
PHYSICAL REVIEW B 98, 075148 (2018)

Thermal stitching: Combining the advantages of different quantum fermion solvers
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For quantum fermion problems, many accurate solvers are limited by the temperature regime in which they can
be usefully applied. The Mermin theorem implies the uniqueness of an effective potential from which both the exact
density and free energy at a target temperature can be found, via a calculation at a different, reference temperature.
We derive exact expressions for both the potential and the free energy in such a calculation and introduce three
controllable approximations that reduce the cost of such calculations. We illustrate the effective potential and its
free energy, and test the approximations, on the asymmetric two-site Hubbard model at finite temperature.
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I. INTRODUCTION

The fermionic quantum problem occurs in many areas of
physics and is notoriously difficult to solve [1]. It is at the
heart of all electronic structure problems, and so solution
methods have enormous impact in condensed matter physics,
quantum chemistry, materials science, and beyond [2]. Over
decades, many diverse approaches have been developed and
refined [3]. In almost all cases, there are tradeoffs between
accuracy, computational cost, and domain of applicability.
Some techniques are almost solely designed to work on finite
systems at zero temperature (e.g., many ab initio quantum
chemical approaches), while others are extremely general but
costs become prohibitive as the temperature lowers (e.g., path
integral Monte Carlo (PIMC) [4,5]). A collection of high-
accuracy methods were recently benchmarked on strongly-
correlated lattice models [6]. On the other hand density-
functional methods are relatively inexpensive but require an
uncontrolled approximation to the exchange-correlation (XC)
energy. Recently, density functional theory (DFT) methods
have enjoyed considerable success in being applied at tem-
peratures relevant to warm dense matter (WDM), a phase of
matter with properties of solids and plasmas [7], such as occurs
in fusion experiments and planetary cores [8–20].

The central question addressed in this work is: Can a quan-
tum fermion solver be run at one temperature (the reference
temperature) to yield results at some other temperature (the
target temperature)? Such a scheme could be applied to many
diverse combinations of calculations. In the examples above, it
could be used to bootstrap PIMC calculations to lower temper-
atures, quantum chemical calculations to finite temperatures,
or to combine DFT methods with more accurate solvers for
WDM [21–23]. Our work is compatible with other approaches
such as the formulation by Alavi and coworkers [24]. Any two
methods can be combined using our stitching method.

We show that the answer is in principle yes, at least for
extracting the free energy and density. Inspired by Ref. [25], we
use the Mermin theorem [26] to define a unique effective one-
body potential from which, with an accurate quantum solver,
we can extract the target quantities. We derive the relevant

formulas for a finite-temperature Kohn-Sham treatment. We
identify three useful, controllable approximations that make
extraction of the target free energy easier in practice. Finally,
we illustrate the relevant exact quantities and test the approxi-
mations on the finite-temperature asymmetric Hubbard dimer.

Our formulas are general for any quantum fermion problem,
but we will discuss WDM simulations as an example. Mermin
generalized the Hohenberg-Kohn theorem [27] to nonzero
temperatures at thermal equilibrium [26]. Thermal DFT be-
came a popular tool of plasma physics in subsequent decades
[28–30]. The advent of accurate ground-state approximations
and robust codes led to many recent successes of thermal DFT
[12,13,18,19,31–36]. For greater reliability and higher accu-
racy, but at much higher computational cost, PIMC simulations
are used [4,5,37–41].

Thermal DFT is made computationally tractable by the use
of a noninteracting potential vτ

S (r) that yields the interacting
density, nτ (r), at temperature τ . This Mermin-Kohn-Sham
(MKS) system is exact in principle but in practice requires
approximations to the XC free energy, Aτ

XC[n], as a functional
of the density [42]. Most WDM simulations use the zero-
temperature approximation [43], which replaces Aτ

XC[n] by
EXC[n], an approximation to the ground-state XC energy [44]
but used in the MKS equations. An alternative is to use the
thermal local density approximation, where a parametrization
of the XC free energy of the homogeneous electron gas is
used to approximate Aτ

XC[n] [40,45–47]. Thermal generalized
gradient approximations [48,49] have also been suggested.

II. THEORY AND RESULTS

Begin with the Mermin-Kohn-Sham scheme. The equations
are identical to those of the ground state,{ − 1

2∇2 + vτ
S (r)

}
φτ

i (r) = ετ
i φτ

i (r), (1)

with the exception that the density is found by thermally
occupying the MKS orbitals:

nτ (r) =
∑

i

f τ
i

∣∣φτ
i (r)

∣∣2
, (2)
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FIG. 1. n1 vs x at τ = 0.25 (blue) and τ = 1 (red). Solid lines are
U = 1 and dashed are noninteracting, U = 0. The intersections with
the horizontal line at n1 = 0.5 give the v values that yield n1 = 0.5
for the given temperature and interaction.

where the occupations are Fermi factors at temperature τ . vS(r)
is defined by Eqs. (1) and (2). Write the free energy in terms
of the MKS components:

A[v] = min
n

(
T τ

S [n] − τSτ
S [n] + U [n] + Aτ

XC[n] + I[nv]
)
,

(3)

where T τ
S is the MKS noninteracting kinetic energy at tem-

perature τ , Sτ
S is the corresponding entropy, U is the Hartree

energy, and we introduced

I[f ] =
∫

d3r f (r) (4)

to represent the external potential energy. Writing

vτ
S (r) = v(r) + vH[n](r) + vτ

XC[n](r), (5)

and identifying vH(r) as the Hartree potential and vτ
XC(r) as the

functional derivative of Aτ
XC, the self-consistent solution of the

MKS equations finds the minimum density in Eq. (3).
We demonstrate this with a simple exact model which is

a crude representation of a chemical bond. The asymmetric
Hubbard dimer has been used to test and understand many
flavors of DFT including ground-state [50,51], time-dependent
[52–56], ensemble [57], thermal [43,58,59], and DFT-like
methods [60]. Here, the Hubbard dimer is used to illustrate the
exact properties of the stitching potential and simple approxi-
mations for extracting the free energy. In no significant sense
does it mimic the complexities of realistic WDM simulations.
Its Hamiltonian is

Ĥ = −t
∑

σ

(ĉ†1σ ĉ2σ + H.c.) +
∑

i

(Un̂i↑n̂i↓ + vin̂i ), (6)

where ĉ
†
iσ (ĉiσ ) is the electron creation (annihilation) operator

and n̂iσ = ĉ
†
iσ ĉiσ is the number operator, t is the electron

hopping, U is the Coulomb repulsion, and vi is the onsite
potential. We choose v1 + v2 = 0, define v = v2 − v1, and
2 t = 1. In lattice DFT the site occupations [61], n1 and n2,
are analogous to the density. We work at half filling (〈N〉 = 2)
which restricts μ = U/2 to maintain particle-hole symmetry.
Figure 1 shows exact thermal calculations. The solid red line

is the density on site 1 as a function of the onsite potential v,
for a relatively hot temperature (τ = 1). The Mermin theorem
guarantees its monotonicity. The dashed red line is the same
map but for tight binding, i.e., U = 0. Thus, for a system with
v = 2.834 (marked by solid red vertical line), n = 0.5 at τ = 1.
The MKS potential is vτ

S = 2.246 (vertical dashed red line),
and the difference is the HXC contribution. The blue lines
denote the same things at a lower temperature, τ = 1/4.

Mermin proved that in the grand canonical ensemble for
fixed temperature and chemical potential there exists a one-
to-one correspondence between the external potential and
electronic density for given particle statistics, interaction, and
temperature, τ [26]. Assuming v representability, the map
n̄τ [v](r) is invertible and the map vτ [n](r) exists. Note that
the former is a potential functional (denoted by a bar), while
the latter is a density functional. Assuming noninteracting
representability, we can write

v̄τ
S [v](r) = (

nτ
S

)−1
[n̄τ [v]](r). (7)

This compact expression is the map between the one-body
potential of the interacting problem and its MKS equivalent,
i.e., this is the MKS potential as a functional of the one-body
potential of the interacting problem, which is different from its
density dependence as expressed in Eq. (5).

For any system, we can define an effective thermal potential
(ETP), v̄τR

τ (r), as the one-body potential that yields the exact
density at τ by performing a calculation at τR . This is unique
by Mermin’s theorem and can be written

v̄τR

τ [v](r) = (nτR )−1[nτ [v]](r). (8)

A noninteracting map is defined in the same way. Figure 1
also illustrates the ETP logic. The horizontal line is n1 = 0.5
and everywhere that it intersects a curve corresponds to the
potential that yields n1 = 0.5 for the given temperature and
interaction strength. Thus v̄τR

τ [v] is given by the dependence
of the blue vertical line on the red one, with an analogous
noninteracting version with dashed vertical lines. This effective
potential has some specific symmetry properties, namely

v̄τ
τR

[
v̄τR

τ [v]
]
(r) = v̄τ

τ [v](r) = v(r). (9)

We wish to derive the ETP for an MKS calculation, using some
ṽτ

XC[n](r), where this XC potential could be approximate or
exact. To do this, we must use the concept of a ffunctional [62].
A functional is a function of a function, whereas a ffunctional
is a functional of a functional. Identify nτ {ṽXC}[v](r) as the
density at temperature τ found by solving the MKS equations
with ṽτ

XC[n](r). Then

v̄τR

τ [v](r) = vτR

S [nτ {ṽXC}[v]](r) − vτR

HXC[nτ {ṽXC}[v]](r). (10)

This result shows how to construct an approximate ETP from
a MKS calculation at different temperatures with a given
XC potential. Simply calculate the density from MKS at the
desired temperature, find what noninteracting potential yields
that density at the reference temperature, and subtract off
the approximate HXC potential evaluated at the reference
temperature. In Fig. 1, the first term is the MKS contribution
(vertical dashed blue line), while the second is the HXC
correction (difference between solid and dashed vertical blue
lines). Thus a DFT approximation might be used to generate
PIMC-quality densities at τ by performing PIMC calculations
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FIG. 2. Effective thermal potential for v = 1 and τR = 1 for
various correlation strengths. Solid curves are interacting, dashed
are noninteracting, and dot-dashed is Hxc. All calculations yield
v̄

τR
Hxc,τ � 0.

only at τR . This is a key result: Thermal stitching enables
computationally tractable explorations of complex physics by
combining the capabilities of multiple fermionic solvers. Our
result satisfies several conditions: (i) If the exact XC functional
is used, the exact nτ (r) is found; (ii) if an approximate XC
and the resulting ETP are used in an MKS calculation, the
corresponding self-consistent approximate density is found;
(iii) if the temperatures are equal, the exact result is recovered.
But the symmetry of Eq. (9) is lost with an approximate XC.

In Fig. 2, we plot the exact ETP, for a system with
v = 1. Green denotes weak correlation. The solid line is the
interacting curve, which varies strongly with temperature (and
approaches v as τ → τR). The dashed line is the MKS ETP,
which mimics the interacting curve closely and approaches the
MKS potential at τR . The dot-dashed line is the HXC contri-
bution, which is smoother and relatively small, suggesting it
might be amenable to approximation.

We also show what happens as we increase the correlation
to u = 1 (red) and u = 2 (blue). For moderate correlation, the
effects are similar but larger. But for strong correlation temper-
ature dependence is mitigated, the HXC contribution is com-
parable to the MKS piece, and small errors in approximations
are less likely to be forgiven.

In Fig. 3, we plot the difference between the ETP and its
reference value (v and vτ

S for interacting and noninteracting,
respectively), showing that the HXC contributions are now
even smaller. They remain monotonic when correlation is
weak or moderate and vanish rapidly as τ → τR . This strongly
suggests that approximating the XC contribution to the thermal
correction potential with a local or semilocal density functional
approximation should introduce relatively little error in the
density for weakly correlated systems. For strong correlation,
the HXC contribution is of the same order as the MKS po-
tential, develops nonmonotonic behavior, and vanishes much
more slowly with temperature. A semilocal density approxi-
mation might introduce much larger errors in this case.

Although the density is important, greatest interest is often
in the free energy and related properties. Thus we need to
generate accurate free energies from our formulas. We begin
with a recently proven formula [63] from a generalization of

FIG. 3. Same as previous figure, but now for the difference
between ETP and its reference.

potential functional theory [62,64,65] to the grand canonical
ensemble. Assume the energy components are known exactly
for some given reference potential, v0, and write vλ(r) =
v0(r) + λ�v(r), where �v(r) = v(r) − v0(r). The free en-
ergy of the system is then:

Aτ [v] = Aτ
0 + I[n̄τ [v,�v]�v], (11)

where n̄τ [v,�v] = ∫ 1
0 dλ nτ [vλ](r). Here 0 subscripts denote

quantities for the reference potential. We find, exactly, for the
deviation from the reference Aτ

HXC:

�Aτ
HXC[�v] = I[n̄τ [v,�v]�v] − I

[
n̄τ

S

[
vτ

S ,�vτ
S

]
�vτ

S

]
+ I

[
nτ [v]vτ

HXC − nτ
0[v0]vτ

HXC,0

]
. (12)

The derivation of Eq. (12) is given in the Supplemental Material
[66].

To illustrate the value of a well-chosen reference, in Fig. 4,
we plot the free energy versus temperature using Eq. (11)
with the reference potential set to 0, i.e., the symmetric dimer.
We see that the deviation from the reference is an order of
magnitude smaller than the reference value, making it easier
to approximate. Note that our reference temperature is twice
as high as before, but even at half its value, the deviation in the
free energy from the reference is difficult to detect.

FIG. 4. Temperature dependence of the free energy and its devi-
ation from reference for the same systems as in the previous figures.
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In principle, Eq. (12) is sufficient to extract the free energy
from a thermal-stitching calculation. Although the input den-
sities are required at the target temperature τ , these can all
be found from calculations at the reference temperature. The
last term in Eq. (12) is straightforward, but the first involves
averages over λ that are cumbersome since the ETP must be
evaluated for every λ. The last step is to derive a controlled
approximation that yields an accurate expression using only
quantities evaluated at τR .

We make three distinct approximations. In the first, we
note that the exact formula requires finding nτ

S [vS,0 + λ�vS](r)
which, in general, is not equal to nτ [v0 + λ�v](r). However,
they match at λ = 0 and λ = 1, and nearly agree everywhere
for weak interaction, so we expect

nτ
S [vS,0 + λ�vS](r) ≈ nτ [v0 + λ�v](r) (13)

to produce little error. A second approximation is to approxi-
mate each coupling-constant integral by a two-point formula:

n̄τ [v,�v](r) ≈ 1
2 (nτ [v0](r) + nτ [v](r)). (14)

With these Eq. (12) simplifies to

�Aτ,app
XC [v] = I

[
(nτ [v] − n̄τ [v])vτ

XC

]
− I

[
(nτ [v0] − n̄τ [v])vτ

XC,0

]
, (15)

with the Hartree contributions canceling on both sides (see
Supplemental Material for derivation [66]). Inserting the ETP
is now simple:

�Aτ,app
XC [v] = I

[(
nτR

[
ṽτR

τ [v]
] − n̄τR

[
ṽτR

τ [v]
])

vτ
XC

]
− I

[(
nτR

[
ṽτR

τ [v0]
] − n̄τR

[
ṽτR

τ [v]
])

vτ
XC,0

]
. (16)

This formula yields (approximately) the XC free energy at τ

using only densities from τR , ETPs, and the XC potential at τ ,
which can be extracted via a MKS inversion from the accurate
density at τ , i.e., Eq. (7), and subtraction of the external and
Hartree potentials.

Although Eq. (16) contains only quantities evaluated at the
reference temperature, as required, they are awkward because
the reference potentials and densities must be found for many
values of λ, and then averaged over the coupling constant.
This process can be simplified by a linear approximation for
the ETP:

ṽτR

τ [vλ](r) = ṽτR

τ [v0 + λ(v − v0)](r)

≈ ṽτR

τ [v0](r) + λ
(
ṽτR

τ [v](r) − ṽτR

τ [v0](r)
)
, (17)

which should be an excellent approximation for weak correla-
tion.

In Fig. 5, we plot correlation energies exactly, approxi-
mately but doing the coupling-integral in Eq. (16) explicitly,

FIG. 5. Correlation free energy from ETP for the same system
as previous figures. Solid is exact, dashed is from Eq. (16), and dot-
dashed includes the further approximation of Eq. (17).

and approximately with Eq. (17) to approximate the coupling
integrations. Using Eq. (16) introduces small errors for low
temperatures but these quickly diminish as temperature in-
creases. Interestingly, they seem no worse when correlations
are stronger. Linearizing the potential slightly worsens the
results but makes a smaller error than already present in
Eq. (16). This error also diminishes rapidly with increasing
temperature. Correlation becomes a relatively smaller part
of the total free energy as temperature increases [43]. The
majority of the contribution to the correlation free energy is
in the reference term with similar behavior in the correction
term as seen for the total free energy, and we make only a small
error in approximating the correction.

III. CONCLUSION

In this paper we presented a formally exact method for
determining electronic properties at temperature τ using a
calculation at temperature τR . To do so, we defined an ETP
which yields the exact density at τ of a given system. We
also derived an approximate formula from potential functional
theory for the exchange-correlation free energy that uses only
the ETP. We applied simple approximations to this equation to
put it in a more elegant form and to make it only require the ETP.
All of this was illustrated using the asymmetric Hubbard dimer.

We conclude with suggestions for approximations and
future work. For extended matter in WDM simulations, an
obvious reference potential is the uniform electron gas with
the average electronic density of the entire system. The free
energy of this system is well known [23,45,46,67,68]. Then
the coupling-constant integral connects local differences in the
potential from its average value. Equation (10) would also be
tested with, e.g., a zero-temperature GGA approximation for
the MKS approximation. This yields an approximate density
at τ and the corresponding HXC approximation at τR . Then
the same MKS code could be used to find the corresponding
MKS potential at τR , by adjusting vτR

S (r) until ñτ (r) is found.
These yield the approximation to the ETP to be used in an
accurate quantum solver at τR . Note that one could imagine
this as the first step in an iterative procedure in which the
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output approximate density at τ is used in place of the MKS
approximate density. This would unbalance the use of DFT
in the formula which might in fact worsen the results. Only
practical calculations can tell. Additional tests include long
Hubbard chains, more complicated lattices, and atoms. These
tests can further demonstrate the theory’s applicability and
accuracy.
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