2. If the sign of g25

is indeed negative, as indicated by our DFT results in Table I,
then the transverse effective magnetic field components read as
�x = 0 and �y = By − p|σ |, with p > 0. Hence, according
to Eq. (22), the Larmor precession is slowed down gradually
as a magnetic field component along the y axis is switched
on. On the other hand, if the sign of g25 is positive, then a
small y-directional magnetic field will speed up the Larmor
precession.

An important assumption behind our measurement scheme
is that the Larmor precessions at frequency fL are observable.
Note that if the applied stress is too low, then the Larmor
precession is too slow compared to its damping timescale
governed by the interaction with the neighboring C-13 nuclear
spins [45], and thereby the Larmor frequency cannot be
deduced from the experiment. Combining this consideration
with the experimental data of Ref. [45], we can estimate that

a stress of at least ∼0.5 GPa should be applied to make this
measurement scheme feasible. The estimation goes as follows.
In Fig. 3(d) of Ref. [45], Larmor precessions with fL � 0.4
MHz are resolved. From Eqs. (23) and (24), and the results
for g25 and g26 tabulated in Table I, we estimate that the
minimal stress required for observable Larmor precession is
0.58 GPa for the g25 measurement, and 0.27 GPa for the g26

measurement.

VI. DISCUSSION

A. Potential applications

Time-dependent mechanical deformation for resonant spin
control. Coherent spin control in NVs via ac mechanical defor-
mation has been demonstrated with ∼1 MHz Rabi frequency
for the magnetically forbidden | − 1e〉 ↔ |1e〉 transition [20].
Our results imply that the other two, magnetically allowed,
transitions, |0e〉 ↔ | ± 1e〉, can also be induced in a similar
fashion. This suggests that, in principle, the ac magnetic field
used routinely for spin control in NV-based experiments can
be substituted by ac mechanical driving. From the spin-strain
Hamiltonian Hε of Eq. (3), we estimate that an ac strain εxx

with an amplitude of 0.01 can provide mechanically induced
Rabi oscillations for the magnetically allowed transitions with
a Rabi frequency of ∼5 MHz.

Time-dependent electric fields for resonant spin control.
According to Eq. (2), an externally induced electric field
interacts with the NV spin, allowing for coherent electric
control of all three spin transitions of the NV. Electric control
of the magnetically forbidden transition has been demonstrated
in SiC [43], but that of the magnetically allowed transitions has
yet to be achieved. In Ref. [43], electrical Rabi frequencies of ∼
1 MHz were realized for the magnetically forbidden transition.
This Rabi frequency is proportional to the coupling-strength
parameter d⊥. Furthermore, from the dielectric strength of SiC
it was estimated that ∼60 MHz electrical Rabi frequencies
should be reachable, comparable to magnetic spin control
with millitesla driving strength [52,53]. Noting that the d⊥
parameter and the dielectric strength are similar for NV centers
in diamond, and the d ′

⊥ parameter is expected [27] to be of the
same order of magnitude as d⊥, we speculate that the electrical
Rabi frequencies for the magnetically allowed transitions in
diamond NV centers could also reach a few tens of MHz.

Electrically driven, mechanically assisted spin resonance
using piezoelectric elements. Our results regarding the spin-
strain coupling in C3v symmetric defects promote a new
way of using electric signals for coherent control, for all
three transitions between the spin-1 basis states. Dynamical
mechanical deformation can be created by ac electric fields
(voltages) via piezoelectric elements attached to the diamond
crystal, e.g., a ZnO layer. The functionality of such arrange-
ments has already been experimentally demonstrated using
interdigital transducers serving as transmitters and receivers
of surface acoustic waves of the diamond crystal [35,36]. The
magnitude of strain created by the ac electric field could further
be enhanced using mechanical cavity resonators [54] for the
surface acoustic waves. The mechanical waves, when tuned to
resonance with the defect spin transition frequency, can then
drive coherent spin Rabi oscillations. This working principle
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allows for devices where coherent control of the defect spins is
performed via electrically driven, mechanically assisted spin
resonance.

B. Open problems

Experimental characterization of the spin-strain and the
spin-electric parameters. As discussed above, the spin-strain
(spin-stress) coupling-strength parameters of Hε1 (Hσ1),
namely h25 and h26 (g25 and g26, or d and e, depending on
the representation), are yet to be characterized experimentally.
Similarly, the corresponding spin-electric coupling-strength
coefficient [27] d ′

⊥ in Eq. (2) is yet to be measured. We
emphasize the technological relevance of these parameters:
the terms they multiply in the Hamiltonian can induce magnet-
ically allowed spin transitions, i.e., of the |0e〉 ↔ | ± 1e〉 type;
therefore, for systems where these parameters are sufficiently
strong, ac electric or ac mechanical driving could substitute
the ac magnetic field that is routinely used in most coherent
spin-control experiments.

Quantitative description of mechanically and electrically
driven electron spin resonance. The static spin-strain Hamil-
tonian (3) and the DFT-based coupling-strength parameters in
Table I can be used to estimate the timescale (Rabi time) of spin
control for an ac mechanical drive with a given strain pattern.
However, it is known from the theory of spin-orbit-mediated
electrically driven spin resonance [42,55] that even if an
electric field does not modify the spin Zeeman splitting, it can
induce transition between spin states. Hence, it is expected
that an accurate description of mechanically or electrically
driven spin resonance for the NV, which probably involves
electronic spin-spin and spin-orbit interactions, requires a
careful treatment of dynamical effects.

Interaction of strain and electric fields with nuclear spins.
The coherence time of the nuclear spin of the N atom in the
NV exceeds that of the ground-state electronic spin, and can be
used as a long-lived quantum memory [56]. Furthermore, the
NV can interact with 13C nuclear spins located in its vicinity.
These highly coherent nuclear spins are heavily exploited
in NV-based quantum-control experiments [22–24,45,57,58],
which is a strong motivation to understand the interaction
of solid-state nuclear spins with electric and strain fields.
Important steps in this direction have already been taken
[59–64], but the experimental and theoretical characterization
of the spin-electric and spin-strain interactions for NV nuclear
spins is yet to be done.

We anticipate that the nature of the problem is qualitatively
different for (i) a spin- 1

2 nuclear spin, e.g., of a 15N or a 13C
atom, and (ii) a nuclear spin that is larger than 1

2 , e.g., of a 14N
atom. In case (i) the nuclear spin does not interact directly
with electric or strain fields [65]. However, these fields do
interact with the electronic spin, which can serve as a quantum
transducer that translates these fields to the nucleus via the
hyperfine interaction [50,57,60,61,63,66] (Knight field). In
case (ii), the nuclear spin has a nonzero electric quadrupole
moment, and therefore can interact directly with electric and
strain fields via the local electric-field gradient [61,65]. Then,
the direct interaction and the hyperfine-mediated interaction
will compete. In both cases (i) and (ii), the results of this work

can serve as a starting point to evaluate the hyperfine-mediated
contribution.

VII. CONCLUSIONS

We have established the spin-strain and spin-stress interac-
tion Hamiltonians for the NV ground state, and numerically
determined the six independent parameters of this Hamilto-
nian using density functional theory. Focusing on the new
Hamiltonian term Hε1 identified in this work, we proposed
an NV-based experimental setup where spin effects caused
by a static mechanical deformation can be observed, and
suggested coherent mechanical or electric spin control of
the the magnetically allowed spin transitions. All qualitative
considerations of this work should hold for the whole family
of defects with C3v symmetry and spin-1 electronic states.
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APPENDIX A: SYMMETRY ANALYSIS OF THE
SPIN-STRAIN HAMILTONIAN

In this Appendix, we describe two derivations of the
symmetry-allowed spin-strain Hamiltonian Hε of Eq. (3). The
first derivation is an elementary one, without reference to group
representation theory, whereas the second one builds upon
concepts of the latter. The two methods yield the same result
Eq. (3).

1. Elementary derivation

Our goal is to find the most general form of the Hamiltonian
describing the interaction between a homogeneous strain and
the ground-state spin (spin-1) of the NV. More precisely, we
aim at finding the most general form of the interaction that is
(i) allowed by the requirement of time-reversal symmetry, (ii)
allowed by the spatial symmetries (C3v) of the structure, (iii)
linear in the elements of the strain tensor ε.

The interaction Hamiltonian should be quadratic in the com-
ponents of the spin vector S = (Sx, Sy, Sz), as time-reversal
symmetry changes the sign of those, and the interaction
Hamiltonian should be invariant upon time reversal. Our S
is dimensionless, fulfilling S2 = 2.

Therefore, our starting point is the Hamiltonian

Hε =
∑

α,β,γ,δ∈{x,y,z}
hαβγ δSαSβεγ δ, (A1)
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where h is a four-dimensional matrix with real entries. Appar-
ently, h has 81 independent elements; this will now be reduced,
first without invoking any symmetries of the considered sys-
tem.

To this end, we exploit the fact the nine-element
set {SαSβ |α, β ∈ {x, y, z}} is overcomplete (linearly
dependent) in the six-dimensional vector space of
3 × 3 Hermitian time-reversal-invariant matrices. A
six-element basis of that vector space is provided by,
e.g., (1, 1

2 {Sx, Sy}, 1
2 {Sy, Sz}, 1

2 {Sz, Sx}, S2
z , S

2
x − S2

y ) ≡
(�0,�1, . . . ,�5). We will neglect the unit matrix �0

from now. Furthermore, we will refer to � as a map
(Sx, Sy, Sz) 	→ �(S) := (�1,�2, . . . ,�5).

A further simplification is allowed by the fact that the strain
tensor is symmetric. Therefore it can be thought of as a six-
dimensional column vector ε = (εxx, εyy, εzz, εyz, εzx, εxy )T .
We will consider ε as a function that maps the strain tensor to
a six-dimensional vector ε 	→ ε(ε).

Using these simplifications, we can express the most general
Hamiltonian as

Hε =
5∑

n=1

6∑
v=1

hnv�nεv, (A2)

where h is a 5 × 6 matrix with real entries, i.e., it is character-
ized by only 30 independent elements.

We will now further reduce this number using the spatial
symmetry of the NV. Its symmetries are the isometries in the
group C3v . Those are generated by a threefold rotation around
the z axis, R, and the reflection on the xz plane, M. These
isometries are represented on a position vector by the 3 × 3
matrices

R =

⎛
⎜⎝

cos 2π
3 − sin 2π

3 0

sin 2π
3 cos 2π

3 0

0 0 1

⎞
⎟⎠ (A3)

and

M =

⎛
⎜⎝

1 0 0

0 −1 0

0 0 1

⎞
⎟⎠, (A4)

respectively.
A point isometry transforming the structure also transforms

the associated physical quantities. For us, one of the relevant
quantities is the strain tensor, which is transformed as ε 	→
RεR−1 and ε 	→ MεM−1. The other relevant quantity is the
spin vector, which transforms as a pseudovector (or axial
vector). That is, the rotation is represented on the spin as
S 	→ RS, but the reflection is represented as S 	→ M ′S with

M ′ =

⎛
⎜⎝

−1 0 0

0 1 0

0 0 −1

⎞
⎟⎠. (A5)

We require that the Hamiltonian is invariant against the
transformations of the point group of the structure; formally,
that is written as

5∑
n=1

6∑
v=1

hnv�n(S)εv (ε) =
5∑

n=1

6∑
v=1

hnv�n(RS)εv (RεR−1)

(A6)

and

5∑
n=1

6∑
v=1

hnv�n(S)εv (ε) =
5∑

n=1

6∑
v=1

hnv�n(M ′S)εv (MεM−1).

(A7)

Both of these equations form a homogeneous linear set of
30 equations, with the 30 hnv coupling-strength coefficients
being the unknowns. Hence, these equations establish linear
relationships between the various hnv coefficients, that is, they
reduce the number of free parameters in the Hamiltonian.

These equations can be solved, e.g., symbolically us-
ing computer algebra. Inserting the solutions to Hε yields
our symmetry-allowed spin-strain interaction Hamiltonian of
Eq. (3).

2. Derivation based on group representation theory

The C3v symmetry group of the NV has three irreducible
representations (irreps): the trivial 1D irrep A1, the 1D irrep
A2, and the 2D irrep E. The quadratic spin-component com-
binations that transform according to the trivial A1 irrep are

f
(spin)
A1,1 = S2

x + S2
y , (A8)

f
(spin)
A1,2 = S2

z . (A9)

Analogously, the linear strain-component combinations trans-
forming as A1 are

f
(strain)
A1,1 = εxx + εyy, (A10)

f
(strain)
A1,2 = εzz. (A11)

We will refer to the number of these combinations as n(A1) =
2. There are no such combinations transforming according to
A2, i.e., n(A2) = 0. The quadratic spin-component combina-
tions forming 2D vectors, which transform according to the
2D irrep E, are

f
(spin)
E,1 =

(
S2

x − S2
y

−{Sx, Sy}
)

, (A12)

f
(spin)
E,2 =

({Sx, Sz}
{Sy, Sz}

)
. (A13)

Analogously, the linear strain-component combinations form-
ing 2D vectors, which transform according to E, are

f
(strain)
E,1 =

(
εxx − εyy

−2εxy

)
, (A14)

f
(strain)
E,2 =

(
εxz

εyz

)
. (A15)

These imply n(E) = 2.
The symmetry-allowed spin-strain Hamiltonian is an arbi-

trary linear combination of the scalar products of the above-
defined (1D and 2D) vectors that transform according to the
same irrep. Formally, this is written in a compact fashion
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as follows:

Hε =
∑

�∈irreps

n(�)∑
σ,τ=1

c�στ

(
f

(spin)
�σ f

(strain)
�τ

)
. (A16)

Here, the quantities c�στ are independent real coefficients
(coupling-strength parameters) that are not constrained by
symmetry, and can be determined from microscopic models
or experiments, as discussed in the main text. According to
the counts of the previous paragraph, the sum in Eq. (A16) has
eight terms, and therefore there are eight independent coupling-
strength coefficients. However, since a uniform energy shift
of the spin states in the Hamiltonian can be disregarded, and
f

(spin)
A1,1 and f

(spin)
A1,1 do add up to a constant due to S2

x + S2
y +

S2
z = 2, we can set cA1,1,1 = cA1,1,2 = 0 without the loss of

generality. This implies that there are six independent nonzero
coupling-strength parameters.

Direct evaluation of the terms in Eq. (A16) and comparison
with Eq. (3) allows to establish the relations between the
coupling-strength coefficients:

cA1,2,1 = h41, (A17a)

cA1,2,2 = h43, (A17b)

cE,1,1 = 1
4h15, (A17c)

cE,1,2 = − 1
2h16, (A17d)

cE,2,1 = − 1
4h25, (A17e)

cE,2,2 = 1
2h26. (A17f)

APPENDIX B: COMPUTING SPIN-STRAIN PARAMETERS
WITH DENSITY FUNCTIONAL THEORY

We determined the spin-strain coupling-strength parameters
using numerical DFT calculations. We applied DFT for elec-
tronic structure calculation combined with geometry optimiza-
tion, using the PBE functional [67] in the plane-wave-based
Vienna ab initio simulation package (VASP) [68–71]. The core
electrons were treated in the projector augmented-wave (PAW)
formalism [72]. The calculations were performed with 600-eV
plane-wave cutoff energy. The model of the NV in bulk dia-
mond was constructed using a 512-atom diamond simple cubic
supercell within the �-point approximation. We use a negative
sign convention for compressive strain. To model the structure
subject to mechanical strain, described by the strain tensor
ε, we deform the cubic supercell to a parallelepiped, whose
edge vectors are obtained by transforming the undeformed
edge vectors with the matrix 1 + ε in the cubic reference
frame, and allow the atomic positions to relax. For each strain
configuration, the elements of the 3 × 3 zero-field splitting
matrix D, defining the ground-state spin Hamiltonian via H =
ST · D · S, were calculated using the VASPimplementation by
Marsman with the PAW formalism [73].

We illustrate our methodology to obtain the six spin-strain
coupling-strength coefficients with the example of h16. To
determine h16, we deform the supercell using a strain tensor
whose only nonvanishing element is εyz, and obtain the D

matrix from the calculation. Due to Eq. (3), the chosen strain
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 (
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z)
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calculation
linear fit

FIG. 4. Strain dependence of the zero-field splitting matrix ele-
ment Dxy . Data points show the DFT results for the matrix element
Dxy , as a function of the strain component εxy , with all other strain
components set to zero. Solid line shows a linear fit, with a slope
of 9832 ± 9 MHz/strain, allowing to obtain the coupling-strength
parameter h16 via Eq. (B2).

configuration implies that the Hamiltonian has the form

H = 1

2
εyz ST ·

⎛
⎜⎝

0 h16 0

h16 0 h26

0 h26 0

⎞
⎟⎠S. (B1)

This, together with the above definition of the D matrix, yields

h16 = 2
∂Dxy

∂εyz

∣∣∣∣
ε=0

. (B2)

To be able to estimate the numerical error of our DFT calcula-
tions, we infer the derivative in Eq. (B2) using a sequence of
calculations with 11 equidistant values of εyz between −0.01
and 0.01. The resulting Dxy (εyz) data points are shown in
Fig. 4. From a linear fit, shown as the solid line in Fig. 4,
we infer the coupling-strength coefficient h16 via Eq. (B2) and
its standard deviation.

Similar procedures can be applied to determine the re-
maining five coupling-strength parameters, and the results
are shown in Table I, with the following remarks. (i) To
obtain the value of h41 and its error in Table I, we calculated
the corresponding results from the εxx dependence of the D

matrix, as well as from its εyy dependence, and averaged
these results. (ii) We used similar averaging in the case of h26

and h16, which we calculated from from the εxz dependence,
as well as from its εyz dependence (the latter is illustrated
in Fig. 4). (iii) We determined the values for h25 and h15

from the εxy dependence. In Table I, we also present the
spin-stress parameters (g41, etc.), which we determined from
the DFT-based spin-strain parameters using the conversion
procedure detailed in Appendix C.

Finally, we discuss a few observations regarding the va-
lidity of these DFT-based results. (i) To test convergence,
we performed calculations with 1000-eV cutoff energy. The
difference between the 600- and 1000-eV results is less than
0.6%. However, the generally used 370-eV cutoff energy in
diamond is insufficient for high strain calculations, producing
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nonlinear strain dependence. (ii) The 512-atom diamond su-
percell we used is sufficiently large for strain calculations since
the main contribution to the energy splittings is caused by the
strain-induced displacement of the nearest-neighbor carbon
atoms of the vacancy site. The strain-induced displacements
of the atoms further than the second-neighbor sites are less
then 0.001 Å in our calculations. (iii) We performed similar
calculations for the hh divacancy (PL1) in 4H-SiC, where our
calculated h41 = 5 GHz/strain coupling strength was in good
order-of-magnitude agreement with the experimental ODMR
shift of (2–4) GHz/strain generated by perpendicular strain
[74], further supporting our calculation methodology. (iv) Our
DFT calculations do not incorporate spin-orbit interaction; a
quantitative description of spin-orbit effects in the presence of
mechanical stress would be an important future extension. The
following simple estimate based on Ref. [75] suggests that the
spin-spin interaction taken into account in this work should
dominate the spin-orbit contribution to the zero-field splitting
matrix D. In the absence of strain, spin-orbit induces a second-
order perturbative energy renormalization hδD ∼ λ2/�E of
the zero-field splitting D, where λ is the characteristic fre-
quency representing the spin-orbit matrix element between
the ground-state triplet and a neighboring energy level, and
�E is the energy gap between the ground-state triplet and
the neighboring level. Taking [75] the nearest-neighbor level
(|1E〉), with energy gap � ∼ 400 meV, and λ/h ∼ 50 GHz,
we find δD/D ≈ 10−2.

APPENDIX C: CONVERTING SPIN-STRAIN
PARAMETERS TO SPIN-STRESS PARAMETERS

To calculate the spin-stress coupling-strength parameters
in Table I from the DFT-based spin-strain parameters, we
start from the stiffness tensor C of bulk diamond, and
take the following values [76] for its elements in the cubic
reference frame: C11 = 1076 GPa, C12 = 125 GPa, C44 =
576 GPa. First, we transform the stiffness tensor to the
NV frame; we denote the resulting 6 × 6 stiffness ma-
trix in the Voigt notation as C. To convert our spin-strain

Hamiltonian (3) to spin-stress Hamiltonian, we express the
strain components in Eq. (3) using stress components via
ε = C−1σ , where ε = (εxx, εyy, εzz, 2εyz, 2εzx, 2εxy ) and σ =
(σxx, σyy, σzz, σyz, σzx, σxy ) are now also in Voigt notation;
note the factor of 2 in front of the off-diagonal strain com-
ponents.

The inverted stiffness tensor in the NV frame reads as

C−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C−1
11 C−1

12 C−1
13 0 C−1

15 0

C−1
12 C−1

11 C−1
13 0 −C−1

15 0

C−1
13 C−1

13 C−1
33 0 0 0

0 0 0 C−1
44 0 C−1

46

C−1
15 −C−1

15 0 0 C−1
44 0

0 0 0 C−1
46 0 C−1

66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C1)
yielding the following following expressions for the spin-stress
parameters:

g41 = h41
(
C−1

11 + C−1
12

) + h43C
−1
13 , (C2a)

g43 = 2h41C
−1
13 + h43C

−1
33 , (C2b)

g26 = h26
1

2
C−1

44 − h25C
−1
15 , (C2c)

g25 = h25
(
C−1

11 − C−1
12

) − h26C
−1
15 , (C2d)

g16 = h16
1

2
C−1

44 − h15C
−1
15 , (C2e)

g15 = h15
(
C−1

11 − C−1
12

) − h16C
−1
15 . (C2f)

These relations, together with the numerical values of the
inverse stiffness matrix elements,

C−1
11 = 86 × 10−51/GPa, C−1

33 = 83 × 10−51/GPa,

C−1
44 = 198 × 10−51/GPa, C−1

66 = 186 × 10−51/GPa,

C−1
12 = −7 × 10−51/GPa, C−1

13 = −4 × 10−51/GPa,

C−1
15 = 9 × 10−51/GPa, C−1

46 = −17 × 10−51/GPa,

are used to obtain the g41, etc., values in Table I.
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