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We identify ground states of one-dimensional fermionic systems subject to competing repulsive interactions of
finite range, and provide phenomenological and fundamental signatures of these phases and their transitions.
Commensurable particle densities admit multiple competing charge-ordered insulating states with various
periodicities and internal structure. Our reference point are systems with interaction range p = 2, where phase
transitions between these charge-ordered configurations are known to be mediated by liquid and bond-ordered
phases. For increased interaction range p = 4, we find that the phase transitions can also appear to be abrupt, as
well as being mediated by re-emergent ordered phases that cross over into liquid behavior. These considerations are
underpinned by a classification of the competing charge-ordered states in the atomic limit for varying interaction
range at the principal commensurable particle densities. We also consider the effects of disorder, leading to
fragmentization of the ordered phases and localization of the liquid phases.
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I. INTRODUCTION

One-dimensional fermionic physics substantially differs
from its higher-dimensional counterparts. Usual descriptions
of interactions, such as Fermi liquid theory, break down [1,2],
which results in an absence of quasiparticle excitations in the
system. Under many circumstances, the appropriate theory
describing these systems is the Tomonaga-Luttinger liquid
[3–7]. However, in the presence of repulsive interactions and
at commensurable particle densities the system can form
charge-ordered phases [1,8–12], in which it displays insulating
properties.

The nature of the quantum phase transition between liquid
and charge-ordered phases has been uncovered in detailed the-
oretical studies [13–17]. The main factor that drives the phase
transition is the competition between the kinetic energy and the
interaction terms that can order the system. In particular, lattice
fermion models exhibit an interplay of short-range kinetic
quantum fluctuations arising from the uncertainty principle
and repulsive finite-range interactions that cause the insulating
phases [18–21]. These studies have revealed various transition
scenarios, including the emergence of a “strange metallic
phase” that was later identified to be of bond order [22–27]—a
dimerized phase with alternating bond strengths and without
charge ordering. To determine these quantum phase transi-
tions precisely, various methods have been proposed, such
as investigation of the ground-state curvature [19], structure
factors [20,27], bond entropy [28], and scaling of the gap [20].
Decaying behavior of the correlation functions was also found
to be a distinguishing feature for the aforementioned quantum
phases [27,29]. Since spinless fermions in one dimension are
equivalent to hard-core bosons [30–33], these observations
are also of great interest for analogous bosonic systems [34].
Recent advancements in optical lattices have indeed made it
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possible to engineer condensed matter systems [35,36] that
allow us to directly observe the liquid-to-insulator transition
[37–39].

Overall, however, the understanding of these transitions
is still restricted to a small number of relatively simple and
mutually well compatible charge-ordered states. As the range
of interactions increases, the variety of competing charge-
ordered states increases rapidly. This situation raises a number
of unresolved questions. On one hand, the transitions between
these phases may proliferate as well, and could squeeze out the
insulating behavior. On the other hand, the liquid phases could
be suppressed depending on the complexity of the charge con-
figurations of competing states. Moreover, the bond-ordered
phases may survive the introduction of additional interactions,
or, completely new transition scenarios could arise.

In this paper we address these questions within a model that
exhibits multiple transitions between a variety of ordered states
of varying compatibility. This leads to a rich phase diagram
where we can explore how insulating phases survive when
the range of the repulsive interactions is increased, and which
transitions between different insulating phases can occur. The
competing interactions of finite range give rise to a multitude
of charge-ordered phases, which we systematically classify at
the principal critical particle densities. We then investigate a
hierarchy of signatures that characterize the phases and their
transitions at the fundamental and phenomenological level.

Inspection of the atomic limit where the kinetic energy term
vanishes allows us to systematically identify the candidate
charge-ordered phases. In this limit, the phase transitions are
sharp and are only driven by considerations of the interaction
energy, while liquid phases are absent. The carrier mobility
at a finite kinetic energy gives scope for liquid behavior that
can intervene between the charge-ordered states. The conse-
quences are investigated numerically using the infinite-system
density matrix renormalization group (iDMRG) approach with
a ground state represented as an infinite matrix product state
(iMPS) [40–46]. Many of the resulting features are already
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visible on the phenomenological level, as we demonstrate for
the experimentally accessible kinetic energy density and the
bond-order parameter, which display characteristic disconti-
nuities at many (but not all) of the phase transitions identified
on a more fundamental level. For the latter we employ density-
density correlation functions that capture long-range charge
ordering, as well as the bipartite entanglement entropy, which
displays characteristic scaling in critical phases.

As our main findings, we observe that depending on the
compatibility of the ordered states, the liquid phase can be
strongly suppressed to the extent that the transition appears
to remain directly insulator-to-insulator. Furthermore, we un-
cover the re-emergence of simple charge-ordered phases that
mediate the transition between more complicated ones, and
exhibit a crossover to liquid behavior at one of the phase
boundaries.

We also consider the implications of disorder, which affects
the charge ordering by inducing fragmentization and further
suppresses liquid behavior via localization. At large disorder
strength the system displays the characteristics of a universal
fragmented insulating phase.

This paper is organized as follows. In Sec. II we present
the model, method, and further background for this work. The
charge-ordered phases of the model in the atomic limit are
described in Sec. III. Section IV discusses the consequences
of a finite kinetic energy, where the emergent liquid behavior
is supplemented by the direct and crossover-mediated tran-
sitions between charge-ordered phases described above. The
disordered system is studied in Sec. V, and our conclusions
are given in Sec. VI. The Appendix contains details about the
classification of charge-ordered phases for principal critical
particle densities in the atomic limit.

II. MODEL, BACKGROUND, AND METHODS

We base our investigations on a model of spinless fermionic
particles that move on a one-dimensional chain of size L and
are interacting through a finite-range repulsive potential of
maximal range p. The disorder-free Hamiltonian of this model
is given by [18]

H = −t

L∑
i=1

(c†i ci+1 + H.c.) +
L∑

i=1

p∑
m=1

Umnini+m, (1)

where c
†
i , ci are fermionic creation and annihilation operators

on site i = 1, . . . , L, ni = c
†
i ci are the corresponding particle-

number operators, t determines the kinetic energy, and Um is
the interaction energy between two particles that are m � p

sites apart. All interactions are assumed to be repulsive (Um >

0). While only the ratios Um/t matter for the properties of
the system, we will treat these scales independently as this
facilitates the discussion of the atomic limit (t → 0). The
particle density is denoted as Q = L−1〈∑i ni〉. Disorder can
be included via a term

Hdis =
L∑

i=1

hi

(
ni − 1

2

)
, (2)

with uniformly distributed random potentials hi ∈ [−W,W ]
at disorder strength W .

In the seminal Ref. [18], the potential energy is strictly
convex (Um+1 + Um−1 > 2Um), which assures that there is
at most one insulating phase for any given particle density
Q in the system. These phases can then be investigated
assuming a hierarchy of well-separated energy scales t �
· · · � U3 � U2 � U1, hence close to the atomic limit. Under
these conditions the system is found to sustain a charge-ordered
insulating phase at any commensurable particle density

Qm = 1/m, m = p + 1, p, . . . , 2, (3)

while otherwise the system behaves as a Luttinger liquid.
A distinctively more nontrivial behavior can be encountered

at these critical densities if the interaction potential is not
convex, so that several charge-ordered states can compete at the
same commensurable particle density. The convexity condition
was abandoned in previous studies of the case p = 2, where the
system is also known as the t-V -V ′ model [19,20,28,29,47–
50]. This revealed that two charge-ordered states can compete
at half-filling, and that the transition between these phases is
mediated by a liquid phase and bond-ordered phases. In this
paper we explore this competition for the much broader range
of charge orderings that occur at larger values of the interaction
range p. In the {Um} phase diagram, this gives rise to multiple
instances of charge-ordered phases separated by intervening
states that mediate their transition, which are the main focus
of this work.

The scene will be set by the analytical classification of
charge-ordered phases in the atomic limit t → 0, while the
consequences of a finite kinetic energy are investigated nu-
merically. We adopt a density-matrix renormalization group
approach [40–42] based on a tensor-network formulation
[51–53] where the target states are represented by matrix
product states [43–45,54,55], and utilize for this the Matrix
Product Toolkit [46] code together with our implementation
of the Hamiltonian (1). This approach circumvents, e.g.,
the restriction to small system sizes encountered in exact
diagonalization and the fermionic sign problem encountered
in quantum Monte Carlo approaches [56]. To investigate the
ground state near the thermodynamic limit, the desired state
of the system is represented as an iMPS, which accounts for
an infinite number of unit cells. Note that iDMRG used in the
iMPS context is different from the infinite-size algorithm of
DMRG in the context of finite systems [43,44]. During each
step of iDMRG the filling is kept at Q (the U(1) symmetry is
preserved—for details, including a discussion of spontaneous
breaking of discrete symmetries, see Ref. [44]).

The iMPS unit cell size is chosen to make sure that
the system is commensurable with all possible insulating
phases determined in the atomic limit, whereby we avoid the
frustration of any relevant charge-ordered state. Specifically,
for a half-filled (Q = 1/2) system with p = 2, the possible
charge-ordered states have periods two and four, so that we
choose a unit cell of 4 sites. For Q = 1/2 but p = 4, the phases
are far more richer, which requires a unit cell of size 24. The
maximal number of saved states (bond dimension χ ) in the
iDMRG procedure is 1000.

Using these tools, we characterize the phases by a set of
complementary signatures. For the most phenomenological
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description we consider the kinetic energy density

T = 1

L

〈
L∑

i=1

(c†i ci+1 + H.c.)

〉
. (4)

This is a single-particle observable that probes the particle
mobility between neighboring sites and can, in principle,
be assessed in atom-optical experiments by time-of-flight
measurements of atoms released from the optical lattice.

The extent of bond order is addressed by the order parameter
[20]

OBO = 1

L

〈
L∑

i=1

(−1)i (c†i ci+1 + H.c.)

〉
, (5)

which constitutes a staggered version of the kinetic energy den-
sity. This parameter measures the amount of the dimerization
in the system. We report its absolute value, which is invariant
under the translation of the measured state.

We note that OBO can also be finite in certain charge-
ordered states. This ambiguity is resolved by supplementing
this quantity with additional information. The required detailed
insight into the charge ordering is provided by the density-
density correlation functions

Nm = 1

L

〈
L∑

i=1

nini+m

〉
, (6)

which probe the ordering of particles that are m sites apart,
and allow us to further discriminate charge-ordered from bond-
ordered and liquid phases. To describe the long-range effects in
the system, we exploit that Nm develops an oscillating behavior
in m. More precisely, we observe that the limit

lim
k→∞

Nm+kP = N∞
m , m = 1, . . . , P (7)

exists, where P is the unit-cell size of the charge order. We call
N∞

m the extrapolated density-density correlator. This quantity
describes the long-range charge correlations in the system.

Finally, on the most fundamental level we characterize the
quantum phases and transitions by the scaling of the bipartite
von Neumann entanglement entropy

S = −tr(ρA log2 ρA), (8)

where ρA is the reduced density matrix of a subchain A.
Away from quantum-critical behavior, S scales as the system’s
boundary (the well-known area law) [57–59], and therefore
converges with increasing bond dimension χ in the charge-
ordered and bond-ordered phases. If the system is critical, the
entropy is expected to increase logarithmically with χ [60,61],
which in our investigation occurs at phase transitions and in the
liquid phase. In the iDMRG algorithm, the entropy is calculated
during each step [45], and therefore requires no additional
computational cost.

III. ATOMIC LIMIT

To prepare the investigation of quantum phase transitions
between the insulating phases of different charge order, we
first inspect the atomic limit of t → 0 at different values of
p and critical densities Q = Qm [see Eq. (3)]. In this limit

TABLE I. Number of distinct charge-ordered insulating phases
in the atomic limit t → 0 of the model (1), for different interaction
ranges p and commensurable particle densities Q. For details of the
construction see Appendix A.

Q = ←−
1/2 1/3 1/4 1/5 1/6 1/7 · · ·

p = 1 1
2 2 1
3 3 3 1

↓ 4 5 7 4 1
5 8 12 7 5 1
6 12 ≥ 63 ≥ 23 9 6 1
...

. . .

we can identify the distinct charge-ordered phases by purely
combinatorial energetic considerations.

The most trivial case occurs at density Q = Qp+1, where
the fermions can be spread out evenly across the system so
that they are outside of the range of their interactions. This
then defines a universal ground state with vanishing energy,
which is (p + 1)-fold degenerate.

For density Q = Qp, the ground state can constitute any
one of p distinct candidate phases, which we enumerate by an
index α = 1, . . . , p. As shown in Appendix A 1, these consist
of N/(p − α + 1) blocks of a single fermion accompanied
by (α − 1) empty sites, and N (p − α)/(p − α + 1) blocks
of a single fermion accompanied by p empty sites, where
N is the number of fermions in the considered segment. The
competition between these phases is governed by their energy
Eα = NUα/(p − α + 1), so that the ground-state phase α is
selected by the condition

Uα <
p − α + 1

p − β + 1
Uβ, β �= α. (9)

An important example is the case p = 2, Q = Q2 = 1/2,
which corresponds to the t-V -V ′ model at half-filling studied in
Refs. [19,20]. The phase diagram then consists of two phases:
one with a ground-state unit cell of (•◦), where • is an occupied
site and ◦ is an unoccupied site; and one with a unit cell of
(••◦◦). The two phases have energy densities of U2/2 and
U1/4, respectively, and the phase transition occurs along the
U1 = 2U2 line.

At higher critical densities a much wider variety of possible
charge orderings emerges, whose competition can be assessed
by a combinatorial analysis. Table I shows an overview of
the number of insulating phases that we could determine
in the atomic limit of systems with p � 6. The number of
phases grows rapidly with the interaction range p and depends
distinctively on the density Q. The detailed configurations
of the corresponding charge-ordered states are specified in
Appendix A 3. This reveals phases with highly intricate internal
structure, indicating that there are no simple rules governing
the ground-state properties of systems at high critical particle
densities.

In the remainder of this paper we focus on the representative
example of p = 4,Q = Q2 = 1/2 (hence again half-filling).
Table II lists the distinct charge-ordered phases for this case.
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TABLE II. Ground-state (GS) unit cells and their energies in the
atomic limit of half-filled systems (Q = 1/2) with interaction range
p = 2 and p = 4. In the pictorial representations of the unit cells, •
denotes an occupied site and ◦ denotes an empty site. The degeneracy
f accounts for the translational freedom of these phases. The colors
designate their position in the phase diagrams of Fig. 1.

GS unit cell Energy density f

p = 2, Q = 1/2

•◦ U2/2 2
••◦◦ U1/4 4

p = 4, Q = 1/2

•◦ (U2 + U4)/2 2
••◦◦ (U1 + U3 + 2U4)/4 4
•••◦◦◦ (2U1 + U2 + U4)/6 6
••••◦◦◦◦ (3U1 + 2U2 + U3)/8 8
•◦◦•◦••◦ (U1 + 2U2 + 3U3)/8 8 �

Although the first four phases follow a relatively simple
ordering pattern, the fifth phase displays a more intricate
internal structure. The corresponding phase diagram is shown
in Fig. 1, which displays the phases in the space of interaction
parameters U1, U2, and U3, while U4 serves as the energy scale.

0 1 2 3 4 5

FIG. 1. Phase diagrams of charge-ordered ground states in the
atomic limit of half-filled systems (Q = 1/2) with interaction range
p = 2 (a) and p = 4 (b). In both cases we exploit the freedom to
choose Up as the energy scale. The colors indicate the phases listed
in Table II.

IV. FINITE KINETIC ENERGY

In the atomic limit, the phase transitions between the
charge-ordered phases are abrupt. This situation changes at
a finite kinetic energy t �= 0, where the transitions can be
mediated by other phases, such as the liquid and bond-ordered
phases previously encountered in the t-V -V ′ model (p = 2).
As the number of competing phases increases rapidly with
larger interaction range, one could suspect that the phase
space may be dominated by the transitions between these
phases, while the insulating phases are only present close to
the atomic limit. Thus, a large interaction range may imply
the loss of insulating properties of the system. Furthermore,
it is per se unclear how the distinct internal structure of the
charge-ordered states affects the nature of the transitions. We
now explore these questions for the case p = 4 at half-filling,
corresponding to the competition of ordered phases listed in
Table II, and contrast this case with p = 2. Throughout most
of this section, we set t = 1 to fix the unit of energy, and utilize
the complementary signatures described in Sec. II.

For p = 2 we find representative behavior by fixing U1 =
10 while varying U2, which allows us to verify the consistency
of our results with previous studies of the t-V -V ′ model
[19,20]. For p = 4 we find representative results by fixing
U1 = U3 = 4, U4 = 1 and again varying U2. According to the
phase diagram in Fig. 1, this covers the region occupied by the
phases (•◦), (•••◦◦◦), and (••◦◦) in the atomic limit. These
three phases are remarkably robust against the introduction of
a finite kinetic energy, but to a varying degree, which leads to
the unconventional transition scenarios that are the main result
of this work. In contrast, the other two phases listed for p = 4
in Table II occupy a smaller part of phase space and are more
susceptible to suppression by a finite kinetic energy. This is
illustrated at the end of this section for the phase (•◦◦•◦••◦),
which is quickly replaced by a bond-ordered phase.

A. Phenomenological signatures

We first consider the impact of a finite kinetic energy on
the phenomenological level. This is most directly captured by
inspection of the kinetic energy density T [see Eq. (4)], which
is shown in Figs. 2(a) and 3(a), and its staggered version,
the bond-order parameter OBO [Eq. (5)], which is shown in
Figs. 2(b) and 3(b). We note that the range of values taken
by both quantities is comparable for p = 2 and p = 4, which
places us at a similar distance to the atomic limit. The effect
of the different interaction range for both cases is immediately
visible.

For p = 2 (Fig. 2), the kinetic energy density increases as
we approach the transition between the two insulating phases
in the atomic limit (dotted line). The analytical behavior of
T resolves a single phase transition, which is signaled by a
discontinuity in its first derivative (solid line). As confirmed
by the bond-order parameter, this phase transition coincides
with the transition from the bond-ordered phase to the phase
(••◦◦), where the latter admits a finite values of OBO as the
cuts (|••|◦◦|) and (•|•◦|◦) are inequivalent in this phase. The
liquid phase is signaled by the continuing drop of OBO with
increasing bond dimension, as this order parameter has to
vanish in the thermodynamic limit. The bond-order parameter
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FIG. 2. Phenomenological signatures of phases and transitions in
the kinetic energy density T (a) and bond-order parameter OBO (b)
at finite kinetic energy parameter t = 1, for interaction range p = 2
and half-filling (Q = 1/2). In both panels the next-nearest-neighbor
interaction U2 is varied while the nearest-neighbor interaction is set to
U1 = 10. The solid lines indicate the phase transitions in this setting,
while the dotted line in (a) indicates the transition between the two
charge-ordered phases in the atomic limit. The kinetic energy density
only captures a single phase transition at U2 ≈ 7.15, which coincides
with the transition from the liquid phase into the charge-ordered phase
(••◦◦). The bond-order parameter vanishes in the thermodynamic
limit of the phase (•◦) and the liquid phase, but scales differently
with increasing bond dimension χ , thereby providing signatures of
all three phase transitions.

also vanishes in the phase (•◦), as the cuts (|•◦|) and (•|◦) are
equivalent by particle-hole symmetry. The resulting sequence
of phases is marked on top of the panels. The resulting picture
agrees with the previous studies of the t-V -V ′ model in
Refs. [19,20], where the phase diagram was determined from
the bond-order parameter and the ground-state curvature. In
this case, therefore, the kinetic energy density carries less
detailed information than the bond-order parameter.

In contrast, for the increased interaction range p = 4
(Fig. 3) we find distinctively more pronounced signatures of
several phases already in the kinetic energy density, with three
clear phase transitions indicated by the analytical behavior of
T . As we will confirm below, these coincide with an abrupt
transition between the phases (•◦) and (•••◦◦◦), as if still
in the atomic limit; a transition into a mediating region with
partially ordered and partially liquid behavior, to which we
will pay particular attention; and finally the transition into
the phase (••◦◦). The bond-order parameter now carries less

FIG. 3. kinetic energy density T (a) and bond-order parameter
OBO (b) in analogy to Fig. 2, but for increased interaction range
p = 4 and interaction parameters fixed to U1 = U3 = 4 and U4 = 1.
In the atomic limit, the transitions between the charge-ordered phases
occur at U2 = 3, 6 (dotted lines). Discontinuities in the derivative
of the kinetic energy density indicate three clear phase transitions
at U2 ≈ {4.01, 5.00, 6.57} (solid lines). The bond-order parameter
only captures a single transition into the phase (••◦◦), which is the
only encountered phase where OBO is finite. Note that the transition
between the phases (•◦) and (••◦◦) appears to be abrupt. This is
verified in the subsequent figures, which also determine the indicated
nature of the mediating region between the phases (•••◦◦◦) and
(••◦◦). There, we observe a crossover from a re-emergent charge-
ordered state (•◦) to liquid behavior, as indicated by the dashed line.

insight as it is only finite in the phase (••◦◦); in the phase
(•••◦◦◦) it vanishes as the cuts (|••|•◦|◦◦|) and (•|••|◦◦|◦)
are again equivalent by particle-hole symmetry. We therefore
do not detect a separate bond-ordered phase. Instead, as we
will argue in the following, the mediating region contains a
crossover between a re-emergent phase (•◦) and a liquid phase,
resulting in the sequence of phases indicated at the top of the
panels.

B. Correlation functions

A more detailed characterization of the encountered phases
is provided by the correlation functions Nm defined in Eq. (6).
The utility of these functions is illustrated in Fig. 4(a), where we
show their m dependence for a half-filled system with p = 2 in
the region where we expect the charge-ordered phase (••◦◦).
The correlation function displays an oscillating behavior in m,
with a period P = 4 that reflects the size of the charge-ordered
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FIG. 4. (a) Range dependence of the correlation function Nm for
p = 2, Q = 1/2, t = 1, with the interaction potentials U1 = 10 and
U2 = 8 set to values where the system is in the charge-ordered state
(••◦◦). The function displays a clear oscillatory behavior with period
4, reflecting that the charge-ordered character of the phase persists at
finite kinetic energy. (b) Extrapolation of the correlation function N4k

with increasing k, with U1 and t as above but for various values of
U2. With increasing range 4k this correlation function converges to a
well-defined value N∞

4 , in accordance to the extrapolated correlators
stipulated in Eq. (7).

unit cell. As shown in Fig. 4(b), the limiting quantities N∞
m

given in Eq. (7) are indeed well defined.
With these features, the correlation functions give direct

insight into the charge-ordered character of the phases. In the
atomic limit, the extrapolated correlators take values N∞

m ∈
{i/P } if the system is in the insulating phase, where i is
an integer. The charge-ordered phase with a unit cell (•◦)
displays two alternating values 0 and 1/2, the phase (••◦◦)
admits three possible values alternating as (1/4, 0, 1/4, 1/2),
and the phase (•••◦◦◦) admits four possible values alternating
as (1/3, 1/6, 0, 1/6, 1/3, 1/2). For t > 0, the precise values
of N∞

m in a charge-ordered phase are expected to deviate from
the atomic limit, but their periodicity and the ordering of the
encountered values should be preserved. In the liquid phase,
we expect the long-range correlations to become trivial. The
average correlation function between any two positions in
the system should therefore acquire the value 〈nini+m〉/L2 ≈
〈ni〉〈ni+m〉/L2 = Q2 = 1/4, where we specified the case of
half-filling. While these features clearly separate all charge-
ordered states, the same value 1/4 is also obtained in the bond-
ordered phase, which we detected above with the bond-order
parameter.

Figure 5 shows the extrapolated correlators N∞
m for both

investigated systems under the same conditions as in Figs. 2

FIG. 5. Extrapolated correlators N∞
m for (a) p = 2 and (b) p = 4,

with system parameters specified as in Figs. 2 and 3. The phase
transitions indicated by the solid lines coincide with points where
the derivative of N∞

m is discontinuous. The oscillatory behavior of the
correlators with the range m agrees with the stipulated charge orders.
For p = 4, the transition between the phases (•◦) and (•••◦◦◦)
remains abrupt. The behavior in the mediating transition region
between the phases (•••◦◦◦) and (••◦◦) is examined more closely
in Fig. 6.

and 3. All charge-ordered phases can be clearly identified using
the expected periodicity from the atomic limit. We notice that
there are regions where all the correlators reach the value 1/4,
indicating the absence of charge order. The discontinuities
in the derivative of N∞

m coincide with the phase transitions
detected by T and OBO.

For p = 4 these results confirm that the transition between
the phases (•◦) and (•••◦◦◦) appears to be sharp, with
an undetectable intervening liquid phase. Significantly, the
mediating region between the phases (•••◦◦◦) and (••◦◦)
indeed exhibits the signatures of the phase (•◦). Furthermore,
as shown in detail in Fig. 6, the values of N∞

m get progressively
closer to 1/4, indicating a possible crossover into the liquid
state, as suggested by the label (•◦)/LL.

C. Entanglement entropy

To further resolve the details of the mediating transition
region we turn to the entanglement entropy, which is presented
in Fig. 7. In general, in ordered states the entropy can take
multiple values depending on the position of the cut that
bipartites the system. In the case of p = 2 [Fig. 7(a)], the mirror
symmetry of the insulating phase (•◦) implies that S remains
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FIG. 6. Closeup of the extrapolated correlators N∞
m from Fig. 5

for the mediating transition region in the system with p = 4. The
correlations gradually approach the value 1/4, compatible with a
gradual crossover from charge order (•◦) to liquid behavior, where
furthermore the results converge only slowly.

single valued, while the insulating phase (••◦◦) has two
possible values, where we account for particle-hole symmetry
and mirror symmetry. In the bond-ordered phase, the ground
state is characterized by an alternating local structure, and

FIG. 7. Bipartite entanglement entropy for the systems with p =
2 (a) and p = 4 (b), with parameters as specified in Figs. 2 and 3. For
p = 4, no critical behavior is detected around the transition between
the phases (•◦) and (•••◦◦◦). However, in the transition region
between the phases (•••◦◦◦) and (••◦◦) the gradual suppression
of charge correlations (Fig. 6) coincides with an onset of finite-size
scaling with increasing bond dimension, as expected from a crossover
into a liquid phase.

therefore S again has two possible values. Finally, in the liquid
phase the entropy is single valued, but does not converge with
increasing bond dimension. Therefore, the entropy also allows
us to discriminate the bond-ordered and liquid phases. The
transitions between the different phases are clearly visible in
these numerical results, and agree with the signatures described
above.

Figure 7(b) shows the entanglement entropy for the half-
filled system with p = 4. The entropy can again be multival-
ued, where the charge-ordered phases (•◦) and (••◦◦) and the
liquid phase behave in analogy to the case p = 2. In the phase
(•••◦◦◦) the entropy can have two values, where we again
account for mirror symmetry and particle-hole symmetry. As
anticipated above, the entropy does not detect any indications
of a liquid phase between the phases (•◦) and (•••◦◦◦). We
also do not find any indications of the bond-ordered phase,
which may be attributed to the modified energetic conditions
from the additional interaction terms. Most importantly, the
results confirm that the transition between the phases (•••◦◦◦)
and (••◦◦) is mediated by an ordered state that shares all
signatures with the phase (•◦). As the ordering in this state
approaches the liquid behavior according to the correlations in
Fig. 6, the system develops the features of a liquid state, where
the entropy continues to increase with increasing bond dimen-
sion. Within the numerically accessible bond dimensions this
takes the form of a transition as indicated above the panel,
but it is also plausible that this behavior indicates a crossover
with a rapidly increasing convergence threshold in the bond
dimension.

D. Extended phase diagram

According to the picture developed above, the phase (•◦) is
present twice in the phase diagram explored thus far, where
it surrounds the phase (•••◦◦◦). As a phenomenological
explanation for this re-emergent behavior one could suggest
that the phase (•◦) mediates the transition between the phases
(••◦◦) and (•••◦◦◦) as its simpler structure reflects the
required charge reconfigurations between the latter two phases.
Further insight into the mechanism behind this re-emergence
is obtained by sampling the parameter space more widely. For
this we keep the potential energies U1 = U3 = 4, U4 = 1 fixed
as before and continue to vary U2, but also consider values
of t �= 1 that supplement the results presented earlier in this
section.

We recall that for t = 0, the system is in the atomic limit (see
Sec. III), where direct transitions between the charge-ordered
phases occur at U2 = 3 and U2 = 6. For t → ∞ we expect the
phase diagram to display the liquid phase, as the Hamiltonian
is then dominated by the kinetic term. While we cannot map
out the full phase diagram with a high degree of precision,
reasonable estimates of the phases and their transitions are
obtained by limiting the bond dimension χ to 200 and 400
for representative values of t . This leads to the extended phase
diagram proposed in Fig. 8. Here most transitions are captured
accurately with good agreement between the signatures from
the extrapolated correlators and the entropy. The determination
of the transition between the phase (•◦) and the liquid phase
requires very high bond dimensions, so that its approximate
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FIG. 8. Proposed phase diagram for the model from Eq. (1)
with interaction range p = 4, with interaction parameters U1 = U3 =
4, U4 = 1 while U2 and the kinetic energy parameter t are varied. The
phase transitions are determined from the extrapolated correlators
and the entanglement entropy, in analogy to Figs. 5 and 7, which
correspond to the case t = 1. The dashed line indicates the detected
onset of finite-size scaling with the bond dimension in the crossover
from the phase (•◦) to the liquid phase.

position at the accessible bond dimensions is marked by a
dashed line.

As can be seen from the diagram, the phase (•••◦◦◦) only
exists up to moderate values of the kinetic energy parameter
t , while the phase (•◦) is distinctively more robust, wraps
around the other phase, and indeed re-emerges in the mediating
transition region along the t = 1 line. At first sight, one would
expect that this re-emergent behavior cannot extend all the
way to the atomic limit, as the fully charge-ordered state (•◦)
acquires a larger energy than the other charge-ordered states.
However, a consistent scenario would see the mediating state
to gradually lose its clear charge order and crossover into
the liquid phase, in analogy to the behavior witnessed in the
correlations of Fig. 6 and the entropy in Fig. 7. This assertion is
difficult to verify, as the mediating phase becomes confined to
a very small part of phase space as one approaches the atomic
limit. This complication does not apply to the region t ≈ 1,
where the (•◦) phase clearly wraps around the (•••◦◦◦) phase,
resulting in its re-emergent behavior.

E. Fragile phases and bond order

According to Table II, for p = 4 the considerations above
cover three of the five possible charge-ordered phases identi-
fied in the atomic limit. As the phase (••••◦◦◦◦) is confined
to a small part of parameter space already in the atomic limit
(see Fig. 1), we here illustrate the susceptibility to a finite
kinetic energy for the phase (•◦◦•◦••◦), which displays the
most complex charge order. To explore this phase we set U1 =
4, U3 = U4 = 1 and again vary U2. We then find that the phase
is absent at t = 1, but can be detected if we significantly reduce
the kinetic energy parameter to t = 0.1. The corresponding

FIG. 9. Effect of a small kinetic energy parameter t = 0.1 on the
phase (•◦◦•◦••◦) in the half-filled system with p = 4, as captured by
the kinetic energy density T (a), the bond-order parameter OBO (b), the
bipartite entanglement entropy S (c), and the extrapolated correlators
N∞

m (d). In contrast to the case described in Fig. 3, we now set U1 = 4
and U3 = U4 = 1, while varying U2 as before. Already at the chosen
small kinetic energy parameter, the phase (•◦◦•◦••◦) is driven out by
a bond-ordered phase, which intervenes in the transition to the other
charge-ordered states covered in this parameter range.

results are shown in Fig. 9. We find clear signatures of
three charge-ordered phases, which occur in the sequence
(•◦), (•◦◦•◦••◦), (••◦◦) in agreement with the atomic limit.
However, the support of the phase (•◦◦•◦••◦) is already much
reduced. This occurs in favor of two surrounding regions that
both support a purely bond-ordered phase with no residual
charge order, and thereby share the same characteristics as
the bond-ordered phase encountered for p = 2. Note that the
phase (•◦◦•◦••◦) also admits a finite bond-order parameter,
as does again the phase (••◦◦) already discussed above. These
results not only demonstrate the susceptibility of the phase
(•◦◦•◦••◦) to suppression by a finite kinetic energy, but also
show that bond-ordered phases can still occur at this increased
interaction range.

V. EFFECTS OF DISORDER

We now determine the effects of disorder, which is intro-
duced into the Hamiltonian according to Eq. (2). To study
these effects numerically within the adopted framework we
choose disorder configurations that remain compatible with

075139-8



FERMIONIC PHASES AND THEIR TRANSITIONS … PHYSICAL REVIEW B 98, 075139 (2018)

FIG. 10. Effect of disorder on the kinetic energy density for p = 2
(a) and p = 4 (b). The disorder-free case corresponds to Figs. 2 and
3, and is included for guidance. For each finite value of the disorder,
the data represent a density plot accumulated over 100 disorder
realizations. The size of the disordered unit cell is L = 20 (p = 2)
and L = 24 (p = 4).

the previously encountered charge-ordered states, so that these
do not experience any artificial frustration. This requires a
disordered unit cell of size L that is commensurable with all the
possible insulating phases present in the atomic limit, hence a
multiple of 4 in the half-filled system with p = 2 and a multiple
of 24 in the half-filled system with p = 4. By inspecting the
variations of our results for T , OBO, and S with L for moderate
to strong values of the disorder, we have found it sufficient to set
L = 20 for p = 2 and keep L = 24 for p = 4, which has the
added benefit of retaining nontrivial extrapolated correlators
N∞

m as discussed below. The limit of very weak disorder would
require an ever-increasing disordered unit cell that keeps up
with the increasing localization length, which is beyond the
practical scope of the adopted iDMRG/iMPS approach.

In the atomic limit t = 0, disorder encourages the fragmen-
tization of charge-ordered states as the energy expense of a
charge configuration can be overcompensated by the energetic
gain from the on-site potential. Furthermore, previously de-
generate configurations such as (••◦◦), (◦••◦), (◦◦••), and
(•◦◦•) now acquire different energies. These reconfigurations
have a direct effect on the long-range correlations, which can
be expected to persist also at finite kinetic energy t �= 0. In
this general case, we would expect the disorder also to localize
the liquid phase, so that the phase space regions with critical
behavior should be suppressed.

On the phenomenological level these anticipated tendencies
are again well captured by the kinetic energy density T ,

FIG. 11. Disorder-averaged density plots of the extrapolated cor-
relators N∞

m for the disordered systems specified in Fig. 10, evaluated
at disorder strength W = 1. These correlators remain nontrivial
because of the finite size of the disordered unit cell.

FIG. 12. Disorder-averaged density plots of the extrapolated cor-
relators N∞

m as in Fig. 11, but for disorder strength W = 3.
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FIG. 13. Disorder-averaged density plots of the extrapolated cor-
relators N∞

m as in Figs. 11 and 12, but for disorder strength W = 8.

as shown by the disorder-averaged density plots in Fig. 10.
For p = 2 [Fig. 10(a)] the density T drops significantly for
increasing disorder strength W , in particular in the transition
region between the charge-ordered phases. At the same time
the spread of values of T increases, and all the features present
on the W = 0 plot become progressively washed out so that at
W = 8 the kinetic energy becomes essentially independent of
U2. A similar trend is present for p = 4 [Fig. 10(b)], where the
two prominent peaks present for W = 0 get washed out as one
increases the disorder strength. These results are consistent
with the formation of a universal fragmented state at large
disorder strength.

Insight into the gradual formation of such a state is given
by the correlation functions. Figures 11, 12, and 13 show
disorder-averaged density plots of the extrapolated correlators
N∞

m for disordered systems with W = 1, W = 3, and W = 8,
respectively. Note that these correlators are expected to be
trivial (equaling 1/4) at any finite disorder strength in the
thermodynamic limit L → ∞, but here retain a nontrivial
structure as L is finite. For a small disorder strength (W = 1,
Fig. 11), the correlators for p = 2 behave very similarly to the
nondisordered case. On the other hand, for p = 4 the same
disorder strength already has a distinct effect on the mediating
transition region between the phases (•••◦◦◦) and (••◦◦),
where the re-emergent phase (•◦) and the liquid phase are
quickly replaced in favor of a disordered insulating phase with
a nonuniform charge structure. As we increase the disorder
(W = 3, Fig. 12), the correlators N∞

m develop distinct ridges
close to rational values i/L, with i = 0, . . . , L/2 (emphasizing
again the role of the finite disordered unit cell). These ridges
are most prominent in the ranges formerly occupied by the

FIG. 14. Disorder-averaged density plots of the entanglement
entropy S for the disordered systems specified in Fig. 10.

charge-ordered states, where this behavior is consistent with
their fragmentization. In the former transition regions the
correlators cover a broad and continuous range of values. For
strong disorder (W = 8, Fig. 13), however, the rational ridges
spread out over the whole parameter range, which is consistent
with the emergence of a universal fragmented insulating state.
Interestingly, this state still appears to carry some characteristic
ordering features. For example, in the system with p = 2, the
correlators N∞

2 and N∞
4 prefer rational values L/i with even i.

Finally, as shown in Fig. 14 the disorder also has a significant
effect on the entanglement entropy. In particular, the entropy
develops strong sample-to-sample fluctuations already for
small disorder strength, and its value in the previously liquid
phase is already noticeably reduced. For large disorder strength
the entanglement entropy becomes very small across the whole
parameter range.

VI. CONCLUSIONS

In summary, we have investigated the interplay of charge-
ordered fermionic insulating phases that arise from the com-
petition of finite-range interactions in one dimension, based
on the fermionic lattice model in Eq. (1) and a range of
phenomenological and fundamental quantities described in
Sec. II. In the atomic limit of a vanishing kinetic energy term,
we observe a proliferation of competing phases, which for
large interaction range can display remarkably rich internal
ordering (see Sec. III and the Appendix). For a finite kinetic
energy (Sec. IV), significant differences are found already
for moderate ranges p of the interactions, as we explored by
comparing the cases p = 2 (for which we recover the known
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phenomenology of phase transitions mediated by liquid and
bond-ordered phases) and p = 4. While in the latter case
some complex charge-ordered phases are quickly suppressed
by a finite kinetic energy (see, e.g., Fig. 9), we observe that
the increased variety of competing phases with increasing
interaction range does not imply an essential loss of insulating
properties of the system; see the corresponding panels and
phase diagrams in Figs. 3, 5, and 7. Instead, we observe, as our
two main results, the survival of apparently direct transitions
between two charge-ordered phases mimicking the atomic
limit, as well as the appearance of mediating phases that display
re-emergent simple charge order and exhibit a crossover to
liquid behavior at one of the phase boundaries (see in particular
Fig. 6). These two transition scenarios supplement the liquid
and bond-ordered phases encountered in previous studies with
a small interaction range, leading to a rich variety of phases,
transitions, and crossovers in the system (see Fig. 8). Disorder
(explored in Sec. V) has the expected effect of gradual fragmen-
tization and localization of the insulating and liquid phases,
which is particularly visible in the density-density correlation
functions of a finite disordered unit cell (Figs. 11–13).

The results in this work are based on an analytical classifica-
tion of charged-ordered states in the atomic limit and extensive
numerical investigations at a moderate finite kinetic energy,
both applied to a canonical model of interacting spinless
fermions on a discrete one-dimensional chain. Complementary
approaches could provide useful insights into the exact nature
of the observed transitions and crossovers. Numerically, this
could be achieved by exploring the limit of a very large or
small kinetic energy, in which the approach adopted in this
work scales less favorably, or by the investigation of alterna-
tive models, such a spin chains or spinful fermions. Further
analytical progress could be made perturbatively close to the
atomic or free limit, or phenomenologically by field-theoretical
approaches of effective, possibly continuous counterparts of
the studied system. In general, our work should motivate
efforts to identify and classify the possible transition scenarios
in systems where the kinetic energy competes with several
interactions of different range. This competition should also
persist for excited states, including for disordered systems that
may display many-body localization. [62,63] These endeavors
are left for future considerations.

All relevant data present in this publication can be accessed
at Lancaster University [64].
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APPENDIX: IDENTIFICATION OF CHARGE-ORDERED
INSULATING PHASES IN THE ATOMIC LIMIT

In this Appendix we provide classifications of charge-
ordered phases at principal critical densities Q = Qm = 1/m

for interaction ranges p � 6. We start with the instructive case
of Q = Qp = 1/p, where the classification can be carried out
for all p.

1. Critical density Q = 1/ p

Assume for the moment thatUp � Um so that the preferable
distance between two fermions is p. We then say that Up

orders the fermions in the ground state. For example, a charge
sequence • ◦◦ · · · ◦︸ ︷︷ ︸

p−1

• ◦◦ · · · ◦︸ ︷︷ ︸
p−1

• has a lower energy than the

sequence • ◦◦◦ · · · ◦︸ ︷︷ ︸
p

• ◦ · · · ◦︸ ︷︷ ︸
p−2

•. The ground state has the simple

form

• ◦◦ · · · ◦︸ ︷︷ ︸
p−1

• ◦◦ · · · ◦︸ ︷︷ ︸
p−1

• ◦◦ · · · ◦︸ ︷︷ ︸
p−1

· · · , (A1)

and its energy is E1 = (L/p)Up = NUp, where L is the con-
sidered system size and N = L/p is the number of particles.

Next let us inspect how a low value of Up−1 can order the
fermions. This cannot be based on a repeating sequence of
segments • ◦◦ · · · ◦︸ ︷︷ ︸

p−2

, as this would not result in the correct den-

sity 1/p. However, by addition of segments • ◦◦ · · · ◦︸ ︷︷ ︸
p

we can

tailor the density without changing the energy of the system.
A representative corresponding ground-state configuration is

• ◦◦ · · · ◦︸ ︷︷ ︸
p−2

• ◦◦ · · · ◦︸ ︷︷ ︸
p

• ◦◦ · · · ◦︸ ︷︷ ︸
p−2

• ◦◦ · · · ◦︸ ︷︷ ︸
p

· · · , (A2)

which gives us the correct density Q = 1/p, and results in
the energy E2 = (L/2p)Up−1 = (N/2)Up−1. Note that this
ground state is highly degenerate—the sections of p and p −
2 unoccupied sites can be freely arranged along the system;
e.g., all sections with p − 2 unoccupied sites could be placed
besides each other without changing the energy of the system.

If one follows this prescription for the general case of
ordering driven by Up−n, one obtains ground states of the
representative structure

• ◦◦ · · · ◦︸ ︷︷ ︸
p−n

n−1 times︷ ︸︸ ︷• ◦◦ · · · ◦︸ ︷︷ ︸
p

• ◦◦ · · · ◦︸ ︷︷ ︸
p

• ◦◦ · · · ◦︸ ︷︷ ︸
p

· · · · · · , (A3)

which have an energy

En = L

1 + p − n + (n − 1)(p + 1)
Up+1−n

= L

np
Up−n+1 = N

n
Up−n+1. (A4)

Again, these ground states are highly degenerate.
We can now determine the conditions in which an arbitrary

phase (designated by step n) will dominate the charge ordering.
This requires

∀
k �=n

En < Ek ⇒ ∀
k �=n

Up−n+1 <
n

k
Up−k+1. (A5)
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TABLE III. Charge-ordered ground states (GS) and their energies
in the atomic limit of systems with commensurable particle densities
Q = 1/(p − 1), where p is the range of the interactions. The
degeneracy of these states is denoted as f , which accounts for the
translational freedom and the possibility of a mirror-reflected phase.
Lmax is the maximal size of the considered unit cell.

GS unit cell Energy density f

p = 3, Q = 1/2, Lmax = 28

•◦ U2/2 2
••◦◦ (U1 + U3)/4 4
•••◦◦◦ (2U1 + U2)/6 6

p = 4, Q = 1/3, Lmax = 36

•◦◦ U3/3 3
••◦◦◦◦ U1/6 6
•◦•◦◦◦ (U2 + U4)/6 6
••◦◦◦•◦◦◦ (U1 + 2U4)/9 9
•◦•◦•◦◦◦◦ (2U2 + U4)/9 9
•◦•◦◦•◦•◦◦◦◦ (2U2 + U3)/12 12
•••◦◦◦◦•◦•◦◦◦◦•◦•◦◦◦◦ (2U1 + 3U2)/21 21

p = 5, Q = 1/4, Lmax = 32

•◦◦◦ U4/4 4
•◦◦•◦◦◦◦ (U3 + U5)/8 8
•◦•◦◦◦◦◦ U2/8 8
•◦•◦◦◦◦•◦◦◦◦ (U2 + 2U5)/12 12
•◦◦•◦◦•◦◦◦◦◦ 2U3/12 12
••◦◦◦◦•◦◦◦◦•◦◦◦◦ (U1 + 3U5)/16 16
••◦◦◦◦◦••◦◦◦◦◦•◦◦◦◦◦ 2U1/20 20

p = 6, Q = 1/5, Lmax = 40

•◦◦◦◦ U5/5 5
•◦◦◦◦◦•◦◦◦ (U4 + U6)/10 10
•◦◦◦◦◦◦•◦◦ U3/10 10
•◦◦◦◦◦•◦◦•◦◦◦◦◦ (U3 + 2U6)/15 15
•◦◦◦◦◦◦••◦◦◦◦◦◦ U1/15 15
•◦◦◦◦◦◦•◦◦◦•◦◦◦ 2U4/15 15
•◦◦◦◦◦•◦•◦◦◦◦◦•◦◦◦◦◦ (U2 + 3U6)/20 20
•◦◦◦◦◦••◦◦◦◦◦•◦◦◦◦◦•◦◦◦◦◦ (U1 + 4U6)/25 25
•◦◦◦◦◦◦•◦•◦◦◦◦◦◦•◦•◦◦◦◦◦◦ 2U2/25 25

Renaming α = p − n + 1 and β = p − k + 1, we arrive at the
condition

∀
β �=α

Uα <
p − α + 1

p − β + 1
Uβ, (A6)

which in the main text is expressed as Eq. (9).
If this condition is fulfilled then the phase with energy Eα =

[N/(p − α + 1)]Uα is dominant and the ground state consists
of N/(p − α + 1) segments • ◦◦ · · · ◦︸ ︷︷ ︸

α−1

and N (p − α)/(p −

α + 1) segments • ◦◦ · · · ◦︸ ︷︷ ︸
p

. The ground-state degeneracy is

given by

f =

⎧⎪⎪⎨
⎪⎪⎩

(
N

N/(p − α + 1)

)
· p if 2α > p,(

N
p−α

p−α+1

N/(p − α + 1)

)
· p(p−α+1)

p−α
otherwise.

(A7)

TABLE IV. Charge-ordered ground states as Table III, but for
systems with particle densities Q = 1/(p − 2).

GS unit cell Energy density f

p = 4, Q = 1/2, Lmax = 26

•◦ (U2 + U4)/2 2
••◦◦ (U1 + U3 + 2U4)/4 4
•••◦◦◦ (2U1 + U2 + U4)/6 6
••••◦◦◦◦ (3U1 + 2U2 + U3)/8 8
••◦•◦◦•◦ (U1 + 2U2 + 3U3)/8 8

p = 5, Q = 1/3, Lmax = 27

•◦◦ U3/3 3
•◦•◦◦◦ (U2 + U4)/6 6
••◦◦◦◦ (U1 + U5)/6 6
••◦◦◦•◦◦◦ (U1 + 2U4 + 2U5)/9 9
•◦•◦•◦◦◦◦ (2U2 + U4 + U5)/9 9
•◦•◦◦•◦•◦◦◦◦ (2U2 + U3 + 3U5)/12 12
••◦◦•◦◦◦•◦◦◦•◦◦ (U1 + 2U3 + 4U4)/15 15
•••◦◦◦◦◦••◦◦◦◦◦ (3U1 + U2)/15 15
••◦◦••◦◦◦◦◦••◦◦◦◦◦ (3U1 + U3 + 2U4 + U5)/18 18
••◦◦•◦◦••◦◦◦◦◦••◦◦◦◦◦ (3U1 + 2U3 + 2U4)/21 21
•••◦◦◦◦•◦•◦◦◦◦•◦•◦◦◦◦ (2U1 + 3U2 + 3U5)/21 21
•◦•◦◦◦◦◦•••◦◦◦◦◦•••◦◦◦◦◦ (4U1 + 3U2)/24 24

For 2α ≤ p, the degeneracy count reflects the requirement to
exclude cases where blocks of structure • ◦◦ · · · ◦︸ ︷︷ ︸

α−1

are adjacent,

which then increases their energy by U2α .

2. General properties at higher critical densities

To construct the charge-ordered phases at larger critical
densities Qm = 1/m with m < p, we rely on the following
two general properties:

Property 1. In any atomic charge configuration of density
Q, there is at least one sequence of 1/Q − 1 or more unoccu-
pied sites.

Proof. When the particles are evenly spread out over the
system they are 1/Q sites apart, i.e., separated by 1/Q − 1
unoccupied sites, corresponding to the configuration

• ◦◦ · · · ◦︸ ︷︷ ︸
1/Q−1

• ◦◦ · · · ◦︸ ︷︷ ︸
1/Q−1

• ◦◦ · · · ◦︸ ︷︷ ︸
1/Q−1

. (A8)

Any attempt to reduce one of these spacings further necessarily
increases another spacing. �

Property 2. For any atomic ground state of the system, the
largest sequence of unoccupied states cannot exceed p sites.

Proof. Assume that there exists a ground state unit cell with
a sequence of (p + 1) unoccupied sites, which we place to the
very right in the cell by exploiting translational invariance. A
periodic arrangement of these unit cells then takes the form

•?? · · ·?•︸ ︷︷ ︸
Block A

◦◦ · · · ◦︸ ︷︷ ︸
p

◦ · · · •?? · · ·?•︸ ︷︷ ︸
Block A

◦◦ · · · ◦︸ ︷︷ ︸
p

◦

︸ ︷︷ ︸
q times

, (A9)

and has an energy density EA/(N/Q) where EA is the energy
of the denoted block A. We can now move the right-most
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TABLE V. Charge-ordered ground states as Table III, but for systems at half-filling (Q = 1/2).

GS unit cell Energy density f

p = 5, Q = 1/2, Lmax = 26

•◦ (U2 + U4)/2 2
••◦◦ (U1 + U3 + 2U4 + U5)/4 4
••◦•◦◦ (U1 + U2 + 2U3 + U4 + U5)/6 2 × 6
•••◦◦◦ (2U1 + U2 + U4 + 2U5)/6 6
••◦•◦◦•◦ (U1 + 2U2 + 3U3 + 3U5)/8 8
••••◦◦◦◦ (3U1 + 2U2 + U3 + U5)/8 8
••◦••◦◦•◦◦ (2U1 + U2 + 4U3 + 3U4)/10 10
•••••◦◦◦◦◦ (4U1 + 3U2 + 2U3 + U4)/10 10

p = 6, Q = 1/2, Lmax = 26

•◦ (U2 + U4 + U6)/2 2
••◦◦ (U1 + U3 + 2U4 + U5)/4 4
••◦•◦◦ (U1 + U2 + 2U3 + U4 + U5 + 3U6)/6 2 × 6
•••◦◦◦ (2U1 + U2 + U4 + 2U5 + 3U6)/6 6
•◦••◦•◦◦ (U1 + 2U2 + 3U3 + 3U5 + 2U6)/8 8
••••◦◦◦◦ (3U1 + 2U2 + U3 + U5 + 2U6)/8 8
••◦••◦◦•◦◦ (2U1 + U2 + 4U3 + 3U4 + 3U6)/10 10
•••••◦◦◦◦◦ (4U1 + 3U2 + 2U3 + U4 + U6)/10 10
•◦••◦•◦•◦◦•◦ (U1 + 4U2 + 3U3 + 2U4 + 5U5)/12 12
••••••◦◦◦◦◦◦ (5U1 + 4U2 + 3U3 + 2U4 + U5)/12 12
•••◦•◦◦◦•◦•••◦◦•◦◦ (4U1 + 4U2 + 4U3 + 5U4 + 2U5 + 3U6)/18 18
•••◦•◦◦◦••◦••◦◦•◦◦ (4U1 + 3U2 + 5U3 + 5U4 + 2U5 + 3U6)/18 2 × 18

unoccupied sites in each cell to the very end of this chain with-
out changing the energy density, resulting in the rearranged
configuration

•?? · · ·?•︸ ︷︷ ︸
Block A

◦◦ · · · ◦︸ ︷︷ ︸
p

· · · •?? · · ·?•︸ ︷︷ ︸
Block A

◦◦ · · · ◦︸ ︷︷ ︸
p

◦◦ · · · ◦︸ ︷︷ ︸
q

. (A10)

As guaranteed by the finite density Q > 1/p + 1, block A

contains at least one particle that makes a finite contribution
E� to the energy of this state. We can now take this particle
from block A and place it into the terminating segment of the
chain

•?? · · ·?•︸ ︷︷ ︸
Block A

◦◦ · · · ◦︸ ︷︷ ︸
p

· · · •?? · · ·??︸ ︷︷ ︸
Block A′

◦ · · · ◦︸ ︷︷ ︸
p

• ◦◦ · · · ◦︸ ︷︷ ︸
q−1

, (A11)

where block A′ is block A with the particle replaced by a hole.
Block A′ has energy EA − E�, while the displaced particle
no longer contributes to the energy of the state as soon as
q � p + 1, so that it is surrounded by at least p unoccupied
sites on both sides. This segment can now serve as a new unit
cell with an energy density

pEA − E�

pN/Q
= EA

N/Q
− E�

pN/Q
, (A12)

which lowers the energy in contradiction to our assumptions. A
similar process can be used to show that a ground state cannot
have a sequence of (p + 2) or more unoccupied sites. Thus,
we conclude that the largest spacing in any ground state has at
most p unoccupied sites. �

3. Specific cases

The general properties listed above allow us to significantly
reduce the effective charge-configuration space of ground-state
candidates. Based on Property 1 and exploiting the system’s
translational invariance, we can place the guaranteed large
spacing towards the front of the sequence, and therefore fix
the first 1/Q sites to

• ◦◦ · · · ◦︸ ︷︷ ︸
1/Q−1

. (A13)

This reduces the effective configuration space to reduced
systems of size (N − 1)/Q and (N − 1) particles. Based on
Property 2, we then can remove any charge configuration with
unoccupied segments exceeding p, which at the same time
significantly reduces the maximal unit-cell size encountered
in the construction.

For each admissible state obtained in this way, we de-
termined the general expression of the ground-state energy
density as a function of the interaction parameters {Um}.
Next, we discarded symbolically all configurations that can
never drop below the energy densities of all other charge
configurations. The final list contains the energy densities of
all phases that can have the lowest energy for some set of
values {Um}. This leads to the charge-ordered phases listed in
the following tables.

Table III lists the unit cells and energy densities for critical
densities Q = 1/(p − 1) and p = 3, 4, 5, 6, with the unit-cell
size limited to the specified values Lmax. In these cases we are
highly confident that there are no ground states with larger unit
cells. Table IV presents the unit cells and energy densities for
Q = 1/(p − 2) with p = 4 and 5. Notice that for p = 5 we
find ground-state unit cells of size up to (Lmax − 3), so that
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we cannot fully exclude the possibility of additional ground-
state configurations with even larger unit cells. Finally, results
for Q = 1/2, p = 5 and 6 are presented in Table V. Among
the combinations listed in Table I, this leaves the case p = 6,
Q = 1/3 where we find 63 phases with L � Lmax = 27, and
p = 6, Q = 1/4, where we find 23 phases with L � Lmax =

32, which defines the limit of our computational capabilities;
the corresponding phases are therefore not listed here.

In all these tables, the degeneracy of the states accounts for
the translational displacement by a finite number of sites (up to
the size of the unit cell), as well as for the possible duplication
by a distinct mirror-reflected phase.
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