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Based on first-principles calculations and analysis of crystal symmetries, we propose a kind of hourglasslike
nodal net (HNN) semimetal in centrosymmetric Ag2BiO3 that is constructed by two hourglasslike nodal chains at
mutually orthogonal planes in the extended Brillouin zone (BZ) when the weak spin-orbit coupling (SOC) mainly
from the 6s orbital of Bi atoms is ignored. The joint point in the nodal net structure is a special double Dirac point
located at the BZ corner. Different from previous HNNs [T. Bzdušek et al., Nature (London) 538, 75 (2016)]
where the SOC and double group nonsymmorphic symmetries are necessary and also different from the accidental
nodal net, this HNN structure is inevitably formed and guaranteed by spinless nonsymmorphic symmetries
and thus robust against any symmetry-remaining perturbations. The Fermi surface in Ag2BiO3 consisting of a
toruslike electron pocket and a toruslike hole pocket may lead to unusual transport properties. A simple four-band
tight-binding model is built to reproduce the HNN structure. For a semi-infinite Ag2BiO3, the “drumhead”-like
surface states with nearly flat dispersions are demonstrated on (001) and (100) surfaces, respectively. If such
a weak-SOC effect is taken into consideration, this HNN structure will be slightly broken, leaving a pair of
hourglasslike Dirac points at the twofold screw axis. This type of hourglasslike Dirac semimetal is symmetry
enforced and does not need band inversion anymore. Our discovery provides a platform to study novel topological
semimetal states from nonsymmorphic symmetries.
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I. INTRODUCTION

Beyond the famous Dirac and Weyl semimetals [1–5] which
can be regarded as analogs of Dirac and Weyl fermions
in particle physics, a new kind of topological semimetal, a
nodal line semimetal (NLSM) [6–13], was recently predicted
and experimentally discovered [14–17]. For a NLSM, the
lowest conduction and highest valence bands touch each other
at a series of continuous points, forming a closed loop in
reciprocal space. The topological property of the NLSM can
be characterized by the accumulation of Berry phase [18]
along a closed loop encircling the nodal line. According
to bulk-boundary correspondence, a NLSM can exhibit a
“drumhead”-like surface state with nearly flat dispersion which
may induce giant Friedel oscillations [19], strong correlated
effects, and high-temperature superconductivities [20]. With
a toruslike Fermi surface, a NLSM shows unusual transport
properties such as multiple phase shifts in quantum oscillations
[21,22].

According to the robustness, NLSMs can be divided into
two categories: accidental nodal lines (ANLs) and symmetry-
enforced nodal lines. The ANLs are usually derived from the
band-inversion mechanism and protected by the coexistence
of time-reversal and space-inversion symmetries [23–26] or
mirror symmetry [27,28]. This type of nodal line can be
annihilated without breaking the corresponding symmetry as
long as the band inversion disappears. On the other hand, a
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nonsymmorphic symmetry can protect the symmetry-enforced
nodal line. Suppose there is a slide mirror operation g1 =
{Mz|a/2}, indicating a mirror reflection about the z direction
accompanied by a translation of half the lattice vector a/2.
On the mirror-invariant plane (e.g., kz = 0), the momentum-
dependent eigenvalues of g1 are ±λeikx/2, where λ = 1 or i

for spinless or spinful systems. As shown in Fig. 1(a), for
systems with time-reversal symmetry (TRS) T but without
space-inversion symmetry P , all bands generally split except
at time-reversal-invariant momenta (TRIMs), where T 2 = −1
ensures the Kramers degeneration. Based on the evolution
of the eigenvalues between two TRIMs (e.g., the � and X

points), two pairs of bands have to switch their partners
and inevitably cross each other, forming hourglasslike band
structures [29]. Actually, along any loops connecting these
two TRIMs in the plane, the band degenerate point always
exists, which will form a closed nodal ring (red solid line)
centered at the � point, as displayed in the right panel of
Fig. 1(a). Moreover, if the system has an additional glide
operation on the perpendicular plane (e.g., the kx-kz plane),
another nodal ring (green dashed line) will appear, and the two
nodal rings touch each other to form an hourglasslike nodal
chain (HNC) structure [30,31], as shown in the right panel of
Fig. 1(a). This symmetry-enforced nodal line and nodal chain
were first put forward in Ref. [30], and IrF4 was proposed
as a candidate material. However, the symmetry-enforced
nodal lines in the material are subject to three constraints: a
remarkable spin-orbit coupling (SOC) effect, broken inversion
symmetry, and preserved time-reversal symmetry. The third
constraint may be broken by the possible magnetic order in
IrF4 at low temperature. As a result, it is important and urgent
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FIG. 1. (a) Left: the hourglasslike band structures protected by
g1 = {Mz|a/2} for systems without P symmetry including the SOC
effect. Right: the corresponding nodal rings at the kx-ky plane (red
solid line) and the kx-kz plane (green dashed line) constructing an
HNC in the extended BZ. (b) Left: hourglasslike band structures
without SOC protected by g1 and g2 in the absence of SOC effect.
Right: the corresponding HNCs at the kx-ky plane (red solid line) and
the kx-kz (green dashed line) constructing an HNN structure in the
extended BZ. The eigenvalues of {Mz|a/2} are given. Notice that the
HNC in (b) is formed by a large nodal line traversing the whole BZ,
while the HNC in (a) is formed by two tangent nodal rings alternately
in orthogonal planes.

to search for more and better symmetry-enforced nodal line
semimetal candidates free of such constraints.

In this work, we find another path to realize symmetry-
enforced nodal lines and nets in weak SOC materials with
spinless nonsymmorphic symmetries, which can be general-
ized to bosonic systems with similar symmetries. As shown in
the left panel of Fig. 1(b), in the absence of SOC, T 2 = 1 does
not ensure Kramers degeneracy anymore. However, the joint
operation T̃ = g1T satisfies T̃ 2 = −1 at kx = π , which can
give equivalent Kramers degeneracy at the X point. If we have
another nonsymmorphic symmetry g2 (e.g., a twofold screw
axis) that can ensure the double degeneracy at kx = 0 (e.g., the
Y point), then following the evolution of the eigenvalues of g1

from Y to X, we deduce that a nodal line will appear in the
kz = 0 plane. In fact, as shown in the right panel of Fig. 1(b),
rather than forming a nodal line, here the crossing point begins
and ends at a fourfold-degenerate point on the Brillouin zone
(BZ) corner (this will be discussed later) and finally forms an
HNC structure (red solid line) in the extended BZ. If we further
consider an extra perpendicular slide mirror plane, another
HNC (green dashed line) emerges, and two HNCs will link
together, forming a nodal net structure. From this analysis,
we propose that Ag2BiO3 with the Pnna space group can
host an ideal hourglasslike nodal net (HNN) structure when
the weak SOC effect is ignored. The Fermi surface is made
up of a toruslike electron pocket and a toruslike hole pocket,
which may induce novel transport properties. After including
the SOC effect, the HNN is slightly gapped, and a pair of
hourglasslike Dirac points consequentially emerge, which are

distinct from previous Dirac semimetals protected by pure
rotation symmetries [32].

II. THE CALCULATION METHOD AND THE GEOMETRIC
STRUCTURE OF Ag2BiO3

Our first-principles calculations were performed using the
Vienna Ab initio Simulation Package (VASP) [33,34] within
the generalized gradient approximation [35] of Perdew, Burke,
and Ernzerhof [36]. A cutoff energy of 500 eV and a k mesh
of 15 × 15 × 15 are chosen to guarantee energy convergence.
The crystal structure is relaxed to the ground states with a force
of less than 0.01 eV/Å on each atom. The surface states are
obtained using the method of maximally localized Wannier
functions in the WANNIER90 [37,38] code and WannierTools
code [39].

The crystal structure of Ag2BiO3 [40] used to be very
controversial because of the discrepancy between theoretically
predicted metallic behaviors and experimentally observed
insulating results. Subsequently, some careful analyses both
experimentally and theoretically verified that Ag2BiO3 has
three distinctive phases [41,42] with space groups of Pnna,
Pnn2, and Pn. The Pnna phase is a metal, and the Pn phase
is a semiconductor, both of which are metastable and can
transform into the Pnn2 phase, which is a semiconducting
ground state. Very recently, an electric-field-induced metal-
insulator transition and Weyl semimetal were proposed in the
Pnn2 phase of Ag2BiO3 [43]. In this work, we just focus on
the Pnna phase, and the formula Ag2BiO3 refers to the Pnna

phase unless specifically stated otherwise.
As shown in Fig. 2(a), Ag2BiO3 crystallizes in a tetragonal

crystal with the centrosymmetric nonsymmorphic space group
Pnna (No. 52). There are four bismuth atoms (violet balls) in
the unit cell that are located at the octahedral center of the
oxygen atoms (red balls), and eight silver atoms (gray balls)
fill the interstice sites. The optimized lattice constants are |a| =
6.13 Å, |b| = 6.36 Å, and |c| = 9.83 Å, which are consistent
with the experimental result [40]. The Brillouin zone and high-
symmetry points are displayed in Fig. 2(b).

III. THE ELECTRONIC STRUCTURE OF Ag2BiO3

The calculated electronic structure of Ag2BiO3 in the
absence of SOC is shown in Fig. 2(c). We can see there are four
bands entangled together near the Fermi level which are mainly
derived from the 6s orbital of bismuth atoms. In addition, due
to nonsymmorphic symmetries in the Pnna space group, both
the conduction and valence bands possess twofold degeneracy
at the high-symmetry points (X, Y , R, S, etc.), lines (XS,
SY , RS, etc.), and plane (RT YS) in the BZ, as shown in
Figs. 2(c) and 2(e). On the one hand, along the X-S-Y path,
the lowest twofold-degenerate conduction and highest valence
bands touch at the S point at the Fermi level and form a
fourfold-degenerate point. In analogy with the concept of a
double Dirac point [44,45] in the presence of SOC, we denote
this fourfold-degenerate Dirac point in the absence of SOC
as double Dirac point. On the other hand, along the Y� and
UR paths, two singlet bands cross each other, forming a single
Dirac point located slightly below and above the Fermi level.
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FIG. 2. (a) The unit cell of Ag2BiO3 in the Pnna phase. The
violet, red, and gray balls represent bismuth, oxygen, and silver atoms,
respectively. (b) The bulk Brillouin zone and (001)/(100) surface
Brillouin zone. (c) The band structure of Ag2BiO3 without SOC.
(d) The toruslike Fermi surface with electron (red) and hole (blue)
pockets. (e) All the twofold-degenerate points (green) and two nodal
lines (red and blue) in the BZ. (f) Display of the HNN structure in
the extended BZ. The color stands for the energy dispersion of the
HNN with respect to the Fermi level. The red dashed lines labeled
L1, L2 represent two distinctive loops along which the Berry phase is
calculated.

Remarkably, the band connection of the four bands near the
Fermi level shows the typical hourglasslike shape.

Moreover, through careful calculation, we discover that the
trace of the Dirac points actually forms a nodal line (NL)
located in the X�YS (kz = 0) and XURS (kx = π ) planes.
Displayed in Fig. 2(e), the NL at the XURS plane starts
from the S point, passes through UR, and comes back to
the next S point in the extended BZ, which actually forms
an HNC structure along the SR direction, as depicted in the
right panel of Fig. 1(b). On the other hand, the NL in the X�YS

plane also starts at the S point, crosses �Y , and forms another
HNC structure along the SY direction. Those two HNCs joint
together at the double Dirac point S and thus form a unique
HNN structure, as plotted in Fig. 2(f). Based on the Berry
phase calculation along distinctive loops [red dashed lines L1

and L2 in Fig. 2(f)], we obtain π and zero Berry phase for the
L1 and L2 paths, respectively. The L1 path encircles the nodal
line one time, while L2 encircles the nodal line two times.
It is significant to find that the HNCs constructing the HNN
structure have different energies. One HNC on the kz = 0 plane
has almost negative energy, while the other on the kx = π

plane has nearly positive energy with respect to the Fermi
level. By plotting the Fermi surface in Fig. 2(d), we find a
toruslike electron pocket (in blue) originating from the HNC

at the kz = 0 plane and a hole pocket (in red) originating from
the HNC at the kx = π plane. From this perspective, two HNCs
constructing an HNN are separated both in momentum space
and in energy space except around the S point. As far as we
know, the HNN structure proposed in this paper is different
from all known nodal line, nodal chain, and nodal net [46–48]
systems, and we hope this unique HNN structure will result in
novel properties in future transport experiments.

IV. SYMMETRY ANALYSIS OF Ag2BiO3

As mentioned before, the emergence of an HNN semimetal
in Ag2BiO3 without SOC results from specific nonsymmorphic
symmetries. Based on symmetry analysis, we are going to
prove the existence of an HNN structure in Ag2BiO3 with the
space group Pnna. The Pnna space group includes eight sym-
metry operations in total: I , P , {C2x |b/2 + c/2}, {C2z|a/2},
{C2y |a/2 + b/2 + c/2}, {Mx |b/2 + c/2}, {My |a/2 + b/2 +
c/2}, and {Mz|a/2}, where the first is the identity operation, the
second is the inversion operation, and the third and the fourth
are twofold rotations along the x and z axes, respectively. The
last four are effective nonsymmorphic operations.

First, to prove the double degeneracy of the band structure
at BZ boundaries, we consider a nonsymmorphic operation
g1 = {Mz|a/2} and TRS T , which jointly act on the lattice
momentum as follows:

g1 : (kx, ky, kz) → (kx, ky,−kz), (1)

T : (kx, ky,−kz) → (−kx,−ky, kz). (2)

Defining a joint operation T̃ = g1T , we find it commutes with
the Hamiltonian H (k) when k = (0/π, 0/π, kz). On the other
band, with the conditions T 2 ≡ 1 and g2

1 = eikx , we can get
T̃ 2 = −1 when kx = π . As a result, the Kramers-like band
degeneracy [29] can be obtained along the XU (π, 0, kz) and
RS (π, π, kz) paths. Similarly, the operation g2 = {My |a/2 +
b/2 + c/2} guarantees band degeneracy along the ZT and
XS paths, and the operation g3 = {Mx |b/2 + c/2} enforces
band degeneracy along the ZU and YS paths. In addition,
the twofold screw axis g4 = {C2y |a/2 + b/2 + c/2} enforces
band degeneracy in the whole RT YS (ky = π ) plane. Those
degenerating points in the BZ are clearly demonstrated in
Fig. 2(e).

Second, to prove the fourfold degeneracy at the S (π, π, 0)
point, we chose three symmetry operations: P , g2, and g5 =
{C2z|a/2}, which all commute with H (k) at the S point. It
is easy to obtain the relations P 2 = 1, g2

2 = −1, and g2
5 =

1. In analogy with the above analysis, combining g2
2 = −1

with T , we can acquire two Kramers-like degenerate states,
such as |φE

+i〉 and T |φE
+i〉 with eigenvalues +i and −i of g2,

respectively. Utilizing the commutation relation [P, g2] = 0,
we can additionally label those states by the parity λ as
|φE

λ,+i〉, T |φE
λ,+i〉. Since T will not change parity, those two

states must have the same parity. On the other band, using
the anticommutation relation {P, g5} = 0, we can deduce that
|φE

λ,+i〉 (T |φE
λ,+i〉) must have the degenerate partner g5|φE

λ,+i〉
(g5T |φE

λ,+i〉) with opposite parity. Therefore, we obtain the
fourfold degeneracy of Bloch states at the S point.
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FIG. 3. (a) The band structure at the XURS plane. The eigen-
values of {Mx |b/2 + c/2} are shown. (b) Three-dimensional view
of the energy spectrum at the XURS plane. (c) The band structure
at the X�YS plane. The eigenvalues of {Mz|a/2} are shown. (d)
Three-dimensional view of the double Dirac cone around the S point
at the RT YS plane. The bands are doubly degenerate. (e) and (f)
Calculated surface states of Ag2BiO3 on the (001) and (100) surfaces,
respectively. The color represents the weight of the local density of
states.

Keeping the above two conclusions in mind, we now discuss
the band connections and corresponding band crossings in
each mirror-invariant plane. For the g3 = {Mx |b/2 + c/2}
operation, the invariant plane is XURS (kx = π ), and we can
use its eigenvalues g±(ky, kz) = ±eiky/2+ikz/2 to identify each
band. Specifically, at U (π, 0, π ) and S (π, π, 0), a pair of
degenerate bands have opposite eigenvalues (±i), which are
interchanged by T . However, at the X (π, 0, 0) and R (π, π, π )
points, the eigenvalues can take +1 or −1. Because the bands
are doubly degenerate along the UX path, the eigenvalues for a
pair of degenerate bands will evolve from ±i at the U point to
±1 at the X point. Therefore, the quadruply degenerate states
at the S point with eigenvalues (+i,−i,+i,−i) will split into
two pairs of doubly degenerate states along the SX path with
eigenvalues (+i,−i) and (+i,−i), respectively, as shown in
Fig. 3(a). On the other hand, since the degeneracy along the
SR path is protected by g4T , which commutes with g3 at the
R point, we can easily find that the doubly degenerate bands at
the R point have the same eigenvalues, (+1,+1) or (−1,−1).
Hence, the quadruply degenerate states at the S point with
eigenvalues (+i,−i,+i,−i) will separate into two pairs of
doubly degenerate states along the SR path with eigenvalues
(+i,+i) and (−i,−i), respectively, as shown in Fig. 3(a). As
a consequence, along the UR path, two pairs of bands have

to switch partners and cross each other, forming the typical
hourglasslike structure. Along arbitrary loops connecting the
U and R points in this plane, the crossing point always exists,
and its trace naturally forms one quarter of the nodal line
in the plane, as shown in Fig. 3(b). A significant difference
between this type of nodal line [Fig. 1(b)] and other nodal
lines [Fig. 1(a)] is that a double Dirac point S exists. The nodal
line starts at the S point, crosses the UR line, and comes back
to another S point, which forms a nodal chain in the extended
BZ. It is worth noting that the double Dirac point plays a crucial
role in forming the nodal chain structure.

Similarly, for the g1 = {Mz|a/2} operation on its invariant
plane X�YS (kz = 0), using the commutation relation of g4

and g1, we find that two degenerate bands possess the same
eigenvalues at the Y point and opposite eigenvalues at the X

point, as shown in Fig. 3(c). Thus, an HNC is also expected
in this plane. Finally, the HNCs in two mutually perpendicular
planes link together at the S point, forming the HNN structure,
as demonstrated in Fig. 2(f). In addition, on the RT YS (ky =
π ) plane, both conduction bands and valence bands are doubly
degenerate due to the g4 = {C2y |a/2 + b/2 + c/2} operation.
They touch each other at the S point, forming a double Dirac
cone with linear dispersion, as shown in Fig. 3(d).

V. THE SURFACE STATES OF Ag2BiO3

Based on the maximally localized Wannier function
(MLWF) methods [38,39], we calculate the surface energy
spectrum on different surfaces, as shown in Figs. 3(e) and 3(f).
For the (001) surface, the HNC on the kz = 0 plane projects
into this surface. As in Fig. 3(e), we can see that inside the
projected region there are drumhead-like surface states with
nearly flat dispersion, while there are no surface states outside
the projected region, which indicates the topological property
of the HNC in the bulk state. The other HNC in the kx = π

plane projects into the S̄X̄ line and gives only bulk states. For
the (100) surface, the HNC in the kx = π plane will project
into this surface, and a similar flat surface state emerges, as
shown in Fig. 3(f). The HNC at kz = 0 projects into the S̄X̄

line and only gives bulk states. The region of the projected HNC
is rather sizable in momentum space, and the surface state is
close to the Fermi level, which facilitates the observations in
experiment.

VI. TIGHT-BINDING MODEL OF Ag2BiO3

Considering that the electronic states near the Fermi level
mainly originate from the 6s orbital of four bismuth atoms,
we can use a four-band ting-binding (TB) model to describe
the band structure of Ag2BiO3. The base set is chosen to be
{φi,s}, where i = 1, 2, 3, 4 stands for different sites, as shown
in Fig. 4(a). The TB model is written as

H =
∑

i

εic
†
i ci +

∑
i �=j

tij c
†
i cj , (3)

where c
†
i (cj ) is the creation (annihilation) operator of electrons

at site i (j ), tij is the hopping parameter between the ith and
j th atoms, and εi is the on-site energy of ith site.

As shown in Fig. 4(a), we consider two nearest-neighbor
(NN) hoppings (t1, t2) and one next-nearest-neighbor (NNN)
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FIG. 4. (a) The lattice with four bismuth atoms for the TB model.
t1 is the NN hopping between sites 1 and 2 and 3 and 4. t2 is the
NN hopping between sites 2 and 4 and 1 and 3. t3 is the NNN
hopping between sites 1 and 4 and 2 and 3. (b) TB band structure
(t1 = −0.294 eV, t2 = −0.172 eV, t3 = 0.038 eV, εi = 0.0 eV). (c)
TB band structure with the same parameters as (b) except t2 = 0.0 eV.
(d) TB band structure with the same parameters as (b) except
t3 = 0.0 eV.

hopping (t3). By fitting those hopping parameters, we find
the band structure from the TB model matches the density
functional theory (DFT) result well. Especially, it can well
reproduce the HNN structure in Fig. 4(b). In addition, we
reveal that the NN hopping t2 is responsible for the formation
of the HNC on the X�YS plane. In Fig. 4(c), when t2
gradually decreases to zero, the HNC on the X�YS plane
will be compressed and finally transform into a fourfold-
degenerate nodal line along the SY path, while the HNC on
the XURS plane is maintained. The HNC on the XURS

plane is dominated by NNN hopping; it will transform into a
fourfold-degenerate nodal line along the RS path when t3 = 0,
as shown in Fig. 4(d). This transformation from HNC to nodal
line is accompanied by a change in symmetry.

VII. SOC EFFECT ON THE HNN

In the presence of SOC, bands are conventionally Kramers
degenerate due to the coexistence of time-reversal and space-
inversion symmetries. A pair of Kramers degenerate states at
each k point can generally be written as |φ〉 and PT |φ〉. To
determine whether the HNN structure can still exist, we need
to recalculate the eigenvalues of corresponding symmetries for
all bands under the SOC condition.

At the kx = π plane, we can use the eigenvalues
g± = ±iei(ky/2+kz/2) of g3 = {Mx |b/2 + c/2} to identify
each band. Suppose a state |φ〉 has an eigenvalue g+,
which satisfies g3|φ〉 = +iei(ky/2+kz/2)|φ〉. Using the
commutation relation g3P = eiky+ikzP g3, we find the Kramers
partner PT |φ〉 satisfies g3PT |φ〉 = eiky+ikzP T g3|φ〉 =
−iei(ky/2+kz/2)PT |φ〉, which indicates PT |φ〉 has the
eigenvalue g−. Therefore, we find that a pair of Kramers
degenerate bands must have opposite eigenvalues of g3,

FIG. 5. (a) and (b) Band structures from DFT including SOC.
There are gaps inside the dashed circles. (c) The enlarged band
structure around the S point near the Fermi level. (d) The hourglasslike
band structure along SX below the Fermi level. The eigenvalues of
{C2y |a/2 + b/2 + c/2} are given.

as shown in Fig. 5(a). Consequently, if two pairs of bands
touch each other, g3 cannot protect a fourfold degeneracy,
and gaps are generally opened between bands with the same
eigenvalues. Through similar symmetry analysis, we find
g1 = {Mz|a/2} cannot protect a fourfold degeneracy on the
kz = 0 plane. Thus, we conclude that the HNCs (without
SOC) on two planes will be gapped out by the SOC effect. As
shown in Figs. 5(a) and 5(b), because of the relatively weak
SOC effect of s orbitals, the band gaps induced by SOC are
about 51 meV along UR, 33 meV along XY , and 8 meV at
the S point, respectively.

On the other hand, along the SX path, we discover that a pair
of conduction bands switches one partner with a pair of valence
bands and inevitably forms an hourglasslike Dirac semimetal
(HDSM) [49] structure, as shown in Fig. 5(c). This process
happens for every group of four Kramers pairs in the whole
energy range displayed in Fig. 5(d). To reveal the formation
of a HDSM, we focus on the g4 = {C2y |a/2 + b/2 + c/2}
operation acting on Bloch states on the SX path. We can use
its eigenvalues g± = ±ieiky/2 to label all bands. Utilizing the
condition g4P = −eiky P g4, we can verify that two Kramers
degenerate bands must have the same eigenvalues of g4

along SX. Therefore, in Fig. 5(d), a pair of Kramers bands
with eigenvalues (+i,+i) at the X point must be degenerate
with a pair of bands with eigenvalues (−i,−i) since T can
interchange i and −i states. Then, for the Bloch states at
the S point, a fourfold degeneracy can be derived by the
anticommutation relation {g1, P } = 0, analogous to the proof
of the fourfold degeneracy at the S point in the above spinless
case. Moreover, because g4 commutes with both g1 and P

at the S point, we can conclude that a fourfold-degenerate
Bloch state must have the same eigenvalues of g4, as shown
in Fig. 5(d). Finally, along the SX path, four pairs of Kramers
degenerate bands have to switch partners and inevitably cross
each other, forming an hourglasslike dispersion relation. There

075146-5



FU, FAN, MA, LIU, AND YAO PHYSICAL REVIEW B 98, 075146 (2018)

is a symmetry-enforced Dirac point that cannot be eliminated
as long as the symmetry remains, which is distinct from
the Dirac semimetals protected by pure rotation symmetries
that only appear during topological phase transitions [50].
If the electron filling number is 8n + 4 [13], the Dirac
point of a HDSM can perfectly cross the Fermi level in
principle.

VIII. CONCLUSIONS AND DISCUSSION

In summary, we reported an HNN structure in Ag2BiO3

with a centrosymmetric nonsymmorphic space group in the
absence of SOC. The HNN structure is constructed by two
HNCs, which are symmetry enforced and cannot be removed
without breaking symmetries. From this perspective, this kind
of nodal net is different from the accidental nodal net in
AlB2-type TiB2 [48], which is protected by spatial inversion,
mirror symmetry, and band inversion and can be annihilated by
just lifting band positions. The special toruslike Fermi surface
on both the electron and hole sides was specifically shown.
A four-band tight-binding model was developed to describe
the HNN structure, and corresponding drumheadlike surface
states were demonstrated on the (100) and (001) surfaces.
In addition, when including the SOC effect, the HNNs are

slightly gapped, and a pair of Dirac points with hourglasslike
dispersions inevitably emerges on a twofold screw axis.

It is known that an electron can pick up a nontrivial π Berry
phase around a loop that interlocks with the nodal line which
may be probed by the Shubnikov–de Haas quantum oscillations
in experiment [51]. It has been revealed [52] that the total phase
shift for each frequency component of the quantum oscillation
depends on the extreme cross sections of the Fermi surface,
the direction of the magnetic field, and the sign of the charge
carrier. In this respect, it is worth looking forward to observing
the abundant phase shift patterns in Ag2BiO3 in quantum
oscillation experiments due to the unique Fermi surface made
of a toruslike electron pocket and a toruslike hole pocket. In
addition, we suggest this HNN structure can exist in weak-SOC
compounds and bosonic systems with similar nonsymmorphic
symmetries.
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