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Phases of a phenomenological model of twisted bilayer graphene
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We propose a lattice-scale two-band generalized Hubbard model as a caricature of the electronic structure
of twisted bilayer graphene. Various possible broken-symmetry phases can arise, including a nematic phase
(which is a form of orbital ferromagnet) and an orbital-triplet spin-singlet superconducting phase. Concerning
the mechanism of superconductivity, we propose an analogy with superconductivity in alkali-doped C60 in which
a violation of Hund’s first rule plays a central role.
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I. INTRODUCTION

Twisted bilayer graphene makes a moiré pattern which
defines an approximate triangular lattice with a large unit cell.
Various band-structure calculations show that for certain twist
angles, there are remarkably weakly dispersing bands near
the Fermi surface [1,2]. In particular, the bands immediately
above and below the charge neutrality point are thought to
be approximately doubly degenerate; experiments [3,4] show
that when one of these bands is filled with four holes per
unit cell, nh = 4 (nh denotes the number of holes per unit
cell, relative to charge neutrality), there is behavior suggestive
of a band insulator, while for the half-filled band, nh = 2,
there is what appears to be an emergent insulating state at
low temperatures (T < 4 K), possibly with broken symmetry.
(Similar behavior occurs when electrons are added into these
bands, nh < 0 in our convention.) As a function of nh, there is
a pronounced peak in the resistivity at the charge neutrality
point, nh = 0, where the resistivity is a mildly increasing
function of decreasing T but does not show any clear tendency
to diverge. For hole concentrations, 0 < nh < 2 and 2 <

nh < 4, two superconducting domes with a maximal Tc ≈
1.7 K appear. (Superconductivity has not yet been detected
for nh < 0.)

There are many complexities associated with the micro-
scopic physics of this system; it may be impossible to define
localized Wannier functions associated with the two bands just
below the charge neutrality point without also including the
two above the neutrality point [5,6]. Moreover, unless the twist
angle is precisely commensurate, the system in question is in
truth a quasicrystal, not a crystal at all. Nonetheless, to simplify
the problem, we propose to study a two-orbital tight-binding
model on the triangular lattice with predominantly on-site
interactions, similar to the model introduced in Ref. [7], as a
caricature of the physical problem. Note that by construction,
our model is a band insulator at the charge neutrality point
nh = 0, in apparent conflict with experiment, and it cannot
describe fillings nh < 0. However, it is our hope that it is
sufficient to shed light on the problem in a range of nh near
nh ∼ 2.

In thinking about the interactions that enter the model,
we should take into account the fact that these are effective
interactions. In particular, since the typical graphene phonon
has an energy h̄ω�q ∼ 200 meV [8,9], while the flat bands in
twisted graphene are thought to have bandwidths of the order
of 10 meV [3], the system is in an antiadiabatic limit in which
it is reasonable to integrate out the phonons. This tends to
lower the on-site repulsion between electrons and (from the
“dynamical Jahn-Teller” effect) produce violations of Hund’s
rules. Even with purely repulsive microscopic interactions,
correlation effects associated with integrating out high-energy
electronic degrees of freedom can also lead to a reduction of the
on-site repulsion and a violation of Hund’s rule, as has been
shown [10] for the t − J model on a truncated icosahedron
(C60).

With these considerations in mind, a number of broken-
symmetry phases are possible. From a weak-coupling per-
spective, the lack of any Fermi surface nesting on the trian-
gular lattice reduces the susceptibility to translation symmetry
breaking. From a complementary strong-coupling perspective,
the triangular lattice is geometrically frustrated. We will thus
focus on states that leave translation symmetry unbroken
[11]. Specifically, we have found a regime in which there
is an orbital ferromagnetic phase for a range of nh that
extends asymmetrically about nh = 2. Depending upon how
we identify operators in the model with physical observables,
the orbital ferromagnetism can be associated with various
patterns of point-group symmetry breaking; for instance, it
can represent nematic order. Moreover, the system can be
insulating at nh = 2 if the order is sufficiently strong. Away
from nh = 2 we find two superconducting domes with on-site,
spin-singlet, orbital-triplet pairing.

II. A LATTICE-SCALE MODEL

We define a minimal lattice model with appropriate symme-
tries and the fewest degrees of freedom needed to account for
the salient features summarized above. We consider a Hubbard-
like model on a triangular lattice with a Wannier function
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that transforms according to a two-dimensional irreducible
representation of the point group. One could think of this
as corresponding to dxy and dx2−y2 orbitals split from the
other (filled or empty) d orbitals by crystal-field effects or,
alternatively, as px and py orbitals. At a formal level, these
two cases behave similarly, but their different symmetries
have different implications for the nature of broken-symmetry
phases. To be concrete, we will assume the d-orbital case.

We thus introduce a pseudospin index τ , such that τ =
±1 corresponds to a d ± id combination of these orbitals.
We neglect spin-orbit coupling, so there is an SU (2) spin
rotational symmetry, and reflecting an assumed conservation of
pseudospin and time-reversal symmetry, there is an additional
orbital U (1) × Z2 symmetry. Physically, this U (1) symmetry
is related to spatial rotations, and correspondingly, a more
realistic band structure would include τ -dependent dispersion
relations that would break the U (1) symmetry to C6; for the
most part we will ignore this for simplicity. We thus consider
the two-orbital model

H = H0 + Hint + H ′
int + Hnn (1)

in terms of creation operators c
†
�R,s,τ

for electrons with spin

and orbital polarizations s and τ on site �R. The band structure
is given by the nearest-neighbor tight-binding model

H0 = −t
∑

〈 �R, �R′〉,s,τ
[c†�R,s,τ

c �R′,s,τ + H.c.]. (2)

The most general on-site interactions (consistent with the
above-stated symmetries) can be expressed as a sum of the
“important” interactions,

Hint = U
∑

�R
[n̂ �R − 2]2 − K

∑
�R

[
L �R · L �R − δLz

�RLz
�R
]
, (3)

where δ tunes between X − Y and Ising-like characters, and
additional interactions

H ′
int =

∑
�R

[U3 + U4(n̂ �R − 2)](n̂ �R − 1)(n̂ �R − 2)(n̂ �R − 3).

For simplicity, we ignore H ′
int; that is, we set U3 = U4 = 0.

Hnn is an additional further-neighbor interaction (assumed to
be small) that we will introduce below. Here

n̂ �R =
∑
τ,s

c
†
�R,s,τ

c �R,s,τ , (4)

and the orbital pseudospin

�L �R = 1

2

∑
τ,τ ′,s

c
†
�R,s,τ

�στ,τ ′c �R,s,τ ′ . (5)

To better appreciate the significance of K , consider the single-
site problem with two electrons: For K > 0, the spin-triplet
states have higher energy than the singlet, in violation of
Hund’s first rule [12]. Indeed, in the following we will assume
K > 0, which, as already indicated, involves the nontrivial
effects of high-energy degrees of freedom that have been
integrated out.

The assumption that further-neighbor interactions Hnn

are relatively small deserves comment as well. Of course,
Coulomb interactions are long range, but in the devices in

question, there is a metallic gate separated from the bilayer
by a distance comparable to the size of a unit cell in the
moiré pattern. We invoke this as the justification for assuming
that further-neighbor interactions are weak and can mostly be
neglected. Since the bare interactions between electrons are
strongly repulsive, it is likely that U > 0, although possibly,
due to the effects of electron-phonon coupling and other
correlation effects, it may be smaller than naive estimates
suggest, and we will even consider the case in which it is less
than K .

We also include in our model a (weak) nearest-neighbor
interaction,

Hnn = −K̃
∑

〈 �R, �R′〉
L �R · L �R′ , (6)

and take K � K̃ > 0. The latter condition implies that Hnn

favors orbital ferromagnetism, as would be expected for a
direct exchange interaction. Because the triangular lattice is
nonbipartite, the sign of t is significant. We will take t < 0
on a phenomenological basis to reproduce the observed sense
of the particle-hole asymmetry about nh = 2 and will in some
places consider the effects of more complex band structures,
i.e., the effects of further-neighbor hopping.

III. MEAN-FIELD THEORY

For weak coupling, a reliable solution can be obtained
using Hartree-Fock/BCS mean-field theory. In this limit, the
only generic instability is to superconductivity. If we never-
theless apply the same approach for intermediate couplings,
the results, while not well justified, are highly suggestive.
Because we have dominantly on-site interactions, the only
possible order parameters are on site. If we assume translation
symmetry is unbroken, then these consist of orbital or spin
ferromagnetism and superconductivity involving on-site pair-
ing. Since we are assuming K > 0, spin ferromagnetism can
be neglected, and of the possible superconducting channels,
only orbital pseudospin-triplet spin-singlet pairing is favored.
To simplify the equations, in this section we will take K̃ = 0.

To implement this approach, we define a trial Hamiltonian
Htr (henceforth summation over spin and pseudospin indices,
s and τ , is implicit):

Htr =
∑

k

εkc
†
k,s,τ ck,s,τ − �h ·

∑
�R

�L �R

+
∑

�R
{c†�R,↑,τ

[( �d · �σ )iσy]τ,τ ′c
†
�R,↓,τ ′ + H.c.},

(7)

where �h, �d , and εk are variational parameters corresponding
to orbital ferromagnetism, triplet superconductivity, and band
structure, respectively. Under time-reversal �, �h‖ → �h‖, hz →
−hz, �d‖ → −�d‖, and dz → dz, where �h‖ and �d‖ are the X −
Y components of �h and �d, respectively. Fvar ≡ Ftr + 〈H −
Htr〉tr is a variational upper bound to the free energy. The
corresponding mean-field equations are

hj = V F
j 〈Lj ( �R)〉, (8)

dj = −V sc
j 〈c �R↑τ [σj (iσy )]∗ττ ′c �R↓τ ′ 〉, (9)
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where V F
x = V F

y = 2U + K
2 (5 − δ), V F

z = 2U + K
2 (5 − 3δ),

V sc
x = V sc

y = U − K
4 (1 − δ), V sc

z = U − K
4 (1 + δ), and there

is a shift in the chemical potential. For weak coupling, the
superconducting Tc is determined by whichever component of
V sc

j is most attractive:

Tc ∼ We−1/2N0|V sc
j |, (10)

where N0 is the density of states at the Fermi level and W is
the bandwidth. If δ > 0, then �d = dẑ, and the superconducting
state preserves time-reversal and U (1) × Z2 orbital symme-
tries. If δ < 0, then �d lies in the X − Y plane and may give rise
to a rich variety of superconducting phases whose symmetries
will be discussed at the end of this section.

Orbital ferromagnetism is possible at stronger coupling
when the interactions exceed an appropriate Stoner criterion.
For δ > 0, the orbital moment 〈 �L〉 lies in the X − Y plane and
breaks the orbital U (1) symmetry; this is a form of nematic
order. For δ < 0, 〈 �L〉 = Lẑ; time reversal symmetry is broken
but the orbital U (1) symmetry is preserved.

The full mean-field solution of Eqs. (8) and (9) was obtained
numerically for the δ > 0 case. Representative mean-field
phase diagrams are shown in Fig. 1 for U = 0, K = 4, t =
−1, and δ = 0.3 and in Fig. 2 for U = 0, K = 2, t = −1,
δ = 0.3, and including a second-neighbor hopping, t ′ = −0.4.
The solid lines represent continuous phase boundaries, while
the double lines mark discontinuous transitions. The broken
symmetries are as indicated, where 2P signifies a forbidden
region of density in which two-phase coexistence occurs
and SC and NSC refer, respectively, to superconducting and
nematic superconducting phases.

The NSC exhibits a mixture of the pairing symmetries dis-
cussed above: the predominant channel has dz �= 0; however,
the nematic order induces a nonzero X − Y component of
�d . Moreover, the X − Y components of �d are related to the
nematic order parameter �h: for hx �= 0, the NSC state has
real dz, imaginary dy , and dx = 0. The NSC therefore breaks
gauge invariance and time reversal simultaneously. The pattern
of order in the NSC phase can be understood by considering
the symmetry-allowed cubic terms that couple �h and �d in the
Landau free energy F ,

F (T ) = · · · + ia1(T )�h‖ · ( �d∗ × �d )‖ + ia2(T )hz( �d∗ × �d )z,

(11)

where ai (T ) are temperature-dependent coefficients. Outside
the nematic phase, the SC state has pure dz �= 0 order.

For the K = 4 case shown in Fig. 1, the orbital pseudospin
is fully polarized in the ground state for a range of nh (indicated
by the thick black line) bounded from above by a mild quantum
critical point at nh = nc1 = 3.5 (marked by the cross) and from
below by a first-order point at nh = nc2 ≈ 1.9. The system is
insulating at nh = 2. If we were to suppress superconductivity
(say, by application of a magnetic field), then we would find a
(nematic) half-metallic orbital ferromagnet in this range of nh

(as long as nh �= 2), and the transition that occurs at nh = nc1

would be a Lifshitz transition.
For the K = 2 case shown in Fig. 2, while there is a broad

nematic phase, the order is not sufficiently strong to produce
insulating behavior at nh = 2. Moreover, here we find that
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FIG. 1. Mean-field phase diagram with parameters U = 0, K =
4, t = −1, δ = 0.3, and K̃ = 0 (temperature is measured in units
of |t |). Note that the number of electrons per unit cell in the band
immediately below charge neutrality ne is given by 4 − nh. Various
broken-symmetry phases are indicated in the diagram, where SC and
NSC are, respectively, a superconducting phase with only dz �= 0
and a nematic superconducting phase in which, in addition, the
in-plane component of �d perpendicular to �h is nonzero. The orbital
ferromagnetic phase with hx �= 0 is fully polarized at T = 0 for nc1 �
nh � nc2, as indicated by the solid black line. This further implies that
the ground state at nh = 2 is insulating. The dashed line at nh = 2 has a
height corresponding to the insulating gap |hx | − W ≈ 0.7, where W

is the bandwidth. The regime labeled 2P is a forbidden regime, where
two phases coexist macroscopically. Solid colored lines represent
continuous transitions, and double lines indicate discontinuous ones.
The cross at nh = nc1 is a quantum critical point.

all the transitions appear to be continuous. For substantially
smaller K , there is no nematic phase at all.

If we were to include fluctuations beyond the mean-field
treatment, since the nematic phase breaks U (1) symmetry,
the ordered phase at finite temperature would presumably be
replaced by a power-law phase. If crystal-field effects were
included that reduce U (1) to C6, there could be a sequence
of two transitions involving an ordered phase and a power-law
phase. Clearly, all superconducting phases at nonzero T would
be replaced by phases with quasi-long-range order.

We now turn to address the possible phases for δ < 0.
As mentioned above, we expect an orbital ferromagnetic
phase with hz �= 0, which breaks time-reversal symmetry but
preserves the orbital rotational symmetry. From Eq. (9), the
leading superconducting instability leads to a nonzero �d‖.
The two-component nature of the order parameter can, by
analogy to the case of Sr2RuO4 [13], lead to a number of
different superconducting states. For simplicity, here we focus
on states which can be reached from the nonsuperconducting
phases by a continuous transition, i.e., those that break the
minimal number of additional symmetries. Importantly, inside

075154-3



DODARO, KIVELSON, SCHATTNER, SUN, AND WANG PHYSICAL REVIEW B 98, 075154 (2018)

0 1 2 3 4
0

0.2

0.4

0.6

0.8
T

em
pe

ra
tu

re

0134

FIG. 2. Mean-field phase diagram with parameters U = 0, K =
2, t = −1, δ = 0.3, and K̃ = 0 and with a second-neighbor hopping
t ′ = −0.4. Symbols are as in Fig. 1. The state at nh = 2 is conducting,
and all transitions appear to be continuous.

the orbital ferromagnetic dome, Eq. (11) implies the relative
phases of the dx and dy components lock in a way that preserves
the orbital rotational symmetry. The different phases and
corresponding broken symmetries that follow from Eq. (11)
are shown in Table I for both signs of δ.

IV. STRONG-COUPLING LIMIT

In much the same way as the t − J model can be derived as
the strong-coupling limit of the Hubbard model, we can derive
an effective model that captures the low-energy physics of our
two-band Hubbard model in the strong-coupling limit where
t is small compared to the on-site interactions. Here we map
the problem to a lattice gas of hard-core particles. Let ne be
the number of electrons per unit cell in the band immediately
below charge neutrality, ne = 4 − nh. For compactness we
consider the case in which δ is small. We further restrict our
attention to U > −K/2 and the range 0 � ne � 2, but the case

TABLE I. Broken (in square brackets) and unbroken symmetries
for the normal (�h �= 0) state and various superconducting phases
for δ < 0 (Ising-like) and δ > 0 (X − Y -like). The two choices
of irreducible representations for the orbitals, p ± ip and d ± id ,
are identical under rotation and time-reversal symmetries. However,
mirror symmetries are affected differently in the two cases, and they
also depend on which mirror plane one is considering.

X-Y -like Ising-like

Normal (�h �= 0) [C6], �, C2 [�], C6

SC (�h �= 0) [C6, �], C2 [�], C6

SC (�h = 0) C6, � [�], C6

2 � ne � 4 can be obtained from these results by a straight-
forward particle-hole transformation, which involves taking
t → −t . For U > −K/2, two doubly occupied sites have
lower energy than either one singly and one triply occupied
sites or one quadruply occupied site and one empty site.
Given this, for 0 � ne � 2, we can project out the triply and
quadruply occupied states. Now

Hint =
∑

�R
[εbb

†
�R,m

b �R,m + εaa
†
�R,τ,s

a �R,τ,s + 4Uν̂ �R], (12)

where εb ≡ −2K , εa ≡ U − 3K/4, and there is a hard-core
constraint that ν̂ �R � 0 for all �R, where ν̂ �R is the density of
empty sites,

ν̂ �R = 1 − b
†
�R,m

b �R,m − a
†
�R,τ,s

a �R,τ,s , (13)

and the electron density is 2 − ν̂ �R . Here we represent doubly
occupied sites as being occupied by a spinless L = 1 boson
with Lz = m = −1, 0, 1, with creation operator b

†
�R,m

, while
singly occupied sites are represented by S = 1/2, L = 1/2
fermions, with creation operator a

†
�R,τ,s

.
It is then easy to see that for ne = 2 there is a Mott insulating

state with one boson per site. For U > K/4, in the range 1 <

ne < 2, the system is a mixture of 〈a†
�R,τ,s

a �R,τ,s〉 = (2 − ne )

fermions and 〈b†�R,m
b �R,m〉 = ne − 1 bosons, while for 0 < ne <

1, it contains a concentration 〈a†
�R,τ,s

a �R,τ,s〉 = ne fermions and
no bosons. On the other hand, for K/4 > U > −K/2, in the
entire range 0 < ne < 2 the system consists purely of bosons
with 〈b†�R,m

b �R,m〉 = ne/2.
We now consider the effect of the additional terms in the

Hamiltonian. In the obvious way, Hnn can be rewritten as
a nearest-neighbor orbital pseudospin-dependent interaction
between the bosons and fermions. To first order in t two
terms are generated: a hopping term for fermions between
nearest-neighbor sites �R and �R′,

−t[a†
�R,τ,s

a �R′,τ,s + H.c.], (14)

and a nearest-neighbor boson-fermion interchange,

t/2[(b†�R,m
�Tm,m′b �R′,m′ ) · (a†

�R′,τ,s
�στ,τ ′a �R,τ ′,s ) + H.c.]

+ t/2[b†�R,m
b �R′,ma

†
�R′,τ,s

a �R,τ,s + H.c.], (15)

where �T is the pseudo-spin-1 generators of rotations.
Finally, there are a variety of terms that are generated in

higher-order perturbation theory in powers of t , which are thus
assumed to be small compared to terms of order t . Of these, the
two most important are a renormalization of the interaction in
Hnn acting between two neighboring sites occupied by bosons,

K̃ → K̃eff = K̃ − 4t2

4U + 5K
, (16)

and a nearest-neighbor hopping term for the bosons with matrix
element

teff = t2

K − 4U
. (17)

The first term is potentially important in the state at ne = 2;
here the symmetry of the Mott insulator changes from orbital
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ferromagnetism for K̃eff > 0 to orbital antiferromagnetism for
K̃eff < 0. The boson hopping term is small compared to the
boson-fermion exchange, and so it is important only when
there are no fermions to induce delocalization of the bosons,
i.e., when K/4 > U > −K/2. Note that there is an interesting
breakdown of perturbation theory near the upper end of this
regime.

The physics of the resulting lattice gases is itself rich and
interesting. The case of orbital pseudospin-1 bosons (relevant
for K/4 > U > −K/2) is similar to the problem of spin-1
bosons that has been studied in the context of cold atomic gases
[14]. For ferromagnetic K̃ > 0, this results in the existence of
a spin-polarized Bose condensate [15,16], while for antiferro-
magnetic K̃ < 0, there are multiple possible states, including
fractured condensates [17]. The more interesting case in which
there is a boson-fermion mixture (U > K/4 and 1 < ne < 2)
has an analog in the problem of 3He-4He mixtures [18]. Various
forms of superfluid states as well as phase-separated states are
possible depending on the parameters.

One feature of the strong-coupling limit (U → ∞) that
is particularly striking is a strong asymmetry in the orbital
ferromagnetism between ne < 2 and ne > 2. This can be seen
by studying the analog of the Nagaoka problem [19]: either one
doped electron or one doped hole relative to ne = 2. For t < 0,
Nagaoka’s theorem applies to one hole but not to one electron.
More detailed analysis [20,21] shows that dilute concentrations
of doped holes make an effective ferromagnetic contribution
to K̃eff proportional to t (2 − ne ), while doped electrons make
a corresponding antiferromagnetic contribution. While this
result is restricted to infinite U and vanishing doping density,
in the next section we will show that the basic physics is much
more robust [22].

V. EXACT DIAGONALIZATION

We have studied the model in Eq. (1) on the N = 4 site
cluster shown in Fig. 3 for various values of U . We have
taken units such that t = −1 and have arbitrarily taken K = 2,
K̃ = 0.2, and δ = 0. [This latter condition implies an enlarged
SU (2) orbital symmetry, and therefore L is conserved.] This
is a small system, but it is large enough to allow us to make
crude estimates of interesting properties of the system at
intermediate coupling, where analytic approaches fail. The
results with various numbers of electrons are representative

(a) (b)

(c) (d)

FIG. 3. (a) The four-site system that we treat by exact diagonal-
ization using the Hamiltonian in Eq. (1). We take K = 2, t = −1,
δ = 0, K̃ = 0.2, and various values of U . (b) The quantities EMott

and �(ne ) are defined in Eqs. (18) and (19). (c) The total orbital
pseudospin of the ground state for various ne. (d) The total spin of the
ground state for various ne.

of the properties of a larger system with values of ne = 2, 2 ±
1/4, 2 ± 1/2, etc. We compute the total orbital pseudospin L;
if this takes its maximal allowed value, L(ne ) = Lmax(ne ) =
Nne/2, then this suggests that the larger system will exhibit
a fully polarized orbital ordered state, while there is likely
no orbital ferromagnetism in the thermodynamic limit if L

takes its minimal value L(ne ) = Lmin(ne ), where Lmin(ne ) = 0
or 1/2 depending on whether Nne is even or odd. From the
ground-state energy as a function of electron number E(Nel ),
we define two particularly interesting “gaps,”

EMott ≡ E(2N + 1) + E(2N − 1) − 2E(2N ) (18)

and, for ne �= 1, 2, or 3 and under conditions Nne = odd,

�(ne ) ≡ [2E(neN ) − E(neN + 1) − E(neN − 1)]/2.

(19)
These quantities are defined such that, if there were an
insulating state at ne = 2, then EMott would indeed approach
the Mott gap in the limit N → ∞ and, if the doped system
were to have a nodeless superconducting gap, then �(ne )
would approach the value of the minimal gap in the same limit.
Some results for L(ne ), S(ne ), EMott, and �(ne ) are reported in
Fig. 3. In the case ne < 2, the system is a fully polarized orbital
ferromagnet, while in the case ne > 2, the orbital pseudospin
is far from being fully polarized. There is a superconducting
gap �(ne ) > 0 when U is small that is destroyed for larger U .

VI. EXACT RESULTS FOR U = K/4

Under the special condition U = K/4 with δ = 0 and
K̃ = 0, the model defined in Eq. (1) becomes effectively non-
interacting in the sector of Hilbert space with maximal orbital
pseudospin [23]. The model itself is still strongly interacting;
it is just in this sector that the interactions effectively vanish.
It still depends on ne and U whether or not the ground state
is a fully polarized orbital ferromagnet. When this is the case,
if ne = 2, the system is insulating, while for ne �= 2 it forms a
half-metallic orbital ferromagnetic Fermi gas.

It is also interesting to consider what happens upon per-
turbing about this solvable line. For small K̃ > 0 or U < K/4,
there are effective weak attractive interactions induced between
like-orbital pseudospin electrons, and this in turn leads, via
the usual BCS mean-field analysis, to a spin-singlet orbital
pseudospin-triplet superconducting state of the sort discussed
in the mean-field analysis above. Otherwise, the effective
interactions are repulsive, and any superconducting state that
arises will have unconventional pairing and will arise by
a version of the Kohn-Luttinger mechanism or through the
exchange of a collective boson leading to a parametrically
lower Tc.

VII. RELATION TO OTHER WORK

Not surprisingly, the discovery of superconductivity in
twisted bilayer graphene has produced a flurry of “rapid-
response” theories [6,24–29], of which the present paper is
one. It is important to stress that the experimental situation is
still evolving, so the applicability of any theoretical proposal
is presently difficult to judge.

Our perspective differs from that of the other papers of
which we are aware in several important ways. Many of these
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works make an implicit analogy with the cuprates in identifying
the insulating behavior at nh = 2 as “Mott insulating” and
looking for possible mechanisms of unconventional pairing in
which the pair-wave function vanishes for two electrons on the
same site. These papers all envisage the dominant interaction
to be a strongly repulsive Hubbard U , and where weaker
interactions are considered, they are ones that, for example,
favor Hund’s rule states with maximal spin. In contrast, we
have explored the possibility that a combination of correlation
effects (involving bands that have been integrated out) and
electron-phonon effects leads to a reduction ofU and violations
of Hund’s rule, analogous to the situation that is believed to
apply in alkali-doped C60. We have proposed a large role for
orbital pseudospin ferromagnetic ordering, including identify-
ing this broken symmetry as the cause of the insulating phase.
Moreover, we have suggested that the large asymmetry in the
behavior of the quantum oscillations for 4 > nh > 2 versus
2 > nh > 0 is associated with Nagaoka-type stabilization of
the orbital ferromagnetism for one sign of doping but not
the other. We have also found a superconducting state that
is largely conventional with on-site spin-singlet pairing (albeit
with possibly interesting orbital pseudospin structure).

There are also some important differences and similarities in
the models considered. The model we study is in large part the
same as that introduced in Ref. [7], although they considered
it in a very different range of parameters (where, for example,
Hund’s first rule is obeyed). As mentioned earlier, several
papers [5,6] have noted that there are significant theoretical
barriers to a direct route from the nodal band structure of the
individual graphene sheets to the effective two-orbital model
we have studied. We have no disagreement with this conclu-
sion; we view our model as a phenomenological construct.

An ambitious approach to connecting the microscopics to
the observed phenomena is reported in Ref. [5]. In contrast to
our paper, this discussion purports to deal with the strong re-
pulsive interactions between the conduction electrons without
invoking the high-energy renormalizations discussed above.
On the other hand, from a correspondingly more complex
analysis, they also identify the Mott insulating phase as being
the same sort of nematic as we have found and have suggested
that the superconducting state has a spin-singlet s-wave gap
structure. The principal mechanism of pairing in their work
is the exchange of collective fluctuations; we, too, think this
could play a role [30], but since we already obtain pairing
at the mean-field level, we imagine that the main role of such
fluctuations is to enhance Tc in the neighborhood of the nematic
quantum critical point [31,32].

VIII. RELATION TO EXPERIMENT IN TWISTED
BILAYER GRAPHENE

We have introduced a two-band Hubbard-like model on
a triangular lattice as the simplest lattice-scale model with
enough degrees of freedom to account for certain salient
features of present experimental observations [3,4] in twisted
bilayer graphene, doped with a concentration n of holes relative
to charge neutrality. Even this stripped-down model is complex
and has a large variety of possible ordered phases and phase
diagram topologies as a function of the various interactions,
some of which we have elucidated. In this final section, we

summarize some of these results and their possible relevance
to bilayer graphene.

In the strong-coupling limit, we find a Mott insulating state
at nh = 2 in the sense that the insulating behavior begins at a
high temperature and exhibits a gap associated directly with
the on-site interactions. The scale of this gap is large compared
to intersite couplings and hence to the temperatures at which
any ordering phenomena occur. This behavior is analogous to
what is seen in the cuprates, where the gap in the insulating
state of the undoped parent compounds is of the order of
2 eV, while all ordering phenomena occur at around room
temperature or below. Such behavior is not seen in twisted
bilayer graphene, where the resistivity changes from a high-
temperature metallic behavior to a low-temperature insulating
behavior at 4 K, which is just over a factor of 2 larger than the
largest superconducting Tc. We thus conclude that it is likely
that the insulating behavior in bilayer graphene is associated
with a broken-symmetry state and should be associated with
the intermediate-coupling regime of parameters in our model.

One attractive candidate for the insulating state is a fully
polarized orbital ferromagnet. Depending on the sign of δ, this
state can have either X − Y character, in which case it is some
sort of electron nematic state, or Ising character, in which
case it breaks time-reversal symmetry and would result in a
zero-field anomalous Hall effect and an offset in the quantum
oscillations in the metallic state away from nh = 2. While a
fully polarized nematic state occurs naturally in the strong-
coupling limit, it is unclear down to what level of couplings
it survives. Nonetheless, we do find such an insulating state
in our mean-field treatment at intermediate values of K ∼ EF

(see Fig. 1).
One interesting feature of the nematic state that arises

naturally in the strong-coupling limit is an intrinsic particle-
hole asymmetry with respect to doping away from nh = 2.
Doping to nh > 2 produces an additional tendency to orbital
ferromagnetism (induces an effective increase in the magnitude
of K̃), while nh < 2 favors orbital antiferromagnetism (tends
to make K̃ negative). Needless to say, orbital ferromagnetism is
entirely unfrustrated even on a triangular lattice, while orbital
antiferromagnetism is highly frustrated and likely has a much
reduced ordering temperature, if it orders at all. The same
particle-hole asymmetry around nh = 2 appears as a robust
feature in the exact diagonalization analysis for intermediate
couplings and can occur at mean-field level as well, provided
the density of states is sufficiently asymmetric, as can be seen
in Figs. 1 and 2.

For nh > 2, if we assume that the system is a fully polarized
orbital ferromagnetic Fermi liquid, then from Luttinger’s
theorem it follows that the area enclosed by the Fermi surface
is A = A0(nh − 2)/2 mod A0, where A0 is the area of the
Brillouin zone. By contrast, if for a range of nh < 2 the system
forms an unpolarized Fermi liquid, then the area enclosed
by the Fermi surface is A = A0nh/4. These expressions are
loosely consistent with what has been inferred from quantum
oscillation experiments in twisted bilayer graphene.

The conjectured nematicity, if it exists in the ground state,
would necessarily begin at a finite transition temperature
TF (nh). In a homogeneous system, this would imply the
existence of singular temperature dependences of various
measured quantities. No such singular behavior has been
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observed. However, there are reasons to believe that the elec-
tronic structure of currently available materials is somewhat
inhomogeneous, which would lead to a rounding of such
singularities. We would thus tentatively like to associate the
temperature of the observed metal-insulator crossover with
this phase transition. This temperature appears to be maximal
around nh = 2 and to drop smoothly with increasing nh,
extrapolating to zero at a critical doping nh,c ≈ 2.4. In this
interpretation, nc is associated with a nematic quantum critical
point. The fact that this critical point roughly coincides with
the hole doping at which the maximal Tc occurs invites analogy
with the phase diagrams of the Fe-based high-temperature
superconductors, where nematic quantum critical fluctuations
have been conjectured to enhance Tc [31–33].

Turning now to the primary mechanism of superconductiv-
ity, the same interactions that promote the nematic order also
give rise to superconductivity. We find spin-0 pseudospin-1
pairing with a substantial on-site component. In this sense, the
superconducting state reflects the existence of attractive inter-
actions. We suggest that a good analogy exists with another
C-based superconductor, alkali-doped C60, where effective
intramolecular attractive interactions are generated by a (still
somewhat unresolved) combination of intramolecular strong-
correlation effects [10,34] and electron-phonon couplings
[35–42]. In the calculations we have performed, this physics is
encoded in the assumed values of U (assumed to be relatively
small) and K (assumed to be positive). This is in contrast

to the situation in unconventional superconductors where the
interactions are strongly repulsive, and significant (albeit often
very short range correlated) antiferromagnetic correlations
often coexist with superconductivity.

The spin-singlet character of the superconducting order is
consistent with the relatively small value of the in-plane critical
field observed in experiment. At least the form of the pair wave
function should be clarified once some spectroscopic probes of
the gap structure, possibly tunneling experiments, are carried
out. Somewhat in analogy with the situation in 3He, there is
a complex order parameter space associated with the pseudo-
spin-1 character of the pairing which can lead to interesting
textures and topology. A tendency to phase separation of the
sort shown in Fig. 1 could lead to an enhanced susceptibility
to the formation of electronically inhomogeneous states, even
in otherwise relatively homogeneous samples.
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