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Spin-orbital-lattice entangled states in cubic d1 double perovskites
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The interplay of spin-orbit coupling and vibronic coupling on the heavy d1 site of cubic double perovskites
is investigated by ab initio calculations. The stabilization energy of spin-orbital-lattice entangled states is found
to be comparable to or larger than the exchange interactions, suggesting the presence of Jahn-Teller dynamics
in the systems. In Ba2YMoO6, the pseudo-Jahn-Teller coupling enhances the mixing of the ground and excited
spin-orbit multiplet states, which results in strong temperature dependence of effective magnetic moments. The
entanglement of the spin and lattice degrees of freedom induces a strong magnetoelastic response. This multiferroic
effect is at the origin of the recently reported breaking of local point symmetry accompanying the development
of magnetic ordering in Ba2NaOsO6.
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I. INTRODUCTION

Geometrically frustrated systems with strong spin-orbit
coupling on metal sites are of great interest in the context
of unconventional electronic phases [1,2]. Double perovskites
containing heavy d1 metal ions are candidates for spin liquid
systems, the reason for which they have been intensively
investigated [3–19]. Although the interplay of spin and orbital
degrees of freedom has been widely studied theoretically [20–
26], the understanding of the role of lattice degrees of freedom
in these systems is lacking. In the cubic d1 double perovskite
Ba2YMoO6, in spite of fourfold degeneracy of the local ground
multiplet (�8 or effective J = 3

2 ), the Jahn-Teller (JT) distor-
tion [27] has not been observed in neutron diffraction mea-
surements down to 2.7 K, which was called a “violation of the
JT theorem” [8]. Similarly, x-ray diffraction shows that cubic
symmetry of Ba2AOsO6 (A = Li, Na) [3] is retained even at 5
K [5], while recent NMR spectra of Ba2NaOsO6 suggest the de-
velopment of “broken local point symmetry” around and below
the Curie temperature (≈10 K) [18,19]. The absence of clear-
cut JT distortion is most likely explained by either quenching
of the JT effect or the presence of the dynamical JT effect.
The signs for the latter are seen, for example, in alkali-doped
fullerides [28–30] and various metal compounds [31–34].
Since the JT effect can have nontrivial influence on electronic
properties, knowledge of its relevance at local metal sites is
indispensable for understanding the nature of these materials.

In this work, with the example of three cubic d1 double
perovskites (Ba2AOsO6, A = Li, Na, and Ba2YMoO6), the
local electronic properties generated by the interplay of spin-
orbit interaction and vibronic coupling is studied. With the
use of coupling parameters derived ab initio, the spin-orbital-
lattice coupled states are accurately calculated. The dynamical
JT stabilization comparable to or larger than Curie-Weiss
constants indicates the persistence of vibronic dynamics in
the crystals. The analysis of the local magnetic moment and
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response to the magnetic field reveals the reasons for the large
increase in effective moment with temperature in Ba2YMoO6

and for the local symmetry breaking in Ba2NaOsO6.

II. ELECTRONIC AND VIBRONIC MODEL
FOR d1 SYSTEMS

The electronic structure of a d1 metal ion at an octahedral
site is described by the ligand field ĤLF, spin-orbit interaction
ĤSO, and vibronic coupling ĤJT:

Ĥ = ĤLF + ĤSO + Ĥ0 + ĤJT + ĤZee, (1)

where Ĥ0 is the Hamiltonian for harmonic oscillation and ĤZee

is the Zeeman interaction in applied magnetic field B. The
typical energy scales of ĤLF, ĤSO, ĤJT, and ĤZee under |B| ≈
10 T are several, 0.1, 0.01, and 10−4–10−3 eV, respectively,
and should be treated in this order.

The ligand field ĤLF splits the atomic d level into eg and t2g ,
the latter being stabilized in an octahedral environment [35].
Due to the large ligand-field splitting, the low-energy states
are well described in the space of t1

2g electron configurations.

Since the orbital angular momentum on sites l̂ is not quenched,
the spin-orbit coupling is operative already in the first order
[35,36]:

ĤSO = λSO l̃ · ŝ. (2)

Here, λSO > 0 is the spin-orbit coupling parameter, l̃ is the
l̃ = 1 effective orbital angular momentum operator of the t2g

orbitals, and ŝ is the electron spin. l̃ behaves as −l̂p, where l̂p

is the orbital angular momentum for p orbitals [35,36]. The
spin-orbit coupling ĤSO splits the sixfold t1

2g configurations
into �7 (J = 1

2 ) and �8 (J = 3
2 ) multiplets [37]. The latter is

the ground state separated from the former by 3
2λSO.

Because of the unquenched orbital momentum, the
magnetic moment on the metal sites becomes

m̂ = −μB(〈l〉l̃ + ge ŝ), (3)

where μB is the Bohr magneton, 〈l〉 is the expectation value
of l̂ , and ge is the electron’s g factor. Since l̃ is opposite to l̂p,
the orbital and spin contributions partially cancel each other
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TABLE I. Spin-orbit coupling parameter λSO (meV), orbital
angular momenta 〈l〉, vibrational frequency ω� (meV), and vibronic
coupling parameters v

�1···�k

n� (a.u.). Here, (1) and (2) following 〈l〉
stand for post-HF and DFT values, respectively.

Ba2LiOsO6 Ba2NaOsO6 Ba2YMoO6

λSO 379.9 384.5 88.1
〈l〉 (1) 0.772 0.779 0.859
〈l〉 (2) 0.551 0.562 0.643
ωE 99.10 100.94 100.50
ωT2 50.37 49.43 46.52
vE −3.2998×10−4 −2.6436×10−4 1.0199×10−4

vT2 0.4963×10−4 0.4945×10−4 0.7334×10−4

vEE
E −1.6604×10−5 −1.2693×10−5 0.0821×10−5

v
T2T2
E −0.0850×10−5 −0.0842×10−5 −0.0646×10−5

v
T2T2
T2

−0.0011×10−5 −0.0006×10−5 0.0002×10−5

v
ET2
T2

−0.0388×10−5 −0.0289×10−5 0.0248×10−5

vEEE
A1

0.1151×10−6 0.1032×10−6 0.0009×10−6

vEEE
E 2.7380×10−6 2.0917×10−6 0.0290×10−6

vEEEE
A1

−0.3158×10−7 −0.2011×10−7 0.0112×10−7

vEEEE
1E 2.5417×10−7 1.6786×10−7 −0.0362×10−7

vEEEE
2E 0.6240×10−7 0.4204×10−7 −0.0004×10−7

[35,36,38]. This cancellation is almost complete in the atomic
limit, 〈l〉 = 1, while it is not in crystals because of covalency
effects (〈l〉 < 1).

The t2g orbitals also couple to the eg and t2g lattice vibrations
[39–41]:

ĤJT =
∑

k

∑
n�λ

∑
�1,�2···�k

1

k!
v

�1�2···�k

n�

× {
Q̂�1 ⊗ Q̂�2 ⊗ · · · ⊗ Q̂�k

}
n�λ

τ̂�λ. (4)

Here, � (�i) is eg or t2g , λ is its component, n distinguishes the
repeated representation, Q̂�λ is the (mass-weighted) normal
coordinate, {Q̂�1 ⊗ Q̂�2 ⊗ · · · ⊗ Q̂�k

}�λ is the symmetrized
product of coordinates, v

�1�2···�k

n� is the kth order orbital
vibronic coupling parameter, and τ̂�λ are the matrices of
Clebsch-Gordan coefficients.

For the details of the model Hamiltonian, see Appendix A.

III. AB INITIO DERIVATION
OF COUPLING PARAMETERS

The spin-orbit λSO and vibronic v
�1···�k

n� coupling param-
eters were derived from the cluster calculations with post-
Hartree-Fock (HF) methods, while 〈l〉 were extracted by both
(1) post-HF and (2) density functional theory (DFT) calcula-
tions (see Appendices B 1 and B 2). The obtained parameters
are listed in Table I.

The vibronic coupling in Ba2AOsO6 is stronger than in
Ba2YMoO6. Particularly, the nonlinear vibronic coupling to
the eg modes is about 10–100 times stronger in the former
compounds. Moreover, the vibronic coupling parameters of
Ba2AOsO6 differ from each other. The strength of the vibronic
coupling is determined by the overlap between the t2g orbital
and the distribution of the vibronic operator. The former

depends on the type of d orbital (4d or 5d) and also the
environment such as the metal-oxygen bond length [42],
resulting in different vibronic coupling parameters.

In all compounds, the expectation value of the orbital
angular momentum 〈l〉 is reduced from unity due to the
delocalization of the t2g electron over ligands. As expected, the
DFT values are smaller by 25%–30% than post-HF values since
the latter underestimates metal-ligand covalency. The present
DFT value of 〈l〉 for Ba2NaOsO6 is close to the previous
calculation, 0.536 [17]. The spin-orbit coupling parameters
λSO from the ab initio calculations are also in good agreement
with previous calculations [16]. However, as in the case of 〈l〉,
λSO may be overestimated by post-HF calculations. Since both
〈l〉 and λSO are mainly contributed by the d metal orbitals, the
covalent reduction of the latter should be similar to the former.

IV. JAHN-TELLER EFFECT

A. Static Jahn-Teller deformation

The derived parameters show that the energy scales for
the multiplet splitting and vibrational frequencies ω� are
comparable, particularly in the case of Ba2YMoO6. This makes
relevant the pseudo-JT effect between the �7 and �8 multiplets,
along with the JT effect in each of them. Indeed, the adiabatic
potential-energy surfaces (APESs) along the JT distortion with
and without pseudo-JT coupling show non-negligible differ-
ences: the APES of the �8 ⊗ eg JT model (gray circles) is mod-
ified (red squares) even in the case of Ba2AOsO6 with large λSO

[Fig. 1(a)]. Thus, for an adequate description of the d1 site, the
consideration of the full (�7 ⊕ �8) ⊗ (eg ⊕ t2g ) JT coupling is
essential. Figure 1(a) also shows the unexpectedly strong effect
of nonlinear vibronic coupling: the positions of the minima and
saddle point of the APESs within the linear model (blue circles)
are inverted by nonlinear coupling (red squares).

The global minima and saddle points of the APESs were
investigated as in the simpler case of the �8 ⊗ (eg ⊕ t2g ) JT
problem [43] (for details, see [44]). The results are summarized
in Table II. The static JT distortions for Ba2AOsO6 develop
only along the eg mode [Fig. 1(b)]. The JT stabilization
energies |Umin| are 32.2 and 20.3 meV [45], and the energy
barriers �U between the minima and the saddle points in the
bottom of the APESs are only 10.9 and 6.3 meV for A = Li
and Na, respectively [for A = Na see Fig. 1(a)]. In contrast,
in Ba2YMoO6 the t2g distortion is dominant [Fig. 1(c)]. The
stabilization energy is only 4.8 meV [45], and the energy barrier
at the trigonal point (QT2ξ = QT2η = QT2ζ ) is about 0.7 meV.

In all materials, the largest shifts δlmax of the oxygen atom by
the static JT deformation obtained were about 0.02 Å which is
larger than the experimental resolution [46], which at a glance
seems to be contradictory to the absence of the symmetry
lowering in the structural data. However, because of the small
warping of the trough �U , the dynamical Jahn-Teller effect
[40,41], which causes the delocalization of the nuclear wave
function over the trough, has to be fully taken into account.

B. Spin-orbital-lattice entangled states

The vibronic eigenstates of the (�7 ⊕ �8) ⊗ (eg ⊕ t2g ) JT
system have a spin-orbital-lattice entangled form:

|�α�M〉 =
∑

�=�7,�8

∑
N

|�N〉 ⊗ |ψ�N,α�M〉, (5)
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(a)

(b) (c)

FIG. 1. (a) The APESs along the egθ distortion for Ba2NaOsO6

and JT distortions for (b) Os and (c) Mo compounds. In (a) the red
squares and gray solid circles indicate the APESs with and without
pseudo-JT coupling, respectively, and the blue open circles show the
APESs of the linear JT model with pseudo-JT coupling. In (b) and (c),
the orange arrows show the direction of the displacements of oxygen
atoms at the minima of APESs.

where α is the principal quantum number, |�N〉 is the multiplet
state, and |ψ�N,α�M〉 is the nuclear part. The latter is expanded
into the eigenstates of harmonic oscillators [47–49]. The
vibronic states (5) were obtained by numerical diagonalization
of the JT Hamiltonian (see Appendix B 4).

Figure 2 shows the vibronic levels without and with non-
linear vibronic coupling for each system. In Ba2AOsO6, the
nonlinear vibronic coupling significantly destabilizes the linear
vibronic states, which is explained by the rise in the minima
of APESs and reduced magnitude of distortion at the minima
[Fig. 1(a)] [50]. The resultant dynamical JT stabilizations are

TABLE II. The position of one of the minima (a.u.) and energy
(meV). δlmax indicates the largest displacement of an oxygen atom
under JT deformation, and Umin and �U are the JT stabilization
energy and the energy barrier between the minima and saddle points,
respectively (see Fig. 1).

Ba2LiOsO6 Ba2NaOsO6 Ba2YMoO6

QEθ −12.29 −10.24 1.42
QT2ζ 0.00 0.00 11.46
δlmax 0.022 0.018 0.018
Umin −32.22 −20.31 −4.84
�U 10.86 6.27 0.67

FIG. 2. Low-energy vibronic levels in double perovskites (meV).
The left and right columns for each compound are the vibronic levels
without and with nonlinear vibronic coupling. The ground energy
without vibronic coupling is taken as the zero of the energy.

several times larger than the exchange interactions measured
by Curie-Weiss constants � (|�| = 3.5 meV for A = Li
and 0.9–2.8 meV for A = Na [3,5]). Moreover, a rather
weak intersite elastic interaction is expected because OsO6

octahedrons have no common ligand atoms. The absence of
a clear static cooperative JT effect (or orbital ordering) [5] is
explained by its destruction by the unquenched JT dynamics,
as is also the case in fullerides [29]. The presence of the JT
dynamics means that the phase of the materials should be
described in terms of the spin-orbital-lattice entangled states
instead of spin or spin-orbit coupled states. Thus, for example,
the low-temperature ordered phase [3] is not a simple magnetic
one but that of spin-orbital-lattice entangled states. The impact
of the difference on the physical properties will be discussed
in Sec. V B.

In the case of Ba2YMoO6, the energy gain by the JT
dynamics amounts to as much as three times the static JT
energy (as usual in the weak JT regime [40]). The dynamical
JT stabilization is comparable in magnitude to the reported �

(|�| ranges from 7.8 to 18.9 meV [4,7,8,11,13]; see Table III),
implying a non-negligible contribution of the JT dynamics to
the low-energy states, as discussed above. The first excited
states arise at ∼30 meV above the ground one (Fig. 2), which
should be put in relation to the excitation at ∼28 meV observed
in inelastic neutron scattering measurements [9]. The pres-
ence of the JT dynamics does not contradict the temperature
evolution of the infrared spectra which were attributed to the
classical JT distortion at low temperature [13]. Indeed, a similar
temperature dependence of infrared spectra of fullerides was
explained on the basis of the dynamical JT effect [51].

V. MAGNETIC PROPERTIES

In the present systems, the vibronic states (5) inherit
the paramagnetic properties from the spin-orbit multiplets.
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TABLE III. Theoretical and experimental effective magnetic moments Meff (in units of μB) and Curie-Weiss temperature � (meV). T (K)
indicates the temperature for the simulation or measurements.

Meff � T Method Ref.

High T

Ba2LiOsO6 0.707 300 Theory (Vibronic) This work
0.733 −3.5 150–300 χ [3]

Ba2NaOsO6 0.658 300 Theory (Vibronic) This work
0.677 −2.8 150–300 χ [3]

0.596–0.647 −0.9 to −1.3 75–200 χ [5]
Ba2YMoO6 1.351 300 Theory (Vibronic) This work

1.231 300 Theory (Electronic) This work
1.34 −7.8 220–300 χ [4]
1.41 −13.8 150–300 χ [7]
1.72 −18.9 150–300 χ [8]
1.44 −12.3 160–390 χ [11]
1.52 −14.8 150–300 χ [13]

Low T

Ba2LiOsO6 0.595 0 Theory (Vibronic) This work
Ba2NaOsO6 0.569 0 Theory (Vibronic) This work

≈0.6 �10 NMR [18]
Ba2YMoO6 0.624 0 Theory (Vibronic) This work

0.462 0 Theory (Electronic) This work
0.53 <40 NMR [8]
0.59 <25 χ [11]
0.57 <25 χ [13]

Particularly, because of the entanglement, the lattice degrees
of freedom also become relevant to the magnetism. Below, two
aspects are investigated.

A. Effective magnetic moment

The effective magnetic moment Meff derived from the
magnetic susceptibility χ at high temperature (T > |�|) is
expected to be close to that of a single d1 site because the
influence of intersite interactions in this case can be neglected.
The temperature dependence of Meff was calculated with
(points) and without (lines) dynamical JT effect (Fig. 3). At
T = 0 K, Meff arises from only the �8 vibronic states, and
as temperature rises, it grows due to Van Vleck’s second-
order contribution [36,38]. The vibronic coupling influences
Meff in two ways: (i) JT coupling to �8 multiplet modifies
(often reduces) the matrix element of the electronic operator
[49,52,53] and (ii) pseudo-JT coupling mixes the �7 and �8

multiplets. In the present case, the admixture of the�7 multiplet
with large magnetic moment leads to the enhancement of Meff.

In the case of Ba2AOsO6, due to the strong ĤSO, the Van
Vleck contribution is small, and the temperature dependence
of Meff is weak [Fig. 3(a)]. The theoretical values with DFT
〈l〉 are in good agreement with the experimental data at both
low and high temperatures: Meff ≈ 0.6μB at T ≈ 0 K [18] and
0.60μB–0.68μB at high T [3,5] for Ba2NaOsO6 and 0.73μB at
high T for Ba2LiOsO6 [3]. As is widely accepted [8,14,16,17],
the d-p hybridization of Os and O atoms enlarges electronic
Meff (compare the data for the DFT-derived 〈l〉 and the atomic
value). The JT dynamics slightly quenches the variation of Meff

[Fig. 3(a)].
On the other hand, in Ba2YMoO6, the pseudo-JT coupling

plays a crucial role in enhancing Meff [Fig. 3(b)]. At T = 0 K,

Meff amounts to 0.6μB, which is in line with NMR of 0.53μB

[8] and low-T susceptibility of 0.57μB–0.59μB [11,13,54], and
it rapidly grows with T . Taking into account the covalency
effect on both λSO and 〈l〉 (gray triangles), Meff at T ≈ 300 K
reaches the experimental values (1.3μB–1.5μB [4,7,11,13]).

B. Spin-orbital-lattice entanglement-driven
magnetoelastic response

A peculiarity of the present systems is that the Zeeman split-
ting is accompanied by the variation of the Q�λ distribution in
the ground �8 vibronic state,

ρ�8M ( Q) = 〈
��8M

∣∣ Q
〉〈

Q
∣∣��8M

〉
, (6)

where Q is a set of normal coordinates. Under B ‖ [001]
the ground �8 level splits as in the inset of Fig. 4(c). In the
case of Os compounds, slight localization at the minima in the
APESs is observed for |��8,∓ 1

2
〉 and around the saddle point for

|��8,∓ 3
2
〉 [for the case of Ba2NaOsO6 see Figs. 4(a) and 4(b)].

Thus, with the increase in temperature, the center of the dis-
tribution ρ shifts from the minima of APESs to the symmetric
point [Fig. 1(c); for the definition of ρ see Appendix B 6].

The temperature evolution of ρ must be related to the
observation of the broken local point symmetry in Ba2NaOsO6

[18,19]. The expectation value of the JT distortion is reduced by
the JT dynamics, and it is consistent with the expected small JT
deformation in the NMR study as well as x-ray data [5]. Besides
the applied field, the exchange interaction between d1 centers
enhances the Zeeman splitting in the presence of magnetic
order, which would cause the reduction of the magnetic entropy
to kB ln 2 [5]. Thus, the ordering in Ba2NaOsO6 [18] is
not a conventional orbital ordering with classical (static) JT
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FIG. 3. Effective magnetic moments Meff as a function of temper-
ature for (a) Os and (b) Mo compounds. The meaning of the symbols
and lines is given in the insets. “Vibro.” and “Elec.” stand for Meff

calculated for dynamical JT states and for pure electronic multiplet
states, respectively, and 〈l〉 (also λSO for Mo system) is the value
used for the simulation. (a) The red circles and solid and dot-dashed
lines are for Ba2LiOsO6, and the blue squares and dashed line are for
Ba2NaOsO6.

distortions but an ordering of spin-orbital-lattice entangled
states.

In contrast to the Os compounds, in Ba2YMoO6 no mag-
netic order develops down to 50 mK [11]. Despite the stronger
exchange interaction [4,7,8,11,13] than in Ba2AOsO6, the
absence of the ordering hinders the large Zeeman splitting of
vibronic levels, and hence, the dynamical JT effect develops
as supported by neutron diffraction data [8] and sustains
the magnetic entropy of kB ln 4 observed by muon spin
resonance [7].

VI. CONCLUSION

The local spin-orbital-lattice entangled states of three cubic
d1 double perovskites were derived based on the first-principles
approach. The gain of the energy of the ground coupled states
is larger than (Ba2AOsO6) or comparable to (Ba2YMoO6) the
corresponding Curie-Weiss constants, suggesting the presence
of a dynamical JT effect in these materials. Due to the mixing
with spin degrees of freedom, the vibronic states respond
strongly to the magnetic field. Thus, the first excited vibronic
level at ≈30 meV in Ba2YMoO6 suggests its relevance to the

FIG. 4. (a) and (b) ρ�8M (Qθ, Qε ) for M = ∓ 1
2 and ∓ 3

2 , respec-
tively, and (c) the temperature evolution of the distribution of vibronic
states for Ba2NaOsO6. In (a) and (b), the contour lines are drawn from
zero with an increment of 1/20. In (c), the distribution with respect
to the averaged one �ρ is shown under applied field of |B| = 15 T.
The inset shows the Zeeman splitting of the �8 vibronic state. For the
description of �ρ, see Appendix B 6.

magnetic excitations measured in inelastic neutron scattering.
In this compound, the vibronic coupling involving both �8 and
�7 multiplets gives rise to the strong temperature dependence
of the effective magnetic moment. In Ba2AOsO6, the entan-
glement gives rise to a magnetoelastic response where a small
static component of the dynamical JT deformation accompa-
nies the Zeeman splitting, which explains the breaking of local
point symmetry.

The relevance of the spin-orbital-lattice entanglement is
expected in other cubic d1 [4,12,15] and d2 double perovskites
[55–59] and also in other types of cubic crystals such as 5d1 Ta
chlorides retaining cubic symmetry down to low temperature
[60]. For a complete understanding of the unconventional
magnetic phases of the family of cubic double perovskites
containing heavy transition metals, concomitant treatment of
the vibronic and magnetic interactions is found to be crucial.
The ordering of the spin-orbital-lattice entangled states would
be a new direction towards unconventional multifunctional
materials.
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APPENDIX A: DERIVATION OF
THE MODEL HAMILTONIAN

Here, the transformation of the model Hamiltonian for the
t1
2g ion in an octahedral environment into the one in the basis of

spin-orbit coupled states is shown in detail. In this appendix,
the operators for the spin-orbital decoupled and coupled states
are given by lowercase and uppercase letters, respectively, the
subscript g of the representations is omitted in the equations
for simplicity, and the coordinate axes of the d1 system are
chosen to correspond to C4 axes.

According to the selection rule for the t2g orbitals,

t2g ⊗ t2g = a1g ⊕ eg ⊕ {t1g} ⊕ t2g, (A1)

the t2g orbitals have unquenched orbital angular momenta
(time-odd t1g operator) and also couple to the a1g , eg , and
t2g vibrational modes (Fig. 5). In Eq. (A1), the curly brackets
indicate that the representation is antisymmetric.

1. Electronic states

The presence of the unquenched orbital angular momenta
indicates the spin-orbit coupling acts on t1

2g configurations in
the first order of perturbation. Projecting the orbital angular
momentum operator for the d orbitals into the space of t2g

orbitals, we obtain

l̂ = 〈l〉l̃, (A2)

where the reduction of the orbital angular momentum by the
covalency effect is included in 〈l〉 and the components of l̃ are
written as follows [35,36]:

l̃x =
⎛
⎝0 0 0

0 0 i

0 −i 0

⎞
⎠, l̃y =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠,

l̃z =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠ (A3)

in the order of the electronic basis |t2ξ 〉, |t2η〉, |t2ζ 〉. ξ, η, ζ

indicate the basis of the t2g representation and transform as yz,
zx, xy, respectively, under the symmetry operation of the Oh

group.
Due to the spin-orbit coupling, ĥSO = λSO l̃ · ŝ, t1

2g configu-
rations split into spin-orbit multiplets [37]:

t2 ⊗ �6 = �7 ⊕ �8. (A4)

FIG. 5. Symmetrized mass-weighted normal vibrations. (a) Egθ ,
(b) Egε, and (c) T2gζ .

�6 is the irreducible representation of the electron spin state.
Since each representation appears only once on the right-hand
side, the spin-orbit coupled states are determined by using
Clebsch-Gordan coefficients as [37]

∣∣∣∣�7,−1

2

〉
= − i√

3
|t2ξ,↑〉 − 1√

3
|t2η,↑〉 + i√

3
|t2ζ,↓〉,

∣∣∣∣�7,+1

2

〉
= − i√

3
|t2ξ,↓〉 + 1√

3
|t2η,↓〉 − i√

3
|t2ζ,↑〉,

∣∣∣∣�8,−3

2

〉
= − i√

6
|t2ξ,↓〉 + 1√

6
|t2η,↓〉 + i

√
2

3
|t2ζ,↑〉,

∣∣∣∣�8,−1

2

〉
= i√

2
|t2ξ,↑〉 − 1√

2
|t2η,↑〉,

∣∣∣∣�8,+1

2

〉
= − i√

2
|t2ξ,↓〉 − 1√

2
|t2η,↓〉,

∣∣∣∣�8,+3

2

〉
= i√

6
|t2ξ,↑〉 + 1√

6
|t2η,↑〉 + i

√
2

3
|t2ζ,↓〉.

(A5)

With the use of the spin-orbit coupled basis, Eq. (A5),
the magnetic moment (3) in the Zeeman Hamiltonian, the
matrix forms of the pseudo-orbital and spin angular momentum
operators are given as

L̂x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 2
3

1
3
√

2
0 1√

6
0

− 2
3 0 0 − 1√

6
0 − 1

3
√

2

1
3
√

2
0 0 1√

3
0 − 2

3

0 − 1√
6

1√
3

0 0 0

1√
6

0 0 0 0 1√
3

0 − 1
3
√

2
− 2

3 0 1√
3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L̂y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 2i
3

i

3
√

2
0 − i√

6
0

2i
3 0 0 − i√

6
0 i

3
√

2

− i

3
√

2
0 0 i√

3
0 2i

3

0 i√
6

− i√
3

0 0 0

i√
6

0 0 0 0 i√
3

0 − i

3
√

2
− 2i

3 0 − i√
3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L̂z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3 0 0 0 0 −

√
2

3

0 − 2
3 −

√
2

3 0 0 0

0 −
√

2
3 − 1

3 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

−
√

2
3 0 0 0 0 1

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)
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and

Ŝx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
6

1
3
√

2
0 1√

6
0

− 1
6 0 0 − 1√

6
0 − 1

3
√

2

1
3
√

2
0 0 − 1

2
√

3
0 1

3

0 − 1√
6

− 1
2
√

3
0 0 0

1√
6

0 0 0 0 − 1
2
√

3

0 − 1
3
√

2
1
3 0 − 1

2
√

3
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ŝy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − i
6

i

3
√

2
0 − i√

6
0

i
6 0 0 − i√

6
0 i

3
√

2

− i

3
√

2
0 0 − i

2
√

3
0 − i

3

0 i√
6

i

2
√

3
0 0 0

i√
6

0 0 0 0 − i

2
√

3

0 − i

3
√

2
i
3 0 i

2
√

3
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ŝz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6 0 0 0 0 −

√
2

3

0 − 1
6 −

√
2

3 0 0 0

0 −
√

2
3

1
6 0 0 0

0 0 0 1
2 0 0

0 0 0 0 − 1
2 0

−
√

2
3 0 0 0 0 − 1

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A7)

respectively. The basis has the same order as Eq. (A5).
The spin-orbit, ĥSO = λSO l̃ · ŝ, and Zeeman, ĥZee = −m̂ · B,
Hamiltonian matrices in the coupled basis are obtained by
simply replacing l̃ and ŝ by L̂ and Ŝ, respectively.

2. Vibronic coupling

The t2g orbital couples to a1g , eg , and t2g vibrations (A1).
We take the Oh structure which is fully relaxed with respect
to the ag normal mode as a reference structure. The totally
symmetric part contains harmonic and anharmonic potentials:

ĥA1 =
∑

γ=θ,ε

ω2
E

2
Q̂2

Eγ +
∑

γ=ξ,η,ζ

ω2
T2

2
Q̂2

T2γ

+
∑

γ=θ,ε

vEEE
A1

3!
{Q̂E ⊗ Q̂E ⊗ Q̂E}A1

+
∑

γ=θ,ε

vEEEE
A1

4!
{Q̂E ⊗ Q̂E ⊗ Q̂E ⊗ Q̂E}A1 . (A8)

Here, ω� is the frequency of the � mode (� = E, T2). The
symmetrized products are shown below. The bases of the eg

representation expressed by θ and ε transform as (−x2 − y2 +
2z2)/

√
6 and (x2 − y2)/

√
2, respectively, under symmetry

operations.

The vibronic couplings with the eg and t2g modes induce
the Jahn-Teller effect. The linear term is given by

ĥLJT =
∑

γ=θ,ε

vEQ̂Eγ τ̂Eγ +
∑

γ=ξ,η,ζ

vT2Q̂T2γ τ̂T2γ . (A9)

Here, v� are the linear orbital vibronic coupling parameters,
and τ̂ are matrices of Clebsch-Gordan coefficients:

τ̂Eθ =

⎛
⎜⎝

− 1
2 0 0

0 − 1
2 0

0 0 1

⎞
⎟⎠, τ̂Eε =

⎛
⎜⎜⎝

√
3

2 0 0

0 −
√

3
2 0

0 0 0

⎞
⎟⎟⎠,

τ̂T2ξ =

⎛
⎜⎜⎝

0 0 0

0 0 1√
2

0 1√
2

0

⎞
⎟⎟⎠, τ̂T2η =

⎛
⎜⎜⎝

0 0 1√
2

0 0 0
1√
2

0 0

⎞
⎟⎟⎠,

τ̂T2ζ =

⎛
⎜⎜⎝

0 1√
2

0

1√
2

0 0

0 0 0

⎞
⎟⎟⎠. (A10)

The phase factors of the Jahn-Teller active modes are chosen
as shown in Fig. 5.

Transforming the electronic basis from the spin-orbital
decoupled states into the coupled states (A5), τ̂ in ĥLJT become

T̂Eθ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1√
2

0 0 − 1√
2

0 0 0

0 − 1√
2

1
2 0 0 0

0 0 0 − 1
2 0 0

0 0 0 0 − 1
2 0

1√
2

0 0 0 0 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T̂Eε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 − 1√
2

0 0

0 0 0 0 1√
2

0

0 0 0 0 1
2 0

− 1√
2

0 0 0 0 1
2

0 1√
2

1
2 0 0 0

0 0 0 1
2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T̂T2ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − i
2 0 i

2
√

3
0

0 0 0 − i

2
√

3
0 i

2

i
2 0 0 i√

6
0 0

0 i

2
√

3
− i√

6
0 0 0

− i

2
√

3
0 0 0 0 − i√

6

0 − i
2 0 0 i√

6
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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T̂T2η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1
2 0 − 1

2
√

3
0

0 0 0 − 1
2
√

3
0 − 1

2

− 1
2 0 0 1√

6
0 0

0 − 1
2
√

3
1√
6

0 0 0

− 1
2
√

3
0 0 0 0 − 1√

6

0 − 1
2 0 0 − 1√

6
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T̂T2ζ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 − i√
3

0 0

0 0 0 0 − i√
3

0

0 0 0 0 − i√
6

0

i√
3

0 0 0 0 − i√
6

0 i√
3

i√
6

0 0 0

0 0 0 i√
6

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A11)

Replacing τ̂ in ĥLJT with T̂ , we obtain ĤLJT.
The nonlinear vibronic Hamiltonian is derived in the same

manner:

ĥNLJT =
∑

γ=θ,ε

vEE
E

2!
{Q̂E ⊗ Q̂E}Eγ τ̂Eγ

+
∑

γ=θ,ε

v
T2T2
E

2!
{Q̂T2 ⊗ Q̂T2}Eγ τ̂Eγ

+
∑

γ=ξ,η,ζ

v
T2T2
T2

2!
{Q̂T2 ⊗ Q̂T2}T2γ τ̂T2γ

+
∑

γ=ξ,η,ζ

v
ET2
T2

2!
{Q̂E ⊗ Q̂T2}T2γ τ̂T2γ

+
∑

γ=θ,ε

vEEE
E

3!
{Q̂E ⊗ Q̂E ⊗ Q̂E}Eγ τ̂Eγ

+
∑
n=1,2

∑
γ=θ,ε

vEEEE
nE

4!
{Q̂E

⊗ Q̂E ⊗ Q̂E ⊗ Q̂E}nEγ τ̂Eγ . (A12)

Here, only the terms treated in this work are written. Using the
same transformation as for ĥLJT, we obtain ĤNLJT.

The symmetrized products of the coordinates appearing
in Eqs. (A8) and (A12) are calculated as follows. The
symmetrized quadratic coordinates are, in general, calcu-
lated as

{Q̂�1 ⊗ Q̂�2}�λ =
∑
λ1λ2

Q̂�1λ1Q̂�2λ2

×〈�1λ1�2λ2|(�1�2)�λ〉. (A13)

Here, 〈�1λ1�2λ2|(�1�2)�λ〉 is Clebsch-Gordan coefficient
tabulated in Ref. [37]. The explicit forms of the symmetrized
products of interest here are

{Q̂E ⊗ Q̂E}A = 1√
2

(
Q̂2

Eθ + Q̂2
Eε

)
,

{Q̂T2 ⊗ Q̂T2}A = 1√
3

(
Q̂2

T2ξ
+ Q̂2

T2η
+ Q̂2

T2ζ

)
,

{Q̂E ⊗ Q̂E}Eθ = − 1√
2

(
Q̂2

Eθ − Q̂2
Eε

)
,

{Q̂E ⊗ Q̂E}Eε =
√

2Q̂EθQ̂Eε,

{Q̂T2 ⊗ Q̂T2}Eθ = − 1√
6

(
Q̂2

T2ξ
+ Q̂2

T2η
− 2Q̂2

T2ζ

)
,

{Q̂T2 ⊗ Q̂T2}Eε = 1√
2

(
Q̂2

T2ξ
− Q̂2

T2η

)
,

{Q̂T2 ⊗ Q̂T2}T2ξ =
√

2Q̂T2ηQ̂T2ζ ,

{Q̂T2 ⊗ Q̂T2}T2η =
√

2Q̂T2ζ Q̂T2ξ ,

{Q̂T2 ⊗ Q̂T2}T2ζ =
√

2Q̂T2ξ Q̂T2η,

{Q̂E ⊗ Q̂T2}T2ξ =
(

−1

2
Q̂Eθ +

√
3

2
Q̂Eε

)
Q̂T2ξ ,

{Q̂E ⊗ Q̂T2}T2η =
(

−1

2
Q̂Eθ −

√
3

2
Q̂Eε

)
Q̂T2η,

{Q̂E ⊗ Q̂T2}T2ζ = Q̂EθQ̂T2ζ (A14)

for quadratic terms. The cubic products can be calculated
by using Eq. (A13) twice. The cubic terms of interest are
calculated as follows:

{Q̂E ⊗ {Q̂E ⊗ Q̂E}E}A1
= 1

2

(−Q̂3
Eθ + 3Q̂EθQ̂

2
Eε

)
,

{Q̂E ⊗ {Q̂E ⊗ Q̂E}E}Eθ = 1
2Q̂Eθ

(
Q̂2

Eθ + Q̂2
Eε

)
, (A15)

{Q̂E ⊗ {Q̂E ⊗ Q̂E}E}Eθ = 1
2Q̂Eε

(
Q̂2

Eθ + Q̂2
Eε

)
.

The fourth-order terms for the E mode are calculated as

{Q̂E ⊗ Q̂E ⊗ Q̂E ⊗ Q̂E}A1 = {Q̂E ⊗ Q̂E}2
A1

= 1

2

(
Q̂2

Eθ + Q̂2
Eε

)2
,

{Q̂E ⊗ Q̂E ⊗ Q̂E ⊗ Q̂E}1Eθ = {Q̂E ⊗ Q̂E}A1{Q̂E ⊗ Q̂E}Eθ = −1

2

(
Q̂2

Eθ − Q̂2
Eε

)(
Q̂2

Eθ + Q̂2
Eε

)
,

{Q̂E ⊗ Q̂E ⊗ Q̂E ⊗ Q̂E}1Eε = {Q̂E ⊗ Q̂E}A1{Q̂E ⊗ Q̂E}Eε = Q̂EθQ̂Eε

(
Q̂2

Eθ + Q̂2
Eε

)
,

{Q̂E ⊗ Q̂E ⊗ Q̂E ⊗ Q̂E}2Eθ = {{Q̂E ⊗ Q̂E}E ⊗ {Q̂E ⊗ Q̂E}E}Eθ = − 1

2
√

2

(
Q̂4

Eθ + Q̂4
Eε − 6Q̂2

EθQ̂
2
Eε

)
,

{Q̂E ⊗ Q̂E ⊗ Q̂E ⊗ Q̂E}2Eε = {{Q̂E ⊗ Q̂E}E ⊗ {Q̂E ⊗ Q̂E}E}Eε = −
√

2
(
Q̂2

Eθ − Q̂2
Eε

)
Q̂EθQ̂Eε. (A16)
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APPENDIX B: COMPUTATIONAL DETAILS

1. Ab initio method

The electronic and vibronic coupling parameters were
derived from the cluster calculations with post-Hartree-Fock
(HF) methods and 〈l〉 were extracted with density functional
theory (DFT) calculations. The clusters were generated from
the experimental crystal structures [3,8] retaining Oh symme-
try. In the post-HF calculations, the d1 metal ion and the nearest
six oxygen atoms were treated ab initio with atomic-natural-
orbital relativistic-correlation consistent-valence quadruple
zeta polarization (ANO-RCC-VQZP) basis functions, and the
surrounding 280 atoms were replaced by the ab initio embed-
ding model potential [61]. The atomic bielectronic integrals
were calculated using Cholesky decomposition with a thresh-
old of 1×10−9 Eh. Inversion symmetry was employed in all
calculations.

All ab initio calculations were carried out with MOLCAS 8.0
[62] and were of the complete-active-space self-consistent-
field (CASSCF)/extended multistate complete-active-space
second-order perturbation theory (XMS-CASPT2) [63,64]/
spin-orbit restricted-active-space state interaction (SO-
RASSI) type. The active space of all CASSCF calculations
included seven electrons in six orbitals. Three orbitals are 4d

or 5d orbitals, and the other three orbitals are of the ligand
π type. Three roots were optimized at the CASSCF level,
and then XMS-CASPT2 was carried out for the three roots
from CASSCF. In XMS-CASPT2 calculations, the ionization
potential electron affinity (IPEA) shift was set to zero, while the
imaginary (IMAG) shift was set to 0.1. SO-RASSI calculations
mixed the roots obtained from XMS-CASPT2 by spin-orbit
coupling. The scalar relativistic effects were included in the
basis set.

2. DFT method

The clusters for the DFT calculations contain 89 atoms
which are treated explicitly with the default 2 triple zeta
valence plus polarization (def2-TZVP) basis set and default 2 J
auxiliary basis (def2/J) auxiliary basis sets. DFT calculations
were done with the Becke three-parameter Lee-Yang-Parr
(B3LYP) hybrid functional with the Resolution of the identity
approximation for the Coulomb energy (J) and numerical
chain-of-sphere integration for the Hartree-Fock exchange in-
tegrals (RIJCOSX) approximation. The basis function contains
the scalar relativistic effects. For the DFT calculations, ORCA

4.0.0.2 [65] was used. For the SCF, condition TIGHTSCF is used.
The grid for density was GRID5.

3. Calculations of electronic and vibronic
coupling parameters

The spin-orbit coupling parameters λSO were obtained
from the ab initio multiplet levels, E�7 − E�8 = 3

2λSO. The
expectation values of orbital angular momentum 〈l〉 were
calculated by using ab initio or DFT wave functions at the
Oh structure. In the latter case, the orbital angular momentum
matrices in the atomic orbital basis were calculated using
MOLPRO 2012.1 [66]. The frequencies and vibronic parameters
were derived by fitting the ab initio 2T2g adiabatic potential
energy surface (APES) to the t2g ⊗ (eg ⊕ t2g ) model vibronic
Hamiltonian [44]. The step of deformation is �Q = 0.5 a.u.
The units of the kth-order vibronic coupling parameter are

Eh/(mea
2
0 )k/2, where Eh is Hartree, me is the electron mass,

and a0 is the Bohr radius.

4. Numerical diagonalization of the vibronic Hamiltonian

The (�7 ⊕ �8) ⊗ (eg ⊕ t2g ) JT Hamiltonians for the d1

systems were numerically diagonalized with the derived pa-
rameters. The nuclear part of the vibronic state [Eq. (5)] is
expressed as

|ψ�M,α�λ〉 =
∑

nθ ,nε ,nξ ,nη,nζ

|n〉ψ�Mn,α�λ, (B1)

where |n〉 = |nθ , nε, nξ , nη, nζ 〉 (nγ � 0) are the eigenstates
of Ĥ0 and the coefficient ψ�Mn,α�λ is defined by 〈n|ψ�M,α�λ〉.
The vibronic bases |�γ 〉 ⊗ |n〉 are truncated as

0 �
∑

γ

nγ � 9. (B2)

The diagonalization of the dynamical JT Hamiltonian ma-
trix was done in two steps. First, the linear JT Hamiltonian
matrices,

Ĥ (1) = ĤSO +
∑
�γ

P̂ 2
�γ

2
+ ĤA1 + ĤLJT, (B3)

were diagonalized using LAPACK (ZHEEV). Then, using the
lowest 1000 linear vibronic states as the basis, the nonlinear
JT Hamiltonian matrices,

Ĥ (2) = Ĥ (1) + ĤNLJT, (B4)

were calculated and diagonalized.

5. Effective magnetic moment

The effective magnetic moments were calculated within
pure electronic and vibronic models. The model Hamiltonians
for these two cases are ĤSO + ĤZee and Ĥ (2) + ĤZee, respec-
tively, where Ĥ (2) corresponds to Eq. (B4). The magnetic field
B was applied along the z axis, B = (0, 0, B ). The magnetic
moments were calculated by

Meff =
√

3kBT χ (T ), (B5)

where χ (T ) is the magnetic susceptibility, χ (T ) =
β−1∂2 ln Z(T ,B )/∂B2|B→0, β = 1/(kBT ), and Z(T ,B )
is the distribution function. In both cases, Van Vleck’s
contribution is directly included in the energy levels.

6. Distribution of vibronic states under Zeeman splitting

At low enough temperature that only the ground �8 vibronic
levels are occupied, the spatial distribution of the vibronic state
is calculated as

ρ( Q, B, T ) =
∑

M ρ�8M ( Q)e−E�8M (B)β∑
M e−E�8M (B)β , (B6)

where the sum is over the ground �8 vibronic states and
E�8M (B) is the Zeeman split vibronic level. The difference
of the distribution �ρ in Fig. 1(c) is defined by

�ρ( Q, B, T ) = ρ( Q, B, T ) − ρ̄( Q), (B7)

where ρ̄ is the averaged density over the ground vibronic states
M , ρ̄ = ∑

M ρ�8M/4.
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