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By using variational Monte Carlo and auxiliary-field quantum Monte Carlo methods, we perform an accurate
finite-size scaling of the s-wave superconducting order parameter and the pairing correlations for the negative-U
Hubbard model at zero temperature in the square lattice. We show that the twist-averaged boundary conditions
(TABCs) are extremely important to control finite-size effects and to achieve smooth and accurate extrapolations to
the thermodynamic limit. We also show that TABCs are much more efficient in the grand-canonical ensemble rather
than in the standard canonical ensemble with fixed number of electrons. The superconducting order parameter as
a function of the doping is presented for several values of |U |/t and is found to be significantly smaller than the
mean-field BCS estimate already for moderate couplings. This reduction is understood by a variational ansatz
able to describe the low-energy behavior of the superconducting phase by means of a suitably chosen Jastrow
factor including long-range density-density correlations.
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I. INTRODUCTION

In recent years, the numerical simulations have achieved a
constantly increasing impact in theoretical and experimental
condensed matter physics, because, on one hand it allows
reliable solutions of correlated models which cannot be solved
analytically [1] and, on the other hand, the quest of accurate
benchmark results is now becoming of fundamental impor-
tance. From the experimental point of view, the ultracold
atom systems have a great flexibility to represent correlated
fermionic systems including the Hubbard-like lattice models
with either repulsive or attractive interactions. Indeed the emer-
gent collective properties of quantum many-body systems,
such as Bose-Einstein condensation (BEC) and superconduc-
tivity, can be now probed directly by ultracold atoms trapped
in optical lattices [2–5]. These fermionic systems can be
represented efficiently by the Hubbard-like lattice models with
attractive interaction. Therefore, theoretical and numerical
studies on lattice fermions with attractive interactions can
provide very useful information and insight for the ultracold
atom systems [6].

The negative U two-dimensional (2D) Hubbard model is
a very simple model of fermions subject to an attractive
interaction on a lattice. It is clearly relevant for studying the
standard mechanism of superconductivity within the Bardeen-
Cooper-Schrieffer (BCS) theory [7–10]. At finite tempera-
tures, the phase diagram of the model has been investigated
by quantum Monte Carlo (QMC) [11–15] as well as by
dynamical-mean-field theory calculations [16,17]. Normal
(nonsuperconducting) state properties have been studied via
finite-temperature Monte Carlo calculations [18] by focusing
mainly on the BCS-BEC crossover, and recently [19] the
zero temperature quantum critical point between a metal and
a superconductor was also satisfactorily described, thanks
to large-scale simulations, nowadays possible with modern

supercomputers and the excellent algorithmic performances
of QMC. At zero temperature, ground-state properties of the
model have been also studied by variational Monte Carlo
(VMC) calculations as a function of the interaction strength
for several electron fillings [20,21]. Recently, an exact QMC
calculation of the superconducting gap in an attractive Fermi
gas in two dimensions has been reported [6].

As is well known, the main purpose in the numerical
simulation is to reach a controlled and accurate thermodynamic
limit of a model system with a sequence of calculations with
increasing number of electrons. This task may be particularly
difficult, especially in the weak-coupling (|U |/t � 8) regime,
because in this limit the location of the Fermi surface plays
a crucial role. Indeed, the results obtained with conventional
periodic-boundary conditions (PBC) may significantly depend
on the particular location of the allowed finite-size momenta,
resulting in very difficult, if not impossible, extrapolations to
the thermodynamic limit. The drawback of PBC is well known
and represents an important limitation of most numerical
techniques dealing with fermions. Indeed, an early projector
Monte Carlo study has shown strong finite-size effects on
superconducting pairing correlations [22]. Obviously, when
the Fermi surface is particularly simple such as the 2D-half-
filled Hubbard model with its perfectly nested Fermi surface,
this problem is less severe but, at weak coupling, even this
particular simple case may deserve some attention.

To control the finite size effects discussed above, twist-
averaged boundary conditions (TABCs) have been introduced
for Monte Carlo simulations on lattice models [23–29] and
in continuum systems [30,31]. Within TABCs, physical quan-
tities are estimated by averaging them over several twisted-
boundary conditions [32], rather than limiting the calculation
to a single twist, such as PBC. In this way, TABCs can
substantially reduce finite-size effects [25–28,30], at the
expense of performing several independent calculations with
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several twists. In QMC, this overhead is not even relevant
because, at given computational resources, the statistical errors
of the twisted-averaged quantities do not grow with the number
NTABC of twists. Thus, this method is particularly appealing
within QMC and, quite recently, is becoming widely used for
the study of strongly correlated systems. On the other hand,
in a recent work [33], by using finite-temperature determinant
QMC without TABCs, the convergence of physical quantities
to the thermodynamic limit have been examined for the canon-
ical ensemble (CE) and the grand-canonical ensemble (GCE).
It has been shown that GCE provides a convergence faster
than CE. There are several reasons why this should happen.
The simplest one is that only by allowing the fluctuations
of the particle number one can ensure that the U = 0 Gibbs
free energy coincides with the one in the thermodynamic
limit [23]. On the other hand, at zero temperature this technique
is equivalent to occupy only the electronic states within the
given Fermi surface, and this may explain why it is so important
for fermionic systems, at least in the weakly correlated regime.

Since the size effects are certainly more pronounced at zero
temperature and weak coupling, it is important to explore and
benchmark systematically more efficient ways to reduce the
finite-size error to assess with some confidence the behavior
of the superconducting order parameter—nonzero in 2D only
at zero temperature—in the BCS regime.

In this paper, we examine finite-size effects on the s-wave
superconducting order parameter and pairing correlations
in the 2D negative-U Hubbard model by using VMC and
AFQMC methods at zero temperature. The first method can be
applied without restrictions to any model, whereas the second
method provides numerically exact ground-state properties
in models, such as the negative-U Hubbard considered here,
not affected by the so-called sign problem. We introduce a
combination of TABCs with GCE sampling technique at zero
temperature and show that the finite-size effects are more
efficiently reduced in GCE than in CE.

The rest of this paper is organized as follows. In Sec. II, we
describe the negative-U Hubbard model, VMC and AFQMC
methods, and TABCs on a 2D square lattice. In Sec. III, we
present numerical results of the s-wave order parameter and
the pairing correlation functions for the entire doping range at
several values of the interaction strength. In Sec. IV, we draw
our conclusions and discuss the implications of the present
method for future works.

II. MODEL AND METHOD

A. Negative-U Hubbard model

The Hamiltonian of the negative-U Hubbard model is given
as [34]

H = HK + HV (1)

with

HK = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) − μ

∑
iσ

niσ , (2)

HV = U
∑

i

ni↑ni↓, (3)

where t is the hopping integral and 〈i, j 〉 indicate nearest-
neighbors on a square lattice with N = L2 sites with L being
the linear size of the cluster, c

†
iσ (ciσ ) creates (destroys) an

electron with spin σ (=↑,↓) on the site i, and niσ = c
†
iσ ciσ .

U < 0 is the Hubbard interaction term which, in this paper,
is considered to be negative and μ is the chemical potential.
Hereafter, we set t and the lattice constant, both equal to one.

B. Variational Monte Carlo

To study the negative-U Hubbard Model defined in Eq. (1),
we employ the VMC method. As a variational many-body wave
function for VMC, we use a Jastrow-Slater wave function of
the form

|�〉 = J |�T〉, (4)

where J is the density-density Jastrow correlator defined by

J = exp

⎛
⎝−1

2

∑
i,j

vi,j ninj

⎞
⎠, (5)

with ni = ∑
σ niσ and vi,j being the variational parameters

which are assumed to depend only on the distance between
the sites i and j . It is particularly important to consider in
this study a Jastrow factor where the pseudopotential vi,j is
nonzero even when the two lattice points are at very large
distance d, because in a superconductor the pseudopotential
should decay as � 1/d [35] to define a physical wave function
with correct charge fluctuations at small momenta. Moreover,
when the fluctuations of the number of particles are considered,
a fugacity term exp(−f

∑
i

ni ) has to be added to Eq. (5).

At half-filling, the fugacity is determined by the condition
that Eq. (5) remains unchanged (up to a constant) for the
particle-hole symmetry:

ciσ → (−1)xi+yi c
†
i−σ , (6)

where xi, yi are the lattice coordinates of the site i. This implies
that f = 1

N

∑
i,j vi,j after a straightforward calculation.

The antisymmetric part of the wave function, |�T〉, is
obtained from the ground state of a mean-field (MF) Hamil-
tonian HMF that contains the electron hopping, chemical
potential, and singlet s-wave pairing terms:

HMF = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) − μBCS

∑
iσ

niσ

+�0

∑
i

(c†i↑c
†
i↓ + H.c.), (7)

where μBCS, and �0 are variational parameters. All the
variational parameters vi,j , μBCS, and �0 are optimized via
stochastic-reconfiguration technique by minimizing the varia-
tional expectation value of the energy [36].

To do the Monte Carlo integration, configurations, where
electrons have a definite position and spin quantization axis
Sz

i = ±1/2, are sampled through Markov chains and proposed
moves are accepted or rejected with the Metropolis algorithm.
In particular, it is possible to consider the moves (hoppings)
defined by the Hamiltonian of the system of interest. With this
limitation, the VMC conserves the total number of particles
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and the total projection Sz
tot = ∑

i S
z
i = 0 of the spin in the

chosen quantization axis. Thus, these kind of projections
are implicitly assumed in Eq. (4). In this paper, we have
also considered moves that change the number of particles
(remaining in the Sz

tot = 0 subspace). With this in mind, one can
extend the sampling from CE to GCE by enlarging the Hilbert
space, where the former consists of local moves conserving
the particle number while the latter includes moves allowing
fluctuations of the particle number.

C. Auxiliary-field quantum Monte Carlo

To test the relevance of the correlated ansatz in Eq. (1)
for VMC, we also employ the AFQMC method. AFQMC is
based on the idea that the imaginary-time propagation of a trial
wave function |�T〉 with a long-enough projection time can
project out the exact ground-state wave function |�0〉, provided
that the trial wave function is not orthogonal to the exact
ground-state wave function, i.e., 〈�T|�0〉 	= 0 [37]. AFQMC
suffers from the negative-sign problem for U > 0 if the
particle-hole symmetry is broken. However, for the case of the
negative-U Hubbard model, there is no sign problem whenever
the number of up-spin particles equals the one of down-spin
particles [38].

We define a pseudopartition function by [38]

Z = 〈�T|e−βH|�T〉 = 〈�T|(e−�τH)2T |�T〉, (8)

where β is the projection time and is discretized into 2T time
slices, i.e., �τ = β

2T
in the right-hand side of the above equa-

tion. Then the ground-state expectation value of an operator O
can be written as

〈�0|O|�0〉
〈�0|�0〉 = lim

T →∞
〈�T|(e−�τH)TO(e−�τH)T |�T〉

Z . (9)

Since the interaction part of the Hamiltonian HV consists
of a two-body term and does not commute with the kinetic
part HK , the imaginary-time propagator e−�τH requires the
following manipulation. First, to factorize the Hamiltonian into
the interaction and kinetic parts in the exponential, we use the
symmetric Trotter-Suzuki decomposition [39,40]

e−�τH = e− �τ
2 HKe−�τHV e− �τ

2 HK + O(�τ 3), (10)

where O(�τ 3) is the systematic error due to the time dis-
cretization. Since there are 2T number of slices, the er-
rors are accumulated and the resulting systematic error is
O(�τ 2). We set the projection time to be β = 3L with a fixed
imaginary-time discretization �τ = 0.1. It has been shown
that �τ = 0.1 is small enough to accurately determine the
ground-state phase diagram of the honeycomb-lattice Hubbard
model in the weak-coupling regime [41]. Then, we write the
interaction term as a superposition of one-body propagators by
means of the well-established Hubbard-Stratonovich transfor-
mation [42,43]. Hirsch pointed out that since the occupation
numbers are only 0 or 1 for fermions, one can introduce

Ising-like discrete fields, si = ±1 [44], such that

∏
i

e�τ |U |ni,↑ni,↓

=
∏

i

1

2
e

�τ |U |
2 (ni↑+ni↓−1)

∑
si=±1

esiγ (ni↑+ni↓−1), (11)

where cosh γ = e
�τ |U |

2 . The summation over the auxiliary fields
{si} is performed by the Monte Carlo sampling. For AFQMC,
the sampling is done via Markov chains based on local field-flip
sequential updates.

When �0 = 0, the trial wave function |�T〉 is constructed
by filling the lowest-lying orbitals for a fixed particle number
and therefore the sampling is done in CE. When �0 	= 0, the
sampling is automatically done in GCE, and the desired particle
number is obtained by tuning the chemical potential μ. To
determine the chemical potential for a desired particle number,
we use the Newton-Raphson method, where the average
particle number and its derivative with respect to the chemical
potential (∝ fluctuation of the particle number) are calculated
stochastically by using several AFQMC samplings, a number
large enough to guarantee a negligible statistical error (less than
.1% on the particle number). The procedure is computationally
feasible because the convergence of the chemical potential is
achieved within a few Newton-Raphson iterations (typically
four iterations are enough). In AFQMC, when using a single
twist (and no TABCs), the trial wave function |�T〉 is the
free electron ground state of HK, satisfying the closed-shell
condition to preserve all the symmetries of the Hamiltonian.
On the other hand, for the GCE calculations at finite doping we
have used trial wave functions obtained by VMC optimization
of the bare chemical potential μBCS and a small s-wave pairing
[∼ O(10−2t )], which allows particle fluctuations within CGE.

D. Twist-averaged boundary conditions

In the case of weakly correlated systems, size effects are
most pronounced and calculations of observables with a single
boundary condition such as PBC or anti-periodic-boundary
condition (APBC) may have serious difficulties in determining
the correct thermodynamic limit. To mimic the Brillouin zone
of the thermodynamic limit, TABCs have been proposed and
indeed it has been shown that TABCs eliminate one-body error
very successfully [26,27,30].

On a lattice, by explicitly indicating the coordinates of
the site in the creation operators, i.e., c

†
iσ → c

†
Ri σ

, where
Ri = (xi, yi ) denotes the coordinates of the site i in the lattice,
twisted-boundary conditions correspond to impose [32]:

c
†
Ri+Lxσ

= eiθσ
x c

†
Ri σ

,

c
†
Ri+Lyσ

= eiθσ
y c

†
Ri σ

,
(12)

where Lx = (L, 0) and Ly = (0, L) are the vectors that define
the periodicity of the cluster; θσ

x and θσ
y are two phases

in the interval (−π, π ) determining the twists along x and
y directions, respectively. The number of sites is given by
N = L2. To preserve time-reversal invariance of the BCS pairs,
we imposed that θ↑ = −θ↓ in both directions.
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FIG. 1. s-wave variational parameter �0 as a function of n at
U = −2. Mean-field calculations are performed on L = 12 and L =
384 clusters, and VMC calculations are done in GCE without Jastrow
correlator on L = 12 with PBC and TABCs. PBC-PBC indicates PBC
in both x and y directions, and w/o stands for without. The error bars
in the VMC results are smaller than the symbol sizes.

The expectation value of the operatorO in TABCs is defined
by

〈O〉 = 1

NTABC

∑
θ

〈�θ |Oθ |�θ 〉
〈�θ |�θ 〉 , (13)

where θ = (θσ
x , θσ

y ), Oθ is the operator corresponding to O
under the boundary condition Eq. (12), NTABC is the number of
twist angles in the whole Brillouin zone, and |�θ 〉 is the wave
function |�〉 for VMC or |�0〉 for AFQMC, constructed by
imposing the twisted-boundary conditions defined in Eq. (12)
to the trial wave function |�T〉 as well as to the one-body part
of the Hamiltonian. Note, however, that all the wave functions
with different θ share the same variational parameters. To

FIG. 2. s-wave variational parameter �0 as a function of n at U =
−2 calculated by VMC. The system size and boundary conditions
used are indicated in the figure. Here, GTABC represents the grand-
canonical twist-averaged boundary conditions, TABC the canonical
twist-averaged boundary conditions, PBC-APBC stands for PBC in
one direction and APBC in the other one, whereas PBC-PBC indicates
PBC in both directions. The error bars are smaller than the symbol
sizes.

FIG. 3. s-wave variational parameter �0 as a function of n at
U = −2. The results for mean-field calculations on L = 384 and
VMC on L = 12 with and without Jastrow correlator in GCE with
TABCs are shown. The error bars in the VMC results are smaller than
the symbol sizes.

perform TABCs, we typically take NTABC = 1088 points in
the Brillouin zone.

III. RESULTS

A. Size effects in mean-field approximation

Before investigating the finite-size effects in correlated sys-
tems, it is instructive to study the finite-size effects within the
single-particle theory. For this purpose, we treat the negative-U
Hubbard model in Eq. (1) within the self-consistent mean-field
approximation by decoupling the interaction term into the
s-wave pairing terms.

Figure 1 shows the s-wave superconducting order parameter
�0 as a function of electron density n (n = 1 corresponds to the
half-filling) within the mean-field approximation at U = −2
for L = 12 and L = 384. We have confirmed that the order
parameter does not depend on the system size for L ≥ 384,
implying that the results for L = 384 can be considered very

FIG. 4. Pairing correlations φ2 as a function of n at U = −2
calculated by VMC. The system size and boundary conditions used
are indicated in the figure. The notations are the same as those in
Fig. 2.
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FIG. 5. Finite-size-scaling analyses of the pairing correlation φ2(L) for (a) U = −2, (b) U = −3, and (c) U = −4 by VMC at half-filling
with different boundary conditions. The solid lines are fits to the GTABC data. The extrapolated values to the thermodynamic limit limL→∞ φ2(L)
are indicated at 1/L = 0 for each panel and correspond to 0.01994(4) for U = −2, 0.0497(4) for U = −3, and 0.0758(5) for U = −4. The
notations are the same as in Fig. 2.

close to the thermodynamic limit. On the other hand, significant
size effects, namely the oscillatory dependence on n, are
observed for L = 12.

To test the accuracy of our VMC calculation, we have
reproduced the above results by setting the Jastrow correlator
J in Eq. (4) to be unity, i.e., vi,j = 0. The VMC calculations
are performed for L = 12, using a single twist or 32 × 32
twist angles in the whole Brillouin zone. Notice that the latter
case corresponds, within a mean-field approach, to a single
calculation with L = 384 and PBC. The results obtained by
VMC in GCE without Jastrow part are indeed in perfect
agreement with those obtained independently by the mean-
field calculation.

B. s-wave variational parameter

The mean-field results do not take into account the cor-
relations between the electrons. The accuracy for treating
the electron correlations can be improved by including the
Jastrow factor in Eq. (4). Figure 2 shows the superconducting
variational parameter �0 as a function of electron density n

within VMC for L = 12 and L = 16 with different boundary
conditions and different ensembles. For a fixed system size
of L = 12, the results with a single boundary condition
show oscillatory dependencies on n, similarly to the ones
obtained within the mean-field approximation for L = 12.
With TABCs in both ensembles, the oscillatory dependencies

are significantly reduced. By further increasing the system
size to L = 16, a sizable decrease of �0 is observed in CE
especially for the low-density regime, while the change in
GCE is almost negligible, indicating that the GCE shows much
smaller size effects.

Having confirmed the significant reduction of the finite-size
effects, we show in Fig. 3 how the Jastrow correlator affects
the magnitude of the optimal variational parameter. By using
the same system size of L = 12 with the same number of twist
angles, the Jastrow correlator reduces the magnitude of the s-
wave variational parameter by more than a factor two for n = 1.
Note that this systematic comparison of the variational wave
function with and without the Jastrow correlator for the entire
doping range has been made possible only with GTABCs,
because the results with a single boundary condition exhibit
oscillatory behaviors both in the mean-field approximation and
VMC.

C. Pairing correlation function

The finite order or variational parameters observed in the
mean-field approximation or the VMC for finite-size systems
are due to the wave function ansatz that explicitly breaks the
U(1) symmetry. To compare the VMC results with the ones
of the numerically exact AFQMC, it is necessary to study the
off-diagonal long-range order by computing superconducting
correlation functions. To this purpose, we consider the s-wave

FIG. 6. Finite-size-scaling analyses of the pairing correlation φ2(L) for (a) U = −2, (b) U = −3, and (c) U = −4 by VMC at quarter-filling
with different boundary conditions. The solid lines are fits to the GTABC data. The extrapolated values to the thermodynamic limit limL→∞ φ2(L)
are indicated at 1/L = 0 for each panel and correspond to 0.00095(25) for U = −2, 0.0143(1) for U = −3, and 0.0378(4) for U = −4. The
notations are the same as those in Fig. 2.
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FIG. 7. Pairing correlation φ2 as a function of n at U = −2 by
AFQMC and VMC. The system size and boundary conditions are
indicated in the figure. The notations are the same as in Fig. 2.

pairing correlation function

φ2(L) = 1

2N

∑
i

〈�†
i �i+j + H.c.〉, (14)

where �
†
i = c

†
i↑c

†
i↓ and i and i + j are sites at the maximum

distance allowed by the boundary conditions of the cluster.
Figure 4 shows the calculated pairing correlation functions

with VMC for various boundary conditions. As in the case
of the variational parameter discussed in the previous section,
strong finite-size effects are observed for L = 12 with a single
boundary condition. By increasing the system size to L =
16, TABCs with CE reduce the oscillatory dependence as a
function of n, but only with GCE the size effects become almost
negligible within the available cluster sizes.

Careful finite-size-scaling analyses for the pairing corre-
lation functions are done for U = −2,−3, and −4 at half-
filling and at quarter-filling in Figs. 5 and 6, respectively.
We observe that, even at half-filling, it is almost impossible
to extrapolate the pairing correlations with a single twist
since this approximation changes behavior as the system size
increases, especially when the value of the |U | is small. Instead,
it is clearly evident that the TABCs with GCE represents
the best method to deal with finite size effects, also much

better than TABCs within CE. In particular, at quarter-filling,
severe system-size dependencies of the correlation functions
are observed, implying that the finite-size scaling with a single
twist is almost impossible.

Figure 7 shows the pairing correlations obtained with
AFQMC forL = 8 andL = 12 as well as VMC in GCE onL =
12. As in the case of VMC, the PBC results show significant
size effects that are reduced significantly by GTABCs also for
AFQMC. Close to half-filling, within AFQMC, the value of
φ2 becomes larger than the corresponding one at half-filling, a
behavior qualitatively different from the one observed within
VMC. This effect has been reported in the early QMC study of
the negative-U Hubbard model [11], and can be attributed to
the spin-flop transition in the strong-coupling limit, where the
model at small doping can be mapped to the Heisenberg model
in presence of a small magnetic field (see also Sec. III D). In
this case, as soon a nonzero magnetic field is present the order
parameter “flops” in the xy plane.

Despite GTABCs, visible size effects remain in Fig. 7 for the
AFQMC case, and we have therefore focused on a few filling
values, that we have systematically studied as a function of
the system size. We show the finite-size scaling of the pairing
correlations at half-filling and at quarter-filling calculated by
AFQMC in Figs. 8 and 9, respectively. As expected from the
previous VMC study, also in the case of AFQMC calculations,
the TABCs with GCE allow a finite size scaling much better
than the one with a single boundary condition. At half-filling,
the values of φ2 extrapolated to the thermodynamic limit are
therefore computed with high accuracy, as shown in Fig. 8.

At quarter-filling, the situation is even worse for the single
twist approach, and severe system-size dependencies of the
correlation functions prevent a systematic extrapolation to the
thermodynamic limit. Fortunately, this remains possible within
TABC approach and controlled extrapolations can be done
also for AFQMC calculations. The thermodynamic values of
superconducting correlations are therefore computed with high
accuracy, as shown in Fig. 9.

D. Attractive-repulsive mapping and order parameters

The negative-U Hubbard model can be mapped to
the positive-U Hubbard model with the particle-hole

FIG. 8. Finite-size-scaling analyses of the pairing correlation φ2(L) for (a) U = −2, (b) U = −3, and (c) U = −4 by AFQMC at half-filling
with different boundary conditions. The solid lines are the fit to the TABC data. The TABC extrapolated values to the thermodynamic limit
limL→∞ φ2(L) are indicated at 1/L = 0 for each panel and correspond to 0.0098(3) for U = −2, 0.0222(6) for U = −3, and 0.0368(2) for
U = −4. The notations are the same as those in Fig. 2.
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FIG. 9. Finite-size-scaling analyses of the pairing correlation φ2(L) for (a) U = −2, (b) U = −3, and (c) U = −4 by AFQMC at quarter-
filling with different boundary conditions. The solid lines are the fit to the GTABC data. The GTABC extrapolated values to the thermodynamic
limit limL→∞ φ2(L) are indicated at 1/L = 0 for each panel and correspond to 0.0009(3) for U = −2, 0.0088(1) for U = −3, and 0.0266(2)
for U = −4. The notations are the same as those in Fig. 2.

transformation [45]:

c̃i↑ := ci↑, (15)

c̃i↓ := (−1)xi+yi c
†
i↓. (16)

This mapping allows us to compare the results of the pair-
ing correlation function φ2(L) with those of the transverse
spin-spin correlation function in the positive-U Hubbard
model. Indeed, in terms of the newly defined operators c̃iσ ,
c̃
†
iσ , and ñiσ = c̃

†
iσ c̃iσ , the Hamiltonian changes, up to a

constant, to

H = −t
∑

〈i,j〉,σ
(c̃†iσ c̃jσ + H.c.) + |U |

∑
i

ñi↑ñi↓

−
∑

i

[(μ − U )ñi↑ − μñi↓], (17)

TABLE I. Comparison of the s-wave superconducting (antiferro-
magnetic) order parameter M0 defined in Eq. (19) for the negative
(positive)-U Hubbard model at half-filling (n = 1). For the VMC

case, we have not included the factor
√

3
2 , see discussion in the

conclusions. The number in each parenthesis in this paper indicates
the uncertainty due to the extrapolation to the thermodynamic limit.
The AFQMC simulations in Ref. [46] are performed with the
modified-boundary conditions, while in Refs. [1] and [28] with the
TABCs method. DMET stands for density-matrix-embedding theory,
CDMET for cluster DMET, DCA-DMET for dynamical-cluster-
approximation DMET, and MF for the standard BCS mean-field
theory.

n = 1
|U |/t 2 3 4

MF 0.1881 0.2830 0.3453
VMC (this paper) 0.1412(1) 0.2230(6) 0.2752(6)
AFQMC (this paper) 0.122(1) 0.183(2) 0.2347(4)
AFQMC [46] 0.120(5) – –
AFQMC [28] 0.119(4) – 0.236(1)
DMET [1] 0.133(5) – 0.252(9)
CDMET [47] 0.115(2) – 0.226(3)
DCA-DMET [47] 0.120(2) – 0.227(2)

whereas φ2(L) can be written as the transverse spin-spin
correlation function:

M2
xy (L) = 1

2N

∑
i

(−1)xj +yj 〈S+
i S−

i+j + H.c.〉

= 1

N

∑
i

(−1)xj +yj
〈
Sx

i Sx
i+j + S

y

i S
y

i+j

〉
, (18)

where S+
i = c̃

†
i↑c̃i↓, S−

i = (S+
i )

†
, Sx

i = (S+
i + S−

i )/2, and
S

y

i = (S+
i − S−

i )/2i. Similarly, the charge-charge correlations
in the negative-U Hubbard model can be mapped to the longitu-
dinal spin-spin correlations in the positive-U Hubbard model.
In the present study, however, the charge-charge correlations
are not considered as they will not dominate over the pairing
correlations for large distances away from the half-filling.

Since the negative-U Hubbard model with μ = U/2 (the
half-filled case) corresponds to the positive-U Hubbard model
with zero magnetic field, the SU(2) symmetric staggered
magnetization M0 in the thermodynamic limit can be estimated
from Mxy (L) through the relation

M0 =
√

3

2
lim

L→∞
M2

xy (L), (19)

where the factor 3/2 within the square root is included to take
into account the contribution from the longitudinal spin-spin
correlation which is not present in M2

xy (L). The estimated
values of M0 are reported in Table I. For |U | = 2 and 4,
these values are in agreement with a recent study [28] and,
for |U | = 2, also with a previous work [46] by one of us.

TABLE II. Comparison of the s-wave superconducting order
parameter �s defined in Eq. (20) for the negative-U Hubbard
model at quarter-filling (n = 0.5). The number in each parenthesis
in this paper indicates the uncertainty due to the extrapolation to the
thermodynamic limit.

n = 0.5
|U |/t 2 3 4

VMC (this paper) 0.031(4) 0.1196(6) 0.194(1)
AFQMC (this paper) 0.030(4) 0.094(1) 0.163(1)
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TABLE III. Comparison of the ground-state energies for the negative (positive)-U Hubbard model at half-filling (n = 1). The number in
each parenthesis in this paper indicates the uncertainty due to the extrapolation to the thermodynamic limit.

n = 1

|U |/t 2 3 4

VMC (this paper) −2.16848(1) −2.49007(1) −2.84769(5)
AFQMC (this paper) −2.1755(3) −2.5014(3) −2.86016(9)
AFQMC [46] −2.175469(92) −2.501412(52) –
AFQMC [28] −2.1760(2) – −2.8603(2)
AFQMC [1] −2.1763(2) – −2.8603(2)
DMET [1] −2.1764(3) – −2.8604(3)
CDMET [47] −2.1756(3) – −2.8600(1)
DCA-DMET [47] −2.1755(2) – −2.8600(2)

At quarter-filling, the CDW order disappears and we are left
to study only the s-wave order parameter defined as

�s =
√

lim
L→∞

φ2(L). (20)

The estimated values of �s from the extrapolated values of
φ2(L) are reported in Table II.

To test the accuracy of the variational wave function in
the thermodynamic limit, we have also compared the VMC
estimates of the ground-state energies with the AFQMC ones
in Tables III and IV at half-filling and at quarter-filling,
respectively. The energies obtained via AFQMC in the present
study are in agreement with the exact energies of previous
works. It is worth mentioning that VMC energies are providing
quite good upper bounds to the exact energies, especially in the
weak-coupling regime.

IV. CONCLUSIONS AND DISCUSSIONS

To conclude, finite-size effects on the s-wave order parame-
ter and pairing correlation functions have been studied in detail
for the negative-U Hubbard model with VMC and AFQMC
methods. For both methods, GTABCs reduce systematically
the finite size effects and provide smooth extrapolation to
the thermodynamic limit. This has enabled us to obtain well-
converged results on energy and order parameter for several
values of U/t and doping, and to study very efficiently the
physical properties in the thermodynamic limits of our Jastrow
correlated wave function as a function of doping. Indeed, we
have shown that our variational wave function is not only
qualitatively correct, but also quantitatively, as the magnitude
of the s-wave variational parameter is significantly reduced in

TABLE IV. Comparison of the ground-state energies for the
negative-U Hubbard model at quarter-filling (n = 0.5). The number
in each parenthesis in this paper indicates the uncertainty due to the
extrapolation to the thermodynamic limit.

n = 0.5

|U |/t 2 3 4

VMC (this paper) −1.4615(2) −1.55820(6) −1.68016(4)
AFQMC (this paper) −1.4652(5) −1.5669(5) −1.6920(2)

the entire doping range, already at U = −2, in agreement with
the exact AFQMC result. The success of VMC in this particular
case, where the exact solution is available, is important because
VMC can be easily extended [26] to any model, even the ones
affected by the sign problem within AFQMC.

We have also presented the comparison of the pairing
correlation functions obtained by VMC and by the numerically
exact AFQMC. In this case, VMC is in good agreement
with AFQMC for finite doping. At half-filling, there exists
a pseudo-SU(2) symmetry defined by the SU(2) rotations in
spin space applied to the Hamiltonian after the particle-hole
transformation in Eq. (15), that remains therefore invariant
and commuting with the pseudospin operators [the spin op-
erators after the particle-hole transformation of Eq. (15)]. This
symmetry is clearly accidental, as is no longer satisfied by
the inclusion of a tiny next-nearest-neighbor hopping t ′ [19].
Since our variational wave function breaks this accidental
pseudo-SU(2) symmetry, the agreement between the VMC and
the necessarily symmetrical (as the exact ground state in any
finite lattice is a singlet after particle-hole transformation [48])
AFQMC in this case is not very good just because, in the
VMC, the order is only in one of the possible directions of
a three-component order parameter. For this reason, when
comparing VMC and AFQMC in Table I, we have not in-
cluded in the VMC entries the factor

√
3/2 implied by the

definition of M0 in Eq. (19), as we have verified that, within
VMC, the order is in the xy plane, because the CDW order,
corresponding, in the positive-U language, to the z component
of the antiferromagnetic order parameter, is always negligible.
This consideration explains also why the spin-flop transition
observed in AFQMC—Mxy jumps to a larger value as soon as
we depart from half-filling—is not present in VMC, because,
as shown in Fig. 7, Mxy appears a smooth and monotonically
decreasing function of the doping.

Apart from symmetry considerations that can be restored by
standard symmetry projection techniques [49,50], our wave
function can be also improved, for example, by taking into
account the backflow correlations [51], as it was done in the
positive-U Hubbard model [52,53].

The method for reducing finite-size effects, developed in
this paper, is applicable for any correlated lattice model.
The calculation in GCE will be particularly useful for in-
vestigating the doping dependence of the d-wave supercon-
ductivity in the positive-U Hubbard model with parameters
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relevant for cuprates. Furthermore, the reduction of the order
parameter in the entire doping range due to the Jastrow factor
suggests that the electron-correlation is not negligible even
for weakly attracting fermions in the low-electron-density
regime. This implies that the method will be also promising
for studying the ground-state properties of dilute electron
systems. Such systems may include TiSe2 in the series of
transition metal dichalcogenides [54–57], where its electronic
state is in vicinity of the semimetal-semiconductor transition
and considered to be a candidate of excitonic insulators, in

which coherent electron-hole pairs are formed and condensate
spontaneously [58,59].
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