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Truncated-unity parquet equations: Application to the repulsive Hubbard model
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The parquet equations are a self-consistent set of equations for the effective two-particle vertex of an interacting
many-fermion system. The application of these equations to bulk models is, however, demanding due to the
complex emergent momentum and frequency structure of the vertex. Here, we show how a channel decomposition
by means of truncated unities, which was developed in the context of the functional renormalization group to
efficiently treat the momentum dependence, can be transferred to the parquet equations. This leads to a significantly
reduced complexity and memory consumption scaling only linearly with the number of discrete momenta. We
apply this technique to the half-filled repulsive Hubbard model on the square lattice and present approximate
solutions for the channel-projected vertices and the full reducible vertex.
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I. INTRODUCTION

The parquet approach was introduced more than five
decades ago as a method to analyze interacting many-fermion
systems [1–3]. Since then, it has helped significantly in
understanding the physics of magnetic impurities in met-
als [4] as well as the breakdown of Fermi liquid behavior
in one-dimensional metals [5,6]. For a recent application to
Hubbard nanorings, see Ref. [7]. A main advantage of the
parquet scheme is that it can be made self-consistent at the
single-particle and two-particle level [8,9]. It has been shown
that the parquet approximation (to be introduced later) is a
thermodynamically consistent and conserving, �-derivable
approximation in Baym’s sense at the one-particle level [10].
From early on, it has been clear that the parquet approxima-
tion is closely related to perturbative renormalization group
(RG) schemes. At least regarding the modern fermionic func-
tional renormalization group (fRG) flavors (for reviews, see,
e.g., Refs. [11,12]), it has been understood that the parquet ap-
proximation and the fRG in the usual truncations sum the same
classes of diagrams [13]. However, it has also been known that
in the fRG, due to the unavoidable truncation of the hierarchy
of flow equations, certain combinations of internal lines are
suppressed compared to the contributions kept in the parquet
approximation. Parts of these missing contributions can be
recollected by refined flow equations [14–16]. Quite recently,
a systematic multiloop fRG scheme was proposed [13] that
in simplified models reconciles the fRG results with those
of the parquet approximation in a quantitative manner. These
attempts to lift the fRG on higher levels already indicate that
fRG approaches may offer advantages despite the fact that they
do not readily contain the full perturbative corrections of the
parquet approximation. Indeed, considering the vast more re-
cent literature on standard zero- to two-dimensional correlated
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many-fermion lattice systems, the applications of RG schemes
seem to outnumber clearly those of parquet schemes.

In order to make the comparison more specific, we men-
tion two recent state-of-the-art parquet studies of the two-
dimensional Hubbard model [17,18]. In these works, the
finest momentum resolution reaches 6 × 6 due to memory
constraints. Hence, very few points are located in the vicinity of
the Fermi surfaces, and many interesting questions like the gen-
eration of unconventional superconductivity, the opening of a
pseudogap, or the tendency toward incommensurate or stripe
ordering are hard to study. By contrast, in the fRG approaches,
O(100) momentum-space patches were employed at an early
stage without the use of parallel computers [19], and 14 × 14
grids were also analyzed [20]. It should be mentioned that
these works did not consider the frequency dependence of the
interactions, which is usually kept in the parquet studies. Yet,
more recent fRG schemes are about to remedy this shortcoming
while still reaching similar momentum resolutions.

A substantial progress in simplifying the description of
the momentum structure has been provided by channel-
decomposed fRG schemes [21–23]. The main simplification
there consists in expressing the effective two-particle interac-
tion, which depends on three momenta (usually two incoming
and one outgoing momentum, the fourth one being fixed by
momentum conservation), by three interaction functions that
describe the interaction between specific fermion bilinears
in particle-particle and particle-hole channels. Each of these
interaction functions depends strongly on one “bosonic” mo-
mentum but only weakly on two other wave vectors, hence the
latter dependencies can be expanded in a suitable form-factor
basis. In the simplest cases, this means that the interacting
fermion bilinears live on nearby sites on the lattice, while
longer bilinears are usually not relevant. This then allows
for a well-convergent and physically meaningful truncation
of the form-factor expansion. Without frequency dependence,
the channel-decomposed fRG schemes can be parallelized
efficiently and pushed to very fine momentum resolutions with
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thousands of momenta in the Brillouin zone, in conjunction
with convergence checks in the form-factor truncation [23,24].
Currently, the inclusion of the frequency dependence and
self-energy effects into these schemes is on the way (see,
e.g., Refs. [25–27]). For the frequency dependence, a channel
decomposition was also shown to yield meaningful results for
impurity models [28], but in general, the complex frequency
structure requires a more sophisticated description [27,29].

The main goal of the present paper is to show how the ad-
vantages of the channel decomposition explored in fRG studies
can be transferred to the parquet equations. We show that with-
out the frequency dependence, this readily gives meaningful
results with a high momentum resolution. In particular, the
channel decomposition of the two-particle interaction reduces
the memory required for numerically evaluating the parquet
equations from O(N3) to O(N ), where N is the number of
momenta in the first Brillouin zone. This makes it plausible
that the channel decomposition will also be beneficial in cases
where frequency-dependent interactions are considered.

The paper is organized as follows. We begin in Sec. II
by briefly describing the parquet equations. After that, we
introduce the projections onto the direct particle-hole, crossed
particle-hole and particle-particle channel, and subsequently
derive the truncated-unity (TU) parquet equations. In Sec. III,
we further derive the cross projections between the different
channels, which are necessary for iteratively solving the TU
parquet equations. In Sec. IV, we discuss the advantages
of the channel decomposition with respect to computational
complexity and memory cost. Following this, we provide
more details of our numerical implementation in Sec. V, and
we present our results for the half-filled repulsive Hubbard
model in Sec. VI. Finally, the appendix is concerned with
the derivation of channel-decomposed parquet equations for
general spin-SU(2)-symmetric systems.

II. CHANNEL DECOMPOSITION

We start from the parquet equations as described, for
example, in Ref. [30]. These are formulated in terms of the
full Green function G, the full (one-particle-irreducible) two-
particle-reducible vertex F , the (in channel r two-particle-)
reducible vertices Φr in the direct particle-hole channel (r =
ph,d), the crossed particle-hole channel (r = ph,c), and the
particle-particle channel (r = pp), as well as the corresponding
(in channel r two-particle-) irreducible vertices Γ r in each
channel. Explicitly, the parquet equations read as follows:1

Φph,d
σ1σ2σ3σ4

(p1, p2, p3)

= −kBT

N

∑
k, σ, σ ′

Fσ1σ ′σσ4 (p1, k + p2 − p3, k) G(k)

×G(k + p2 − p3) Γ
ph,d
σσ2σ3σ ′ (k, p2, p3) , (1)

1We mainly follow the conventions of Refs. [30,35,50]; however,
the two-point Green function used here contains an additional factor
β = 1/(kBT ), and all four-point functions contain an additional factor
2 compared to those used in Refs. [35,50]. Further, note that the
functions Φr on the left-hand side of the parquet equations are not
identical to the corresponding functions used in the fRG framework.

Φph,c
σ1σ2σ3σ4

(p1, p2, p3)

= kBT

N

∑
k, σ, σ ′

Fσ1σ ′σ3σ (p1, k + p3 − p1, p3) G(k)

×G(k + p3 − p1) Γ
ph,c
σσ2σ ′σ4

(k, p2, k + p3 − p1) , (2)

Φpp
σ1σ2σ3σ4

(p1, p2, p3)

= −1

2

kBT

N

∑
k, σ, σ ′

Fσ1σ2σσ ′ (p1, p2, k) G(k) G(p1 + p2 − k)

×Γ
pp
σσ ′σ3σ4

(k, p1 + p2 − k, p3) . (3)

Here, the function arguments k ≡ (ω, k) ≡ (k0, k) are multi-
indices comprising fermionic Matsubara frequencies (at tem-
perature T ) and Bloch momenta (of which there are N in the
first Brillouin zone). Each vertex in Eqs. (1)–(3) depends on
only three momenta/frequencies, since the fourth is always
determined by momentum/energy conservation. Furthermore,
each vertex depends on four spin indices, while we have
assumed the full Green function to be spin independent corre-
sponding to the SU(2)-symmetric case. The different vertices
appearing in Eqs. (1)–(3) are related through

F = � + Φph,d + Φph,c + Φpp , (4)

where � denotes the fully (two-particle-) irreducible vertex,
and by

Γ r = F − Φr . (5)

Throughout this paper, we will use the parquet approxima-
tion [30], which identifies the fully irreducible vertex with the
initial interaction given in the Hubbard model by Eq. (A4),
hence � ≡ F 0. Graphically, the parquet equations can be
represented by means of Feynman diagrams as in Fig. 1 (see
also Ref. [30]).

Next, we define the bosonic Matsubara frequencies and
corresponding transfer (t, u) or total (s) momenta as

t ≡ (t0, t ) = (ω3 − ω2 , p3 − p2) , (6)

u ≡ (u0, u) = (ω1 − ω3 , p1 − p3) , (7)

s ≡ (s0, s) = (ω1 + ω2 , p1 + p2) . (8)

We introduce the following vertices, which differ from the
original vertices merely in a relabeling of their arguments (for
other conventions, see Refs. [21,23,31]):

Γk1k2 (t ) := Γ (k1, k2 − t, k2), (9)

Γk1k2 (u) := Γ (k1, k2 − u, k1 − u), (10)

Γk1k2 (s) := Γ (k1, s − k1, s − k2). (11)

Note that the three functions on the left-hand side are actually
different, although in our notation they are distinguished
only by their respective argument (t, u, or s). With these
definitions, the parquet equations can be rewritten compactly
as follows (for deriving the last equation, one has to use that
Γ pp is antisymmetric with respect to its first two arguments,
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FIG. 1. Graphical representation of parquet equations.

see Appendix):

[
Φph,d

σ1σ2σ3σ4

]
k1k2

(t ) = −kBT

N

∑
k, σ, σ ′

[Fσ1σ ′σσ4 ]k1k (t ) G(k)

×G(k − t )
[
Γ

ph,d
σσ2σ3σ ′

]
kk2

(t ) , (12)

[
Φph,c

σ1σ2σ3σ4

]
k1k2

(u) = kBT

N

∑
k, σ, σ ′

[Fσ1σ ′σ3σ ]k1k (u) G(k)

×G(k − u)
[
Γ

ph,c
σσ2σ ′σ4

]
kk2

(u) , (13)

[
Φpp

σ1σ2σ3σ4

]
k1k2

(s) = 1

2

kBT

N

∑
k, σ, σ ′

[
Fσ1σ2σσ ′]k1k (s) G(k)

×G(s − k)
[
Γ

pp
σ ′σσ3σ4

]
kk2

(s) . (14)

We generally expect that the three reducible vertices
Φph,d, Φph,c, and Φpp, which together solve the parquet equa-
tions, have a strong dependence on their respective main
transfer or total momentum (see, e.g., Refs. [21–23,32–34]).
On the other hand, the dependencies on the remaining two
fermionic momenta are expected to be rather weak. Therefore
we assume that these dependencies can be described to a
sufficient accuracy by using only few smooth basis functions.
Thus we consider a set of form factors, i.e., functions in the
first Brillouin zone (BZ) denoted by

{f�(k) ; k ∈ 1st BZ, � ∈ Z × Z} , (15)

which are assumed to be pairwise orthonormal and complete
in the sense that

1

N

∑
k

f�(k)f ∗
�′ (k) = δ��′ , (16)

∑
�

f�(k)f ∗
� (k′) = N δkk′ . (17)

Later, the index � will label the sites of the two-dimensional
square lattice [see Eq. (40)]. For technical reasons, we further
introduce the multi-indices � = (�0, �) and the “frequency-
dependent” form factors

f�(k) := δ�0,k0 f�(k) , (18)

which are orthonormal and complete in the sense that

1

N

∑
k

f�(k)f ∗
�′ (k) = δ��′ , (19)

∑
�

f�(k)f ∗
� (k′) = N δkk′ . (20)

In fact, the following considerations would remain valid for
more general, truly frequency-dependent form factors fulfilling
Eqs. (19) and (20). Finally, we define the projections of an ar-
bitrary vertex Γ onto the direct particle-hole, crossed particle-
hole and particle-particle channel as follows (cf. Ref. [[23],
Eqs. (18)–(20)]):

D̂[Γ ]�1�2 (t ) = 1

N2

∑
k1, k2

Γk1k2 (t ) f�1 (k1) f ∗
�2

(k2) , (21)

Ĉ[Γ ]�1�2 (u) = 1

N2

∑
k1, k2

Γk1k2 (u) f�1 (k1) f ∗
�2

(k2) , (22)

P̂ [Γ ]�1�2 (s) = 1

N2

∑
k1, k2

Γk1k2 (s) f�1 (k1) f ∗
�2

(k2) . (23)

By combining these equations with Eqs. (9)–(11), we obtain
the following formulas, by which the vertex Γ can be recon-
structed from its respective projections (these equations will
be used in Sec. III to derive the “cross projections” between
different channels):

Γ (p1, p2, p3) =
∑
�1, �2

D̂[Γ ]�1�2 (p3 − p2) f ∗
�1

(p1) f�2 (p3) ,

(24)

Γ (p1, p2, p3) =
∑
�1, �2

Ĉ[Γ ]�1�2 (p1 − p3)

× f ∗
�1

(p1) f�2 (p1 + p2 − p3) , (25)

Γ (p1, p2, p3) =
∑
�1, �2

P̂ [Γ ]�1�2 (p1 + p2)

× f ∗
�1

(p1) f�2 (p1 + p2 − p3) . (26)

Using these relations, we will now derive parquet-type equa-
tions for the reducible vertices Φph,d, Φph,c, and Φpp, where
each of these vertices is projected onto its respective main
momentum. For this purpose, we apply the mappings (21)–(23)
to both sides of Eqs. (12)–(14) and insert two partitions of
unity of the form-factor basis [see Eq. (20)] on both sides
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of the fermion loops. This procedure is analogous to the
derivation of flow equations in the truncated-unity functional
renormalization group (TUfRG) scheme [23,24,35]. We thus
arrive at the following self-consistent equations, which we call
the truncated-unity (TU) parquet equations:

D̂
[
Φph,d

σ1σ2σ3σ4

]
�1�2

(t ) = −
∑

�, �′, σ, σ ′
D̂

[
Fσ1σ ′σσ4

]
�1�

(t )

×L
ph
��′ (t ) D̂

[
Γ

ph,d
σσ2σ3σ ′

]
�′�2

(t ) , (27)

Ĉ
[
Φph,c

σ1σ2σ3σ4

]
�1�2

(u) =
∑

�, �′, σ, σ ′
Ĉ

[
Fσ1σ ′σ3σ

]
�1�

(u)

×L
ph
��′ (u) Ĉ

[
Γ

ph,c
σσ2σ ′σ4

]
�′�2

(u) , (28)

P̂
[
Φpp

σ1σ2σ3σ4

]
�1�2

(s) = 1

2

∑
�, �′, σ, σ ′

P̂
[
Fσ1σ2σσ ′

]
�1�

(s)

×L
pp
��′ (s) P̂

[
Γ

pp
σ ′σσ3σ4

]
�′�2

(s) , (29)

where the particle-hole loop Lph and the particle-particle loop
Lpp are given by

L
ph
��′ (t ) = kBT

N

∑
k

G(k) G(k − t ) f�(k) f ∗
�′ (k) , (30)

L
pp
��′ (s) = kBT

N

∑
k

G(k) G(s − k) f�(k) f ∗
�′ (k) . (31)

One main feature of Eqs. (27)–(29) is that they involve only
matrix multiplications with respect to the internal summation
indices � and �′ of the form-factor basis (provided one uses a
countable set of form factors). This structure of the TU parquet
equations is particularly advantageous for the numerical par-
allelization because it allows for an independent evaluation for
different values of t, u, and s, and thus for a distribution of the
vertices over several compute nodes. We remark, however, that
internode communication is still needed when invoking Eq. (4).
Furthermore, the above form of the parquet equations still
requires the calculation of cross projections between different
channels as we will explain in the following.

III. CROSS PROJECTIONS

The standard procedure for solving the self-consistent
parquet equations is an iteration scheme, which takes the bare
interaction as the initial vertex and in each step evaluates the
parquet equations once to recalculate the vertices. To explain
this in more detail for the TU parquet equations (27)–(29), let
us assume that in one iteration step we have calculated the
projected vertices D̂[Φph,d], Ĉ[Φph,c], and P̂ [Φpp]. Then, in
the next step, we want to employ Eqs. (27)–(29) to recalculate
these vertices. Consider, as an example, the projection D̂[F ]
of the total vertex, which appears on the right-hand side of
Eq. (27). This can be split into the initial interaction and the
three channels [see Eq. (4)], i.e.,

D̂[F ]�1�(t ) = D̂[F 0]�1� + D̂[Φph,d]�1�(t )

+ D̂[Φph,c]�1�(t ) + D̂[Φpp]�1�(t ) . (32)

Similarly, D̂[Γ ph,d] can be calculated from Eq. (5) as

D̂[Γ ph,d]�′�2 (t ) = D̂[F ]�′�2 (t ) − D̂[Φph,d]�′�2 (t ) . (33)

Now, the first term in Eq. (32), i.e., the projection of the initial
interaction, is known explicitly: combining Eqs. (A4) and (21)
gives

D̂[F 0]�1� = 1

N2

∑
k, k′

f�1 (k)f ∗
�2

(k′) U (34)

≡ 〈f�1〉〈f ∗
� 〉U , (35)

where we have omitted the spin dependencies. The second
term in Eq. (32), namely D̂[Φph,d], is directly available from
the previous iteration step. By contrast, for calculating the
projections D̂[Φph,c] and D̂[Φpp] from the previously obtained
Ĉ[Φph,c] and P̂ [Φpp], it is necessary to invert the projections
Ĉ and P̂ . Hence we can calculate D̂[F ] by means of the formal
identity

D̂[F ]�1�(t ) = D̂[F 0]�1� + D̂[Φph,d]�1�(t )

+ D̂[Ĉ−1[Ĉ[Φph,c]]]�1�(t )

+ D̂[P̂ −1[P̂ [Φpp]]]�1�(t ) . (36)

To calculate the “cross projections” between the different
channels, we may use the definitions (21)–(23) as well as
Eqs. (24)–(26). After some algebra, we thus obtain

D̂[F ]�1�(t ) = D̂[F 0]�1� + D̂[Φph,d]�1�(t )

+ 1

N2

∑
k′

∑
�3, �4

Ĉ[Φph,c]�3�4 (k′)
∑
k1

f ∗
�3

(k1)

× f�4 (k1 − t ) f�1 (k1) f ∗
� (k1 − k′)

+ 1

N2

∑
k′

∑
�3, �4

P̂ [Φpp]�3�4 (k′)
∑
k1

f ∗
�3

(k1)

× f�4 (k1 − t )f�1 (k1) f ∗
� (k′ − k1 + t ) . (37)

Similarly, one can derive the cross projections between any two
other channels, and this then allows one to iteratively solve the
TU parquet equations.

We go on to describe some approximations which further
simplify the iterative solution. First, we neglect the frequency
dependencies of all vertices. The remaining frequency sums in
the fermion loops (30)–(31) can be performed analytically [36],
giving

L
ph
��′ (t ) :=

∑
�0, �

′
0

L
ph
��′ (t, t0 = 0)

= 1

N

∑
k

nF(ε(k)) − nF(ε(k − t ))

ε(k) − ε(k − t )
f�(k) f ∗

�′ (k) ,

(38)

L
pp
��′ (s) :=

∑
�0, �

′
0

L
pp
��′ (s, s0 = 0)

= 1

N

∑
k

1 − nF(ε(k)) − nF(ε(s − k))

ε(k) + ε(s − k)
f�(k) f ∗

�′ (k) .

(39)
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Here, nF(ε) = (1 + exp(βε))−1 denotes the Fermi distribution
function, which depends on the inverse temperature β =
1/kBT . Next, as has already been seen in (Ref. [22]; see also
Sec. 3.3 of Ref. [35]), a further simplification can be achieved
by using complex exponentials as form factors, i.e.,

f�(k) = e−ia�·k , (40)

where a denotes the lattice spacing. This set of functions
naturally fullfills the requirements (16) and (17). Then, Eq. (35)
simplifies to

D̂[F 0]�1� = U δ�1,0 δ�,0 . (41)

Furthermore, by introducing Fourier-transformed projections
D̃, C̃, and P̃ , such that

D̂[F ]�1�(t ) =
∑
�′

e−ia�′· t D̃[F ]�1� (�′) , (42)

or conversely,

D̃[F ]�1�(�′) = 1

N

∑
t

eia�′· t D̂[F ]�1� (t ) , (43)

we can transform Eq. (37) into

D̂[F ]�1�(t ) = U δ�1,0 δ�,0 + D̂[Φph,d]�1�(t )

+
∑
�′

eia�′· t C̃[Φph,c]�′+�1−�, �′ (−�)

+
∑
�′

eia�′· t P̃ [Φpp]�′+�1, �
′−� (�) . (44)

We remark that instead of simple plane-wave functions given
by Eq. (40), one could also use form factors that explicitly
respect the symmetry of the lattice, so-called lattice harmonics.
Fewer of these are required to reach the same accuracy as
with simple plane-wave functions. For an introduction to
lattice harmonics, we refer the interested reader to Sec. A3
of Ref. [12].

Finally, the main approximation which the channel projec-
tions aim at is to keep only a finite number of form factors
f�(k), such that

� ∈ [−�cut, �cut] × [−�cut, �cut] , (45)

with a cutoff parameter �cut ∈ N. The total number of form
factors is then ncut ≡ 4�2

cut. To illustrate the implications of
this approximation, we consider again Eq. (37). For each
particular combination of arguments �1, �, and t , the projected
vertex D̂[F ]�1�(t ) depends on Ĉ[Φph,c]�3�4 (k′) (and similarly
on P̂ [Φpp]�3,�4 (k′)) at all possible arguments �3, �4, and k′.
Similar considerations hold for the Fourier-transformed ver-
tices as in Eq. (44). In other words, it is in principle necessary
to know the projected vertices at all possible arguments in
one iteration step before one can recalculate these vertices at
any particular argument in the next iteration step. Therefore,
when keeping only a limited set of basis functions as specified
by Eq. (45), the vertices Ĉ[Φph,c]�3�4 and P̂ [Φpp]�3�4 (or
their Fourier transforms) from one iteration step contribute to
D̂[F ]�1� in the next iteration step only approximately (in the
sense that also their strong dependence on the main momentum
is not accounted for exactly). This in turn reflects the fact
that the projections D̂, Ĉ, and P̂ are actually not invertible

if restricted to a limited set of form factors. Nevertheless,
the inverse mappings Ĉ−1 and P̂ −1 as formally employed in
Eq. (36) can be approximated by means of Eq. (37) or Eq. (44),
provided that a sufficiently large number of form factors is
taken into account in these summations.

To summarize, it is not a priori clear why keeping only a
limited number of form factors is a good approximation. In
particular, if the vertex has some sharp momentum structures
in one channel (close to a phase transition at low temperatures,
or caused by long-range initial interactions), then these sharp
structures in one channel would in principle also lead to sharp
structures in the other channels by means of the cross projec-
tions. However, keeping only a few form factors would cause
these sharp structures to be smeared out. Notwithstanding this
caveat, we expect that local contributions to the vertices are
more important for determining critical temperatures. Previous
fRG studies (e.g., Ref. [23]) have shown that for the t − t ′
Hubbard model, including the Fermi-surface studied here,2

the inclusion of higher-order form factors does not change the
critical scales considerably.

IV. COMPLEXITY AND MEMORY COST

In this section, we briefly discuss the computational com-
plexity and memory cost of our projection scheme as compared
to a direct implementation of the parquet equations. We limit
this discussion to the evaluation of the momentum dependen-
cies of the vertices, since the other dependencies (i.e., those
on spin and frequency) are not affected by the projections [see
Eqs. (18) and (21)–(23)].

First, consider a direct evaluation of the parquet equa-
tions (1)–(3). For each combination of three “external” mo-
mentum arguments, a sum over one “internal” momentum has
to be performed. Since each momentum ranges in the first
BZ, the complexity of evaluating these equations is O(N4),
where N is the number of discrete Bloch momenta. This
can possibly be improved by using matrix multiplications, for
which efficient algorithms exist, but a lower bound is always
O(N3) corresponding to the memory cost. Furthermore, since
vertices of three momentum arguments have to be stored, the
memory consumption scales like O(N3).

Next, consider the channel-decomposed parquet equa-
tions (27)–(29). For each argument of the vertices on the
left-hand side, two sums over the form-factor basis have to
be performed. Since the vertices have N × n2

cut arguments,
this scales like O(N × n4

cut). In order to evaluate the parquet
equations, one further needs the projections of F onto each
channel as well as the loop functions Lph and Lpp. Note
that only the cross projection of F has to be computed,
because the one of Γ r can simply be obtained via Eq. (33).
For evaluating the cross projections we have presented two
different schemes, namely, Eqs. (37) and (44). In the first case,
one has to perform one momentum sum and two form-factor

2The plot in the cited paper does not explicitly cover half-filling.
The authors of the present manuscript have, however, convinced
themselves that the same conclusion also holds for half-filling. This
has been done together with the authors of Ref. [23] using the same
code as in the cited work.
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sums for each argument of the projected vertex, which scales
like O(N2 × n4

cut). The second sum in Eq. (37) (over k1) can
be computed in advance and is therefore faster than the other
calculations. In the second case, i.e., when using Eq. (44),
only one sum over the form-factor basis has to be performed.
Again, this has to be done for each argument of the projected
vertex, thus scaling likeO(N × n3

cut ). Finally, one still needs to
calculate the bubble functions via Eqs. (30) and (31). Here, one
momentum sum is required for each argument of the bubbles,
thus scaling like O(N2 × n2

cut ).
We conclude that when using Eq. (37), the cross projections

are actually the most expensive calculations such that the
overall complexity is O(N2 × n4

cut ). On the other hand, when
invoking Eq. (37), the most expensive calculation is the
evaluation of the bubble functions. However, these bubble
functions need to be calculated only once because they do
not change during the iteration process (at least if no self-
energy is calculated). Hence, in this second case, the amortized
costs are determined by the evaluation of Eqs. (27)–(29), and
therefore the overall amortized costs scale like O(N × n4

cut).
In particular, the complexity then scales only linearly with the
momentum resolution.

Concerning the memory costs, all vertices have to be stored
as functions of their main momentum and two basis-function
indices, which implies a scaling like O(N × n2

cut). This does
not change when employing Eq. (44): for this scheme, the
Fourier-transformed vertices would have to be stored in addi-
tion to the original vertices. The Fourier-transformed vertices
are not larger than the original vertices, but if the vertices
are already highly memory-consuming, the additional storage
space required might still not be negligible. Thus, if memory
is the main constraint, one can instead employ Eq. (37) at the
cost of a higher complexity. In summary, if only a constant
set of basis functions is kept, the memory consumption scales
only linearly with the momentum resolution N .

Finally, we remark that previous implementations of the
parquet equations [18] have shown that the “bottle neck”
for evaluating them is in fact the memory consumption. In
particular, when performing computations on heavily parallel
machines, the internode communications usually limit the
system sizes that can be treated. Thus reducing the memory
consumption to linear scaling in N as in the present TU parquet
approach may indeed represent a major step forward.

V. NUMERICAL IMPLEMENTATION

In order to check the validity of our method, we have applied
the TU parquet equations to the Hubbard model on the square
lattice given by the Hamiltonian

H = −t
∑

〈i,j〉, σ
a
†
i,σ aj,σ + U

∑
i

ni,↑ ni,↓ . (46)

Here, ai,σ and a
†
i,σ denote the annihilation and creation op-

erators at site i with spin σ ∈ {↑,↓}, and ni,σ = a
†
i,σ ai,σ

the number operator at site i. The sum in the first term in
Eq. (46) is only over nearest-neighbor sites, while the second
term describes an onsite interaction. By diagonalizing the
Hamiltonian, one obtains the energy dispersion

ε(k) = 2t (cos(kx a) + cos(ky a)) . (47)

The Hubbard model has been studied extensively in the
literature (for some references, see, e.g., Refs. [37–39]) as it is
expected to be relevant for the high-temperature superconduct-
ing cuprates [40]. Therefore this model can serve as a testing
case for any newly developed quantum many-body method.

Our numerical solution of the TU parquet equations uses
the approximations mentioned in Sec. III, hence we neglect
all frequency dependencies of the vertices, setting t0 = u0 =
s0 = 0. As form factors we choose complex exponentials,
which have already been given in Eq. (40). Furthermore, we
neglect the self-energy and thereby replace the full Green
function with the bare Green function: G = G0. Finally, as
our aim here is a consistency check, we limit the discussion
to the � = 0 contributions (thus considering only a single
basis function) in the TU parquet equations. It is known,
however, that the critical scales in TUfRG for the same model
at half-filling change only insignificantly when higher form
factors � 
= 0 are taken into account [23]. Of course, this
changes when one moves away from half-filling and nonlocal
pairing becomes important. In any case, within the “onsite”
� = 0 approximation, the evaluation of the parquet equations
becomes particularly simple because then Eq. (44) reduces to

D̂[F ]00(t ) = U + D̂[Φph,d]00(t )

+〈Ĉ[Φph,c]00〉 + 〈P̂ [Φpp]00〉 .

Here, 〈.〉 denotes the mean of a vertex with respect to its
main momentum argument (which coincides with the Fourier-
transformed vertex evaluated at zero), i.e.,

〈Γ 〉 := 1

N

∑
t

Γ (t ) . (48)

Thus the projection operation Ĉ[D̂−1[D̂[ . ]] simply reduces to
taking the mean of D̂[ . ] with respect to its main momentum
argument, and the same applies to the other cross projections.

Before writing out the parquet equations within the above
approximations, let us briefly discuss the spin dependence of
the vertices. In fact, since the Hubbard model has an SU(2)
symmetry (see, e.g., Ref. [41]), it is possible to eliminate all
spin indices and thereby to simplify the parquet equations. We
only state the results here and refer the interested reader to the
appendix for a detailed derivation. Generally, SU(2) symmetry
implies the following spin dependence of the vertices as a
consequence of the so-called crossing relations [3]:

Φph,d
σ1σ2σ3σ4

(k1, k2, k3, k4) = −V ph,d(k1, k2, k3, k4) δσ1σ4 δσ2σ3

+V ph,c(k1, k2, k4, k3) δσ1σ3 δσ2σ4 ,

(49)

Φph,c
σ1σ2σ3σ4

(k1, k2, k3, k4) = −V ph,c(k1, k2, k3, k4) δσ1σ4 δσ2σ3

+V ph,d(k1, k2, k4, k3) δσ1σ3 δσ2σ4 ,

(50)

Φpp
σ1σ2σ3σ4

(k1, k2, k3, k4) = −V pp(k1, k2, k3, k4) δσ1σ4 δσ2σ3

+V pp(k1, k2, k4, k3) δσ1σ3 δσ2σ4 .

(51)
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Conversely, the spin-independent V functions can be obtained
from the spin-dependent vertices by evaluating the latter at
particular spin combinations, i.e.,

V ph,d(k1, k2, k3, k4) = −Φ
ph,d
↑↓↓↑(k1, k2, k3, k4) , (52)

and similarly for the other vertices. Furthermore, by evaluating
the parquet equations (1)–(3) at spin arguments (σ1σ2σ3σ4) =
(↑↓↓↑) and using Eqs. (49)–(51), one can derive the cor-
responding parquet equations for the V functions. These in
turn can be transformed into a channel-decomposed version as
shown in the appendix.

In summary, we have implemented approximate TU parquet
equations for the 00 components of the channel-projected V

functions, which we abbreviate as

D(t ) := D̂[V ph,d]00(t ) , (53)

C(u) := Ĉ[V ph,c]00(u) , (54)

P (s) := P̂ [V pp]00(s) . (55)

The equations which we have implemented read as follows
[where averages are defined as in Eq. (48), and where the 00
components of the fermion loops can be read off from Eqs. (38)
and (39)]:

D(t ) = 2 (U+D(t )+〈C〉+〈P 〉) L
ph
00(t ) (U+〈C〉+〈P 〉)

− (U+D(t )+〈C〉+〈P 〉) L
ph
00(t ) (U+〈D〉+〈P 〉)

− (U+〈D〉+C(t )+〈P 〉) L
ph
00(t ) (U+〈C〉+〈P 〉),

(56)

C(u) = −(U+〈D〉+C(u)+〈P 〉) L
ph
00(u) (U+〈D〉+〈P 〉) ,

(57)

P (s)=− (U + 〈D〉 + 〈C〉+P (s))Lpp
00(s)(U + 〈D〉 + 〈C〉).

(58)

Importantly, since the fermion loops as well as all mean values
of the vertices can be computed in advance, the numerical
evaluation of these equations scales only linearly with the
momentum resolution.

VI. RESULTS FOR THE HUBBARD MODEL

Finally, we present our numerical results for the Hub-
bard model at half-filling and without next-nearest-neighbor
hopping. In this case, the noninteracting dispersion has the
well-known fully nested Fermi surface, and the ground state
at temperature T = 0 and positive onsite interaction U should
exhibit antiferromagnetic (AF) long-range order. At nonzero
temperatures, the Mermin-Wagner theorem prohibits long-
range order, but as in the better-understood Heisenberg model
there should still be longer-ranged AF correlations [42]. A
proper description of the state at T > 0 with quantum many-
body methods requires special care [43,44], and many methods
like DCA or fRG replace the low-T short-range ordered
state with a long-range ordered state up to an artificial Néel
temperature Tc. The major goal of the present analysis is

to show that our channel-decomposed parquet scheme can
reproduce the approach to long-range order with leading AF
correlations, with a smaller remnant Tc.

The main observable that we study here is the full one-
particle-irreducible vertex F . Its momentum structure near the
AF instability is well known from fRG studies and discussed
e.g. in Sec. III B of Ref. [11]. Very close to the instability, which
occurs at some nonzero Tc in the usual fRG approximations,
the vertex has the leading momentum dependence

Vcrit ( p1, p2, p3) = J

4

(
2 δ p1− p3, Q + δ p3− p2, Q

)
, (59)

with J ∝ 1/|T − Tc|. Here, p1 and p2 are incoming momenta,
and Q = (π, π ). This effective interaction can be transformed
onto the real lattice, leading to an infinitely long-ranged AF
spin-spin interaction

J
∑
〈i, j〉

ei Q ·(Ri−Rj ) Si · Sj , (60)

with spin operators defined as

Si = 1

2

∑
α,β

σ αβ c
†
i,αci,β . (61)

The same expression is also found in the random phase
approximation (RPA) by using bare Green functions when
ladder and bubble diagram chains are summed up (see Ref. [45]
Eq. (5) close to the divergence). The fRG changes the RPA
results by reducing Tc and adding more nondivergent structure
to the vertex.

Figures 2(a)–2(c) show the numerical results for the vertices
D(t ), C(u), P (s) defined by Eqs. (53)–(55) as functions of
their respective main momentum, which ranges in the first
Brillouin zone. For these computations an initial interaction
of U = 2.0 t was used. The temperature was set to a small
value of T = 0.1t , and the computations were performed on a
200 × 200 grid. We further mention that in order to improve
the convergence, we have transformed the recursive formulas
according to [17,18,47]

xi+1 = f (xi ) → xi+1 = αf (xi ) + (1 − α)xi (62)

with a constant α ∈ (0, 1], which in our implementation was
set to 0.5. The evaluation of Eqs. (56)–(58) takes only a few
minutes on a laptop.

One can see that the crossed particle-hole vertex C(u) is
always positive and strongly peaked at u = (π, π ). Similarly,
the direct particle-hole vertex D(t ) is peaked at t = (π, π ), but
it has also negative contributions and its absolute value stays
below that of C(u). The two strong peak features can be clearly
associated with the two terms of Eq. (59), where the t = (π, π )
feature is represented by the first term and the u = (π, π )
peak by the second term. By contrast, P (s) peaks at s = (0, 0)
and takes only negative values. This is also clearly understood
and expected from the sign and momentum dependence of the
particle-particle loop diagram. For completeness, we also show
the full vertex

V F ( p1, p2, p3) = U + V ph,d( p3 − p2)

+V ph,c( p1 − p3) + V pp( p1 + p2) (63)
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FIG. 2. Projected vertices in the half-filled Hubbard model for
parameters U = 2.0 t, T = 0.1 t, and N = 200 × 200. The vertices
are plotted as functions of their respective main momentum, which
ranges in the first Brillouin zone. (a) Crossed particle-hole vertex
C(u). (b) Direct particle-hole vertex D(t ). (c) Particle-particle vertex
P (s).

in Fig. 3. By setting p3 = (π/2, π/2), one clearly sees
two peaked lines at p1 = (−π/2,−π/2) and at p2 =
(−π/2,−π/2), which correspond to t = (π, π ) and u =
(−π,−π ), respectively. Furthermore, one observes a dip at
p1 = − p2, which results from the V pp contribution.

When further decreasing the temperature, we find a diver-
gence of C and D at (π, π ) as shown in Fig. 4(a). The behavior
close to the divergence is well approximated by

C(T ) ∼ 1

|T − Tc| , (64)

where Tc denotes the Néel critical temperature. In our imple-
mentation, we find Tc ≈ 0.035 t (at this value, the vertex is
more than three times larger than the bandwidth). In addition,

FIG. 3. Full vertex V F ( p1, p2, p3) evaluated at p1,x = p1,y =:
p1, p2,x = p2,y =: p2, and p3,x = p3,y = π/2 (same parameters as
in Fig. 2).

as shown in Fig. 4(b), we observe the relation C/D → 2 at
(π, π ) and close to the divergence at Tc, which is precisely the
ratio between the two terms in Eq. (59) thus reproducing the
results from Ref. [11]. This also matches the behavior of previ-
ous RPA studies close to the divergence as seen for instance in
Ref. [45]. The parquet vertex in the TU approximation shows
the same behavior of a nesting-driven AF ordering instability
expected from RPA.

The TU parquet results for the Hubbard model also agree
with fRG treatments of the same model as described, e.g., in
Ref. [11]. In fact, the full parquet vertex constructed from the
three channels can be directly compared with fRG data for the
same model parameters, as shown, e.g., in Fig. 10 of Ref. [11].
There, F has been obtained from an N -patch fRG scheme in the
“standard” level-two truncation [11], also without self-energy
corrections as in our work here. The comparison of our results
with the fRG data obtained with the same code as in Ref. [11]
can be seen in Fig. 5. The results for the full vertex match
qualitatively, in terms of the enhancement features and also
where the vertex remains small. The qualitative agreement with
these fRG works supports the basic validity of our method.
It also confirms the sensibility of the zeroth-order truncation
in the form factor expansion for this case, as the analysis
in Ref. [11] does not rely on form factors. The parquet data
also agree with a recent preprint, Ref. [48], that for the same
parameters uses a form-factor expansion and at least partially
includes nonlocal form factors. Hence our method passes this
qualitative sanity check.

The observable differences in Fig. 5 concern the resolution
of the enhancement features. The parquet features are much
narrower than the corresponding ones in fRG. One reason
for this is that the fRG divergence scale T fRG

c ∼ 0.11 t for
the approximation used is about three times higher than in
parquet, and we had to choose T = 0.4 t in order to find a
similar magnitude of the largest couplings than in the parquet
data shown here for T = 0.1 t . Furthermore, the momentum
resolution of the parquet result is given by the 200 × 200 grid
points in the whole Brillouin zone, while the fRG works with
just 96 points on the Fermi surface.

The difference in the divergence scales should be discussed
in more detail. The first point to keep in mind is that the
true Tc for the AF ordering instability should be zero because
of the Mermin-Wagner theorem. The self-consistent parquet
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FIG. 4. Extremum values of the projected vertices as functions of the temperature T for parameters U = 2.0 t and N = 200 × 200. (a)
C(π, π ), D(π, π ), and P (0, 0). (b) C(π, π )/D(π, π ). (c) 1/C(π, π ) and 1/D(π, π ).

approximation with the bare interaction as fully irreducible
vertex, but including self-energy feedback on the internal lines,
was argued [49] to correctly describe the finite-T correlations
of Heisenberg-like order parameters, i.e., to fulfill the Mermin-
Wagner theorem. In comparison with this, we remark that we
do not include self-energies here because these would require
a refined treatment of the frequency dependencies within our
scheme (cf. Refs. [18,47]). The same approximation holds
for the N -patch data shown in Fig. 5. The parquet treatment
includes more perturbative corrections than the fRG in the
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FIG. 5. Comparison of TU parquet data (left) with (N = 96)-
patch fRG data (right) for the full vertex in the half-filled Hubbard
model at U = 2t . Colors encode the magnitude of the couplings. The
two incoming momentum indices p1 and p2 label 96 points on the
Fermi surface indicated in the insets in the left plots. Point 1 starts
at (−π, 0), point 24 is near (0,−π ) and point 48 is near (π, 0). The
first outgoing momentum p3 is taken to be at point 1 in the upper
plots (see red bullet in the inset in the left upper plot) or at point 13
(red bullet in the inset in the lower left plot). For the parquet data,
T = 0.1 t was used, while for the fRG, a higher T = 0.4 t was chosen
in order to achieve similar maximal values of the couplings. The fRG
data were obtained by the same code as in Refs. [11] or [46]. (a) TU
parquet—k3 at 1. (b) N-patch fRG—k3 at 1. (c) TU parquet—k3 at
13. (d) N-patch fRG—k3 at 13.

level-2 truncation, and indeed, the Tc found here is smaller,
∼0.035 t instead of T fRG

c ∼ 0.11t , as visible in Fig. 4(c).
This nourishes hope that a parquet approach with self-energy
feedback could actually get close to fulfillment of the Mermin-
Wagner constraints. Furthermore, in a recent preprint [48], the
multiloop-fRG scheme including the frequency dependence
of the interaction and self-energy feedback was applied to
the same situation in the Hubbard model. The multiloop
corrections reconstruct parquet contributions that are missed
in the level-2 truncation of the fRG and result also in a
reduced divergence scale compared to the previous fRG results.
The upshot of this comparison is that the quantitative picture
at low T depends on the further approximations used. The
divergence scale becomes indeed smaller if a better approxi-
mation is used and should—theoretically, which may be hard
in practice—reach zero if all parquet approximation terms and
self-energies are included, and if sufficient momentum and
frequency resolution is obtained. Here, our numerically effi-
cient parquet scheme may be a good starting point for further
refinements.

VII. CONCLUSION AND OUTLOOK

We have presented a channel decomposition of the parquet
equations, which effectively reduces the number of momentum
arguments of the two-particle-reducible vertex functions. This
method relies on introducing resolutions of unity in a form-
factor basis, of which only a finite set of basis functions is kept.
In this sense, the scheme can be called truncated-unity (TU)
parquet approximation in analogy to the recently developed
truncated-unity functional renormalization group (TUfRG)
method [23,24,35]. In the TUfRG, the convergence in the
number of form factors kept has turned out to be rather quick
in most parameter regimes [23,24].

In a numerical implementation of the parquet equations,
the channel decomposition effectively reduces the memory
consumption from O(N3) to O(N ), where N denotes the
number of Bloch momenta taken into account. Furthermore,
this method is particularly suitable for the parallelization on a
large number of compute nodes. Since memory consumption
is generally regarded as the “bottle neck” for implementing
the parquet equations, the channel decomposition may allow
one to reach a much higher precision in predicting ground-
state orderings and critical scales in many-body models of
condensed matter physics.
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To benchmark our method, we have implemented the
TU parquet equations disregarding self-energy and frequency
dependencies, and restricting attention to the lowest form
factors. By means of the channel decomposition, we could
study momentum resolutions with O(104) momenta in the
first Brillouin zone with only a few minutes computing
time on a standard laptop. Our results for the two-particle-
reducible vertices in the fully nested Hubbard model on
the square lattice qualitatively match those of previous fRG
studies of the same model and get closer to a fulfillment of
the Mermin-Wagner theorem than published fermionic fRG
works. A more sophisticated implementation of the TU parquet
equations which takes into account more form factors and/or
the frequency dependencies of the vertices may improve this
issue even more and is currently underway.
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APPENDIX A: SU(2)-SYMMETRIC PARQUET EQUATIONS

In this appendix, we show how spin-SU(2)-symmetry can
be used to facilitate the evaluation of the parquet equations. In
the SU(2)-symmetric case, all vertices effectively depend on
only three spin arguments, the fourth being determined by spin
conservation. Correspondingly, in the parquet equations given
in Ref. [30], the sum over internal spin indices can be limited
to only a few spin configurations. Often, one also considers
superpositions of such configurations to evaluate the parquet
equations [3,30]. In this paper, we use instead the following
decomposition of vertices, which generally holds in the SU(2)-

symmetric case (see, e.g., Ref. [41]):

Γσ1σ2σ3σ4 (k1, k2, k3, k4) = −V Γ (k1, k2, k3, k4) δσ1σ4 δσ2σ3

+WΓ (k1, k2, k4, k3) δσ1σ3 δσ2σ4 .

(A1)

For a general Γ , the component functions V Γ and WΓ can
be independent of each other. However, if we consider the
full vertex, Γ ≡ F , we can further employ its antisymmetry
under the simultaneous interchange of two momentum and spin
arguments, i.e., the so-called crossing relation [3]

Fσ1σ2σ3σ4 (k1, k2, k3, k4) = −Fσ1σ2σ4σ3 (k1, k2, k4, k3) . (A2)

From this equation, one can derive the following relation
between the coefficient functions in Eq. (A1):

V F (k1, k2, k3, k4) = −F↑↓↓↑(k1, k2, k3, k4)

= F↑↓↑↓(k1, k2, k4, k3)

= WF (k1, k2, k3, k4) , (A3)

hence V F ≡ WF . Similarly, the particle-particle vertex Φpp is
also antisymmetric under the exchange of two momentum and
spin arguments, hence Eqs. (A2) and (A3) hold analogously
for the particle-particle vertex. Another similar case is the bare
interaction of the Hubbard model, which is given by

F 0
σ1σ2σ3σ4

(k1, k2, k3, k4) = U (δσ1σ3 δσ2σ4 − δσ1σ4 δσ2σ3 ) . (A4)

On the other hand, for the particle-hole vertices the rela-
tions between the V and W functions are different. For
these functions, we can use another crossing relation [3],
namely

Φph,d
σ1σ2σ3σ4

(k1, k2, k3, k4) = −Φph,c
σ1σ2σ4σ3

(k1, k2, k4, k3) . (A5)

With this, we obtain the following identities:

V ph,d ≡ W ph,c and V ph,c ≡ W ph,d , (A6)

where we have abbreviated V ph,d ≡ V Φph,d
, etc. Together, these

relations imply Eqs. (49)–(51) in the main text.
Next, one can reformulate the parquet equations (1)–(3) in

terms of the spin-independent V -functions. This calculation
is analogous to the derivation of the SU(2)-symmetric RG
equations in Ref. [41], and hence we only state the result here
(cf. also Ref. [[23], Eqs. (2)–(4)]):

V ph,d(p1, p2, p3) = kBT

N

∑
k

G(k) G(k + p2 − p3)(2V F (p1, k + p2 − p3, k) [V F − V ph,d](k, p2, p3)

−V F (p1, k + p2 − p3, k) [V F − V ph,c](k, p2, k + p2 − p3) − V F (p1, k + p2 − p3, p1 + p2 − p3)

× [V F − V ph,d](k, p2, p3) ) , (A7)

V ph,c(p1, p2, p3) = −kBT

N

∑
k

G(k) G(k + p3 − p1) V F (p1, k + p3 − p1, p3) [V F − V ph,c](k, p2, k + p3 − p1) , (A8)

V pp(p1, p2, p3) = −kBT

N

∑
k

G(k) G(p1 + p2 − k) V F (p1, p2, k) [V F − V pp](p1 + p2 − k, k, p3) . (A9)

The full vertex F is correspondingly given by

V F = U + V ph,d + V ph,c + V pp . (A10)
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Furthermore, these SU(2)-symmetric parquet equations can be projected onto the various channels defined in the main text.
Performing the same steps as in the derivation of Eqs. (27)–(29) for the spin-dependent vertices, we arrive at the following TU
parquet equations for the spin-independent vertices (cf. Ref. [[23], Eqs. (22)–(24)]):

D̂[V ph,d]�1�2 (t ) =
∑
�, �′

(
2 D̂[V F ]�1� (t ) L

ph
��′ (t ) D̂[V F − V ph,d]�′�2(t ) − D̂[V F ]�1� (t ) L

ph
��′ (t ) Ĉ[V F − V ph,c]�′�2(t )

− Ĉ[V F ]�1� (t ) L
ph
��′ (t ) D̂[V F − V ph,d]�′�2(t )

)
, (A11)

Ĉ[V ph,c]�1�2 (u) = −
∑
�, �′

Ĉ[V F ]�1� (u) L
ph
��′ (u) Ĉ[V F − V ph,c]�′�2(u) , (A12)

P̂ [V pp]�1�2 (s) = −
∑
�, �′

P̂ [V F ]�1�(s) L
pp
��′ (s) P̂ [V F − V pp]�′�2 (s) , (A13)

where the loop terms are again given by Eqs. (30) and (31). Thus we have shown that the crossing relations, i.e., the antisymmetry of
Φpp and the initial interaction, as well as Eq. (A5), allow one to express all spin-dependent vertices in terms of the spin-independent
V functions and thereby to reduce the number of functions one has to keep track off. We note that other implementations of
the parquet equations such as Refs. [17,18] do not exploit these crossing relations explicitly but instead enforce them during the
iteration process to improve the convergence.
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