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We explore theoretically the influence of Fano interference in the so-called Majorana oscillations in a T-shaped
hybrid setup formed by a quantum dot (QD) placed between conducting leads and side coupled to a topological
superconducting nanowire (TSNW) hosting zero-energy Majorana bound states (MBSs) at the ends. Differential
conductance as a function of the external magnetic field reveals oscillatory behavior. Both the shape and amplitude
of the oscillations depend on the bias voltage, degree of MBSs nonlocality, and Fano parameter of the system
determining the regime of interference. When the latter is such that direct lead-lead path dominates over lead-QD-
lead path and the bias is tuned in resonance with QD zero energy, pronounced fractional Fano-like resonances are
observed around zero bias for highly nonlocal geometries. Further, the conductance profiles as a function of both
bias-voltage and QD energy level display “bowtie” and “diamond” shapes, in qualitative agreement with both
previous theoretical and experimental works. These findings ensure that our proposal can be used to estimate the
degree of MBS nonlocality, thus allowing us to investigate their topological properties.
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I. INTRODUCTION

Ideas borrowed from high energy physics became ubiq-
uitous in the domain of condensed matter. The concepts
of quasirelativistic particles in graphene and other Dirac
materials, acoustic analogs of black holes in Bose-Einstein
condensates, AdS-CFT duality in the theory of the quantum
phase transitions are now among standard tools used by
condensed matter specialists. Some of these concepts still
remain a playground for theoreticians; the others on the
contrary appeared to be of high experimental relevance and
even paved the way to novel applications in the domains of
nanoelectronics and quantum computing. Among the latter are
Majorana quasiparticles [1,2] which are currently considered
as highly perspective candidates for practical realization of
fault-tolerant quantum computation process [3].

In the domain of condensed matter, Majorana quasipar-
ticles appear in hybrid systems composed by a quasi-one-
dimensional semiconducting nanowire with strong spin-orbit
coupling placed nearby s-wave superconductors [4–7]. In
this configuration, when magnetic (Zeeman) field is applied
parallel to the wire, the latter enters into p-wave topological
superconducting (SC) phase and a pair of gapless (zero-energy)
Majorana bound states (MBSs) is formed at the nanowire
edges [7]. To analyze the MBSs transport properties in hybrid
systems with topological superconducting nanowire (TSNW),
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in several theoretical works the use of quantum dots (QDs) was
proposed as tunneling spectrometers to reveal MBSs signatures
and topological transitions [8–13]. Experiments on hybrid
TSNW with a QD also were performed [14,15]. According to
Liu and Baranger prediction [8], the experimental signature
of the onset of an isolated MBS is zero-bias peak (ZBP)
with e2/2h amplitude in the conductance profile of a system
consisting of an individual QD side coupled to a TSNW.

Despite experimental observations of the quantized ZBP
in sophisticated devices with hybrid TSNWs [14–20], ques-
tions regarding its amplitude and emergence inside a truly
topological phase still remain [11,12,21–24]. Indeed, only the
observation of ZBP itself is not sufficient for asserting that the
system is into the topological regime, hosting robust MBSs.
In this context, nonlocal Majorana features [11,12], as well as
ZBP splitting, followed by the appearance of an oscillatory
pattern in the differential conductance as a function of an
applied magnetic field [21,25,26] have been viewed as smoking
guns of the MBSs manifestation in the topologically nontrivial
regime.

In the current work, we investigate the role of Fano inter-
ference processes in the so-called Majorana oscillations in a
T-shaped nanodevice, consisting of a single-level QD placed
between the conducting leads and side coupled to a TSNW
hosting MBSs at the ends (Fig. 1). We also explore features
of the system when the Majorana nonlocality is taken into
account, by considering the coupling λ2 between the QD and
lower MBS (see Fig. 1). The degree of Majorana nonlocality η

was previously defined by Prada et al. [12] as the ratio between

2469-9950/2018/98(7)/075142(7) 075142-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.075142&domain=pdf&date_stamp=2018-08-24
https://doi.org/10.1103/PhysRevB.98.075142


RICCO, CAMPO JR., SHELYKH, AND SERIDONIO PHYSICAL REVIEW B 98, 075142 (2018)

FIG. 1. Sketch of the T-shaped geometry considered in the present
paper: A single-level QD with energy εd is hybridized symmetrically
(V) with source-drain (S/D) conducting leads and side coupled (λ1)
to a TSNW of length L, hosting zero-energy MBSs at the edges
(half-filled red circles). The coupling λ2 between the QD and MBS-2
is also taken into account due to the finite length of topological
nanowire. Leads are also coupled with each other directly (VSD).
External magnetic field B (light blue arrow) is applied parallel to
the direction of the wire. The value of Zeeman splitting induced by
magnetic field is considered to be large enough to achieve the full
spin polarized regime in the setup. The QD-leads system operates as
a tunneling spectrometer, allowing us to investigate the properties of
the MBSs by differential conductance measurements as a function
of the external magnetic field and bias voltage between leads. The
presence of lead-lead tunneling path allows us to explore how Fano
interference process affects the MBSs signatures.

the lower and upper QD-MBSs coupling strengths, i.e., η2 =
|λ2|/|λ1|. When η → 0 (|λ2| � |λ1|), the MBSs are highly
nonlocal, thus presenting the holy grail for the quantum compu-
tation: the topological protection feature. Reference [12] also
proposed a protocol to estimate experimentally such a degree of
nonlocality, which was recently performed by Deng et al. [15]
in a TSNW, with a QD working as spectrometer. The ratio
between QD-MBSs couplings also can define the “topological
quality factor,” being stated by Clarke [11] as Q = 1 − η2. In
this context, the higher topological quality occurs whenQ ≈ 1.

It is worth mentioning that T-shaped setups with QDs
are suitable geometries to investigate the well-known Fano
effect [27–30], once they have the key ingredients for its
emergence: a localized state coupled to the continuum and
distinct tunneling channels. Fano interference phenomenon
can be used to explore Majorana properties, as theoretically
proposed in earlier works [9,13,31,32].

In the current proposal, the quantities which define the
tunneling conductance spectroscopy are Zeeman field, bias
voltage between the leads, energy level of QD, couplings
between the MBSs and QD and Fano parameter, describing the
relative importance of the direct lead-lead and lead-QD-lead
tunneling paths. The conductance as a function of the magnetic
field reveals pronounced oscillatory patterns, which are both
dependent on Fano regime of interference and MBSs nonlocal
features. In a nutshell, when the direct lead-lead tunneling
prevails, the Majorana oscillations are suppressed at zero bias
and reveal unexpected fractional Fano-like resonances as a
function of bias voltage between the leads. The degree of MBSs

nonlocality also influences the behavior of such oscillations,
which are attenuated as the local feature is increased (lower
topological quality factor). We also report the ability to identify
experimentally such a degree of nonlocality in conductance
measurements by changing the energy level of QD. Our results
are in agreement with Ref. [12], despite differences between
their system and ours, which will be discussed in due course.

This work is organized as follows: In Sec. II we present
the theoretical model describing the system of Fig. 1. We also
show the expression for zero-bias conductance and correspond-
ing transmittance through the QD, which was obtained via
equation of motion (EOM) technique. In Sec. III we show and
discuss our findings, which are summarized in Sec. IV.

II. THE MODEL

The setup we consider is depicted in Fig. 1 and can be
described by the following spinless model Hamiltonian [8]:

H =
∑
α,k

ξα,kc
†
α,kcα,k + εdd

†d + V
∑
α,k

(c†α,kd + H.c)

+VSD

∑
k,l

(c†S,kcD,l + H.c) + HM, (1)

where the operator c
†
α,k (cα,k ) creates an electron (hole) in the

metallic lead α = S/D (Source/Drain) with wave number k

and energy ξα,k = εk − μα , where μα is chemical potential
and μS − μD = eV is the bias voltage between the leads. The
operator d†(d ) creates an electron (hole) in the energy level
εd of the QD, which is symmetrically coupled to the leads
with coupling constant V . The lead-lead coupling constant is
VSD . No charging effect was taken into account in the QD
energy level, since the MBS signatures remain in the presence
of Coulomb repulsion and possible Kondo physics, as Ruiz-
Tijerina et al. [33] have shown.

Considering the even and odd conduction operators ce,k =
cS,k cos θ + cD,k sin θ and co,k = cS,k sin θ − cD,k cos θ , with
tan θ = 1, Eq. (1) can be rewritten as

H =
∑

k

εkc
†
e,kce,k + εdd

†d +
√

2V
∑

k

(c†e,kd + H.c)

+VSD

∑
k,q

c
†
e,kce,q + HM + Ho, (2)

wherein Ho = ∑
k εkc

†
o,kco,k − VSD

∑
k,q c

†
o,kco,q describes

the odd conduction states, which are decoupled from the
QD [9]. The term [34]

HM = ıεMγ1γ2 + λ1(d − d†)γ1 + λ2(d + d†)γ2 (3)

is the effective model Hamiltonian for a TSNW hosting zero-
energy MBSs γi at the ends [7]. The Majorana operators
have following algebra [1]: [γi, γj ]+ = δij , γ

†
i(j ) = γi(j ). The

parameter εM ≡ εM(l, B ) = E0√
b
e−l/2b cos(l

√
b) describes the

overlapping of unpaired gapless MBSs at the opposite sides
of the wire [26], where b = B/E0, l = L

√
2mE0/h̄ with B

being longitudinal Zeeman field (light-blue arrow in Fig. 1),
L the length of the wire, E0 = (2mα2�2

SC/h̄2)1/3 [26], α is
spin-orbit constant, and �SC is the induced SC gap in the
wire. The presence of the term cos(l

√
b) in εM is responsible
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for the oscillatory pattern in conductance as a function of
the magnetic field. The couplings between the upper/lower
MBSs and the QD are given by λ1 and λ2, respectively [34].
As known, the Hamiltonian of Eq. (3) can be rewritten with
usual fermion operators [1] f , since γ1 = 1√

2
(f + f †) and

γ2 = ı√
2
(f † − f ). To see howHM stays in the fermionic basis,

please see Ref. [34].
The differential conductance of the system is given by the

following expression [35]:

G(eV ) = e2

h

∫ (
−∂fF (ω, eV )

∂ω

)
T (ω)dω = e2

h
T (eV ),

(4)

where e2/h is quantum of conductance and fF is Fermi-Dirac
distribution function. The last equality holds for T = 0. T (ω)
is the transmittance across the system which can be obtained
using equation of motion (EOM) method [35,36], yielding:

T (ω) = Tb +
√
TbRb�̃Re

[
Gr

dd (ω)
]

− (1 − 2Tb )
�̃

2
Im

[
Gr

dd (ω)
]
, (5)

where �̃ = �/(1 + x) is dot-lead effective coupling, � =
2πV2 ∑

k ρ0 is Anderson broadening [37], x = (πVSDρ0)2,
ρ0 = ∑

k δ(ω − εk ) is the density of states (DoS) of the leads,
Tb = 4x/(x + 1)2 and Rb = 1 − Tb are the background trans-
mittance and reflectance, respectively [9,38]. We also define

the Fano parameter [30] qb =
√

Rb

Tb
= (1−x)

2
√

x
. For asymmetric

couplings between the QD and leads [39], Ho of Eq. (2)
remains decoupled from the QD, with tan θ = VS/VD . The
only differences are an effective Anderson broadening �′ =
2�S�D/(�S + �D ) and an effective QD-even conduction band
coupling V ′ =

√
V2

S + V2
D instead of

√
2V .

To calculate the spectral retarded Green’s function of the
QD Gr

dd (ω) in Eq. (5), we use again EOM technique, which
allows us to get the following expression:

Gr
dd (ω) = 1

ω+ − εd − � − �MBSs(ω)
, (6)

where � = −(
√

x + ı)�/(1 + x), �MBSs(ω) = K+(ω) +
(|λ1|2 − |λ2|2)K̃ (ω)K (ω) is the part of self-energy provided
by the presence of MBSs [8,9], K̃ (ω) = K (ω)/(ω+ + εd +
�∗ − K−(ω)), K (ω) = ω+/[(ω+)2 − ε2

M], and

K±(ω) = ω+(|λ1|2 + |λ2|2) ∓ 2εM|λ1||λ2|[
(ω+)2 − ε2

M

] , (7)

with ω+ = ω + ı0+. Imaginary part of the Green’s function
given by Eq. (6) defines the DoS of the QD,

ρdot (ω) = − 1

π
Im[Gr

dd (ω)]. (8)

III. RESULTS AND DISCUSSION

We investigate the effects of applied longitudinal Zeeman
field on differential conductance of the system restricting
ourselves to the temperature T = 0. Our goal is to analyze
the changes in the conductance oscillation patterns introduced
by the bias voltage between leads for distinct Fano regimes
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FIG. 2. (a)–(c): Plots of differential conductance [Eq. (4)] as a
function of the Zeeman field B and bias voltage eV for the case
when lead-QD-lead tunneling path is dominant (x = 0, qb → ∞)
and |λ2| = 0. The QD energy level εd = 0, the values of TSNW-QD
coupling are |λ1| = 0.1E0, 0.5E0 and E0 = 1.0E0. (d) Differential
conductance at eV = 10−6E0 as a function of the Zeeman field,
for distinct values of TSNW-QD coupling |λ1|. (e) Differential
conductance as a function of eV for several values of the Zeeman
field.

of interference and couplings between the QD and MBSs.
The tuning of QD-lower MBS coupling strength |λ2| allows
us to study the degree of MBS nonlocality η, as discussed in
Sec. I. Concerning the Fano interference process, one should
discriminate between the cases when tunneling between the
leads goes preferably via QD as intermediate (x = 0, qb → ∞,
Tb = 0) and the opposite case when direct lead-lead tunneling
prevails (x = 1, qb = 0 Tb = 1). Intermediary situations are
also considered (0 < x < 1). The parameters of the system
are taken as: E0 ≈ 0.23 meV the wire length L = 1 μm, and
Anderson broadening � ≈ 0.17E0. This is in agreement with
both experiment [14,16,17] and existing theoretical estima-
tions [10,25].

Before discussing in detail our findings, we define the
Zeeman critical value Bc, corresponding to b = (π/2l)2, as
the value in which MBSs begin to overlap with each other. It
is important to mention that the Hamiltonian which describes
the system [Eq. (1)] is an effective model that previously takes
into account a Zeeman field to break the spin degeneracy, thus
ensuring the spinless feature considered here and appearance
of MBSs. Besides this field, intrinsic to the model, there
is an applied longitudinal Zeeman field B in the TSNW,
which overlaps the MBSs for B > Bc and is responsible for
oscillatory pattern in the conductance, as we shall see.

A. Majorana oscillations and Fano interference

In this section, we study the role of Fano interference
effect in the Majorana oscillations emerging in differen-
tial conductance, for εd = 0. Figure 2 shows the differen-
tial conductance as a function of both eV and Zeeman
field, considering different TSNW-QD couplings (|λ1|) for
the case when lead-QD-lead tunneling path is dominant
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FIG. 3. (a),(b) Plots of differential conductance [Eq. (4)] as a
function of the Zeeman field B and eV , for the case when direct
lead-lead tunneling path is dominant (x = 1, qb = 0) and |λ2| = 0.
The QD energy level εd = 0, the values of TSNW-QD coupling are
|λ1| = 0.1E0, 0.5E0, and E0 = 1.0E0. (d) Differential conductance
as a function of eV for several values of Zeeman field. Conductance
reveals sharp resonant asymmetric profile.

(x = 0, qb → ∞) and |λ2| = 0. In such a case the MBSs can
overlap via εM, but the wire is long enough to ensure that there
is no connection between the MBS-2 and QD (see Fig. 1). If the
value of magnetic field is below critical, B < Bc, we observe
typical plateau in differential conductance with G = e2/2h,
which indicates that MBSs remain isolated from each other.
When magnetic field exceeds the critical value, B > Bc, an
oscillatory pattern in differential conductance as a function
of the magnetic field arises. The value of the conductance
oscillates between the minimal value of e2/2h and maximal
value which in certain cases can reach e2/h. This latter points
to a regular fermion signature arising due to the finite overlap
between the MBSs [8].

These effects become visible at the panel (d), where the
differential conductance is plotted as a function of the magnetic
field for eV = 10−6E0: The oscillations between isolated
MBSs (εM → 0, G → e2/2h) and nonlocal fermion state
formed by overlapping MBSs (G → e2/h) are clearly visible.
The increase of TSNW-QD couplingλ1 broadens the dips in the
conductance and decreases the amplitudes of the oscillations.
Note, however, that for big values of magnetic field the maxima
of the conductance still reach the values of the conductance
quantum. Effects of the overlap between MBSs assisted by
Zeeman field are clearly seen at panel (e), where differential
conductance is plotted versus eV . Indeed, for certain values of
B (corresponding, e.g., to dashed-blue and dotted purple lines),
conductance reaches maximum value at eV = 0, which is a
signature of a regular fermion state, whereas for other values of
Zeeman field (corresponding, e.g., to red filled and dash-dotted
black lines), G has minima at eV = 0, which corresponds to
the case of isolated MBSs.

The change of the Fano interference regime to the case
where qb = 0, corresponding to the dominance of the direct
lead-lead tunneling, brings dramatic changes in the differential
conductance pattern, as can be seen in Fig. 3. Two qualitatively
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FIG. 4. (a) Dimensionless DoS of the QD for the case of the
dominant direct lead-lead tunneling (x = 1, qb = 0) as a function
of the Zeeman field and eV , with |λ1| = 1.0E0 and |λ2| = 0. (b)
Dimensionless DoS of the QD as a function of eV for three different
values of the magnetic field, corresponding to the colored horizontal
bars at the panel (a).

new phenomena are observed here as compare to the case
qb → ∞. First, at eV = 0, G = e2/2h and is independent on
the values of |λ1| and applied field B. Moreover, differential
conductance as a function of bias voltage reveals fractional
Fano-like resonances around eV = 0 with intriguing minimal
and maximal values equal to e2/4h and 3e2/4h [31,38]. Similar
fractional Fano interference process was already reported by
Barański et al. [32] in a T-shaped geometry with a QD between
metallic and superconducting leads, side coupled to a MBS.
In such a system, the fractional interferometric behavior is
related to the presence of MBS in the system, which scatters
the electron waves, changing their phase [32]. We highlight
that the fractional oscillatory pattern reported here only can
be verified for low temperatures (T � mK). Otherwise, the
thermal effects can smear out such Fano-like resonances,
making the effect unobservable.

We also examine the corresponding dimensionless QD
DoS for the case qb = 0. The results are shown in Fig. 4
for |λ1| = 1.0E0. As can be clearly seen, DoS reveal the
resonant asymmetric pattern, which is inverted with respect
to the pattern observed in the differential conductance: The
dips in the DoS correspond to the peaks in G and vice versa.
This inversion is a straight aftermath of the system electrical
charge conservation: In the lead-lead Fano regime the better
is localization of the electron on the dot the poorer is the
conductance. In order to catch both charge conservation and
fractional Fano-like lineshapes, we present horizontal line
cuts of the color plot of Fig. 4(a) along red, blue, and black
horizontal bars, as shown in Fig. 4(b). As can be seen, for both
values of B > Bc considered (dashed blue and dash-dotted
black lines), the amplitudes of the fractional profile remain the
same.

To understand better the fractional Fano interference pro-
cess, we analyze differential conductance as a function of eV

for several values of coupling between the QD and lower MBS
(|λ2|), which allows us to verify how the fractional feature is
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FIG. 5. Differential conductance [Eq. (4)] as a function of eV

for the situation which the fractional Fano-like resonances are
present(x = 1, qb = 0). Several values of the coupling between the
QD and the lower MBS are considered (|λ2|).

modified by decreasing the degree of MBS nonlocality [12].
Figure 5 shows that, for smaller values of |λ2|, the fractional
lineshape persists with slight changes in amplitude. However,
for |λ2| = 10−2E0 (purple dashed line) the fractional reso-
nances invert and, for bigger values, vanish. This behavior
suggests that the fractional Fano effect appears just for high de-
grees of MBS nonlocality, i.e., |λ2| � 10−2E0 � |λ1|, yielding
η = 0.1.

Figure 6 shows the differential conductance as a function
of eV for distinct Fano interference processes (0 < x < 1).
When the lead-QD-lead path is dominant (x = 0), the con-
ductance reaches maximum e2/h, indicating that the MBSs
are overlapped via Zeeman field (εM (B ) �= 0). As we enhance
the direct lead-lead transport, the Fano-like fractional reso-
nance begins to take shape. Such a behavior can be verified
for x � 0.15(qb � 1.10). For higher values of x, which de-
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FIG. 6. Differential conductance [Eq. (4)] as a function of eV

for the several Fano regimes of interference (0 � x � 1) and highly
nonlocal situation (|λ2| � |λ1|).
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FIG. 7. Differential conductance [Eq. (4)] as a function of Zee-
man field, for eV = 0 and several Fano regimes of interference
(0 � x � 1). In panel (a) the coupling between the QD and the lower
MBS is neglected |λ2 = 0|, while in (b) it is considered.

scribes the predominance of direct lead-lead tunneling [x �
0.75(qb � 0.14)], the fractional resonances becomes more
evident, showing the same lineshape, with small deviations
in amplitude. These features state that the fractional Fano
interference effect takes place when direct lead-lead tunneling
process is dominant over those lead-QD-lead, thus indicating
that the measurement system (metallic leads and QD) can
distort the MBSs local/nonlocal signatures due to interference
phenomena.

In order to have an overview about the influence of Fano
interference in the Majorana oscillations, in Fig. 7 we analyze
the differential conductance for eV = 0 as a function of Zee-
man field, considering several values of x(qb ). For the highly
nonlocal situation (|λ2| = 0, η = 0) [Fig. 7(a)], we verify that
as x increases, the amplitude of oscillations are suppressed un-
til total quench for x = 1 (qb = 0). Thereby, the enhancement
of direct lead-lead tunneling process (x � 0.95) can destroy
the oscillatory behavior at zero-bias voltage (eV = 0), hiding
the information about the overlap between MBSs via Zeeman
field. The suppression of oscillations amplitude is also verified
for |λ2| �= 0, even for a high degree of MBSs nonlocality
(η ∼ 10−3), as depicted in Fig. 7(b). The main difference is
that for the finite |λ2| situation, the oscillatory pattern is not
completely quenched for x = 1.

Figure 8 exhibits how the degree of MBSs nonlocality
affects the Majorana oscillations at zero-bias voltage. The
oscillatory behavior is well defined just for higher nonlocal
situations in all three interference processes considered here
[(a) x = 0, (b) x = 1.0 and (c) x = 0.5]. As we decrease the
Majorana nonlocal property (enhancing |λ2|), the oscillation
pattern is totally suppressed due to the MBSs peak splitting,
which points out that the MBSs can experience each other.
The data indicates that for |λ2| = 0.1E0 (orange solid line),
yielding η = 0.32, the oscillatory pattern is completely absent,
which shows that the presence of well-defined oscillations at
eV = 0 in the differential conductance as a function of Zeeman
field is a feature of highly nonlocal MBSs (η → 0). These
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FIG. 8. Differential conductance [Eq. (4)] as a function of Zee-
man field, for eV = 0 and several values of |λ2|. Panel (a) exhibits
the Fano regime x = 0, while (b) and (c) show the situation for x = 1
and x = 0.5, respectively.

findings suggest that our device can work as a fine tunneling
spectrometer to investigate the nonlocal MBSs features, once
it catches changes in oscillations amplitude appearing in
differential conductance at zero bias, even for small values of η.

B. Degree of MBS nonlocality and experimental protocol

In Sec. I, we recall the concept of degree of MBSs non-
locality η proposed by Prada et al. [12], who also indicated
a protocol to measure it in a QD-TSNW hybrid system.
Such a theoretical proposal was followed by its experimental
achievement by Deng et al. [15]. We also introduced that η is
related to a topological quality factor, as stated in Ref. [11].
In this subsection, we present that our simplest effective
Hamiltonian (spinless carriers, absence of charging effect, and
additional ABSs) is also able to catch the information of the
degree of MBSs nonlocality using the same protocol previously
proposed [12,15]. Before presenting our findings, it is worth
mentioning that the QD setup in our device is distinct from
the original proposal [12]. Here, the transport is through the
QD, placed between metallic leads and side coupled to the
TSNW, while in previous works [11,12,14,15,26], the transport
is through the QD-TSNW system, placed between metallic
and superconducting leads. Furthermore, in such works the
QD belongs to the nanowire structure and therefore is not a
separated entity as in our device.

Figure 9 shows contour plots of differential conductance
as a function of bias voltage eV and QD energy level εd , for
several values of εM(B ) and |λ2|. The QD energy level can be
experimentally accessed by a gate potential Vd , which can be
tuned separately from the gate voltage eV between metallic
leads by changing both in a compensatory way [15]. Panel (a)
describes the higher nonlocal situation, i.e., there is no overlap
between the MBSs (εM(B ) = |λ2| = 0). This highly nonlocal
property is characterized by a plateau at G(eV = 0) = e2/h,
independent from the value of εd . It is known from previous
works [14,24] that Andreev bound states (ABSs) can transmute
in a topological MBS as they become merged at zero energy.

FIG. 9. Differential conductance [Eq. (4)] as a function of both
QD energy level εd and bias voltage eV . Panel (a) shows the highly
nonlocal situation of isolated MBSs (εM(B ) = |λ2| = 0). (b) exhibits
a nonlocal situation, wherein the εM(B ) is dominant (“bowtie”
overlapping MBSs in Ref. [12]), while (c) and (d) show the case
correspondent to “diamond” of same reference, described by the
dominance of |λ2| over εM(B ). The difference between (c) and (d) is
the degree of MBSs nonlocality η = √|λ2|/|λ1|, with |λ1| = 1.0E0

for all the situations considered. The values ε−
dot and ε−

MBS allow us to
obtain experimentally η ≈ �.

However, the ABSs also can coalesce forming near-zero energy
midgap states in a nontopological regime, mimicking MBS
signatures. Such ABSs analysis does not belong to the scope
of this paper, since no additional ABSs were included.

Now, let us consider the situation in which MBSs overlap
with each other via εM(B ) 
 |λ2|. We verify in panel (b)
the “bowtie” pattern, in qualitative agreement with the same
situation reported in Fig. 4(b) of Ref. [12] and Fig. 3(b) of
Ref. [15]. As indicated in Fig. 9(b), such a measurement
is able to provide the value of εM(B ), which is ≈ 0.12E0

for B = 3.5E0. Figures 9(c) and 9(d) depict the situation
wherein εM(B ) � |λ2|, which reveal information about the
degree of MBSs nonlocality using the same protocol previously
stated [12]: � ≈ η can be obtained experimentally by the ratio
ε±

MBS/ε
±
dot. Let us pick out the values indicated in Fig. 9(d):

ε−
MBS ≈ −0.30E0 and ε−

dot ≈ −1.5E0. Since �2 = ε−
MBS/ε

−
dot

[12,15], we find � ≈ 0.45, in agreement with the theoreti-
cal parameters adopted (|λ2| = 0.2E0, |λ1| = 1.0E0 and η =√|λ2|/|λ1| = 0.45). In such panels, we also confirm the “dia-
mond” shape, which was previously verified in Figs. 4(d) and
3(c) of Refs. [12] and [15], respectively. By comparing panels
(c) and (d), it can be noticed that the enhancement of �, i.e.,
the reduction of MBSs nonlocal properties, is characterized
by the opening of the “diamond” shape. Qualitative agreement
between our results of Fig. 9 and those found in Ref. [12], which
were experimentally verified in Ref. [15], evidence that our
device can be used to explore the MBSs nonlocal properties.

IV. CONCLUSIONS

To summarize, we studied Majorana oscillations in a T-
shaped hybrid device composed by a QD embedded between a
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pair of conducting leads and side coupled to a TSNW hosting
zero-energy MBSs at its ends. Analyzing the differential
conductance profiles of the system as a function of the applied
Zeeman field and bias voltage eV between the leads, we found
that Majorana oscillations are very sensitive to the changes
of the regime of Fano interference and degree of Majorana
nonlocality η. This latter can be tuned by changing the coupling
between the QD and lower MBS. Unexpected fractional Fano-
like resonances were unveiled for high nonlocal situations
(η → 0), in the regime where direct lead-lead tunneling pre-
vails. Moreover, differential conductance as a function of both
bias voltage and energy level of QD revealed “bowtie” and
“diamond” shapes, in qualitative agreement with the original
theoretical proposal [12], despite differences between the mod-

els. Such correspondences indicate that our device also can be
used as a tunneling spectrometer to obtain experimentally the
degree of Majorana nonlocality and investigate its topological
properties following the same protocol proposed by Prada
et al. [12] and experimentally performed by Deng et al. [15].
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