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Chebyshev polynomial representation of imaginary-time response functions
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Problems of finite-temperature quantum statistical mechanics can be formulated in terms of imaginary
(Euclidean) -time Green’s functions and self-energies. In the context of realistic Hamiltonians, the large energy
scale of the Hamiltonian (as compared to temperature) necessitates a very precise representation of these functions.
In this paper, we explore the representation of Green’s functions and self-energies in terms of a series of Chebyshev
polynomials. We show that many operations, including convolutions, Fourier transforms, and the solution of the
Dyson equation, can straightforwardly be expressed in terms of the series expansion coefficients. We then compare
the accuracy of the Chebyshev representation for realistic systems with the uniform-power grid representation,
which is most commonly used in this context.
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I. INTRODUCTION

The equilibrium properties of interacting quantum systems
at finite temperature can be described by the Matsubara for-
malism of quantum statistical mechanics [1]. In this formalism,
single- and two-particle quantities are expressed in terms of
Green’s functions, self-energies, susceptibilities, and vertex
functions in imaginary time.

The imaginary-time formalism has a long tradition in the
calculation of properties of interacting systems [2,3], and
weak-coupling methods such as the random-phase approxi-
mation [4,5], the self-consistent second-order approximation
[6–12], or the GW method [13] can be formulated in terms
of imaginary-time Green’s functions and self-energies. Nu-
merical algorithms, including lattice Monte Carlo methods
[14], impurity solver algorithms [15–19], and diagrammatic
Monte Carlo methods [20], are similarly based on the finite-
temperature Green’s function formalism, as are some imple-
mentations of the dynamical mean-field theory [21] and its
extensions [22–24].

Finite-temperature fermionic (bosonic) imaginary-time
Green’s functions are antiperiodic (periodic) functions with
period β and can be reduced to the interval [0, β]. In most
of the applications mentioned above, they are sampled on
a uniform grid, typically with 102−104 grid discretization
points. However, a uniform representation of the function is
only efficient in effective model systems. In large multiorbital
systems, and especially in systems with realistic band struc-
tures, an accurate representation of Green’s functions with a
uniform discretization would require millions to billions of
time slices per Green’s function element, as the wide energy
spacing of realistic Hamiltonians results in features on very
small time scales. Therefore, more compact representations of
Green’s functions are needed in this context.

A first attempt at constructing a more compact representa-
tion, the “uniform power mesh,” was proposed by Ku [25]; see
also Ref. [26]. There, a set of logarithmically spaced nodes is
chosen on the imaginary-time interval. The Green’s function
is then uniformly discretized between those nodes, using a

constant number of points for each interval. This leads to a clus-
tering of points near 0 and β, where much of the rapid change of
Green’s functions for low-lying excitations takes place. Later,
Legendre polynomial representations [27] were pioneered in
the context of continuous-time Monte Carlo methods, where
the compactness of the representation could reduce the number
of observables that needed to be accounted for, and in the
context of analytical continuation [28], where an intermediate
basis of a singular value decomposed analytic continuation
kernel [29] could further reduce the number of coefficients.
This was followed by progress in the context of perturbation
methods for realistic systems [9], where the combination of
uniform power meshes and Legendre polynomial expansions
drastically reduced the size of the imaginary-time grid. In
Matsubara frequency space, Ref. [10] showed that much of
the Matsubara frequency dependence of Green’s functions and
self-energies can be represented by interpolation functions,
thereby vastly reducing the number of frequencies required
to obtain accurate results.

For practical use in real materials simulations, a set of
basis functions for imaginary-time Green’s functions and self-
energies should satisfy at least the following criteria. First and
foremost, it should be possible to represent the large energy
spread of typical interacting systems with a small number of
coefficients. Second, it should be straightforward to confirm
that the representation is fully converged, i.e., that basis trun-
cation errors are small. Finally, the mathematics of performing
typical operations on Green’s functions, such as evaluating a
self-energy, a polarization bubble, a Dyson equation, or Fourier
transforming data to frequency space and evaluating energies
should be straightforward, both analytically and in terms of the
numerical effort.

The representations mentioned above satisfy some but not
all of these requirements. In this paper, we therefore intro-
duce an alternative representation of imaginary-time Green’s
functions, based on approximating the Green’s functions by
a sum of scaled Chebyshev polynomials of the first kind. We
test the performance of this expansion explicitly for a variety
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of systems in realistic basis sets, including periodic solids.
We examine how the number of coefficients converges as a
function of temperature, basis-set size, and precision required,
and we show how Fourier transforms and Dyson equations can
be solved directly in Chebyshev space.

The remainder of this paper is organized as follows. In
Sec. II, we present the detailed derivation of the method. In
Sec. III, we list and discuss the numerical results of our method
as applied to realistic molecular and solid-state calculations.
We present conclusions in Sec. IV.

II. METHOD

A. Chebyshev expansion of response functions

Imaginary-time Green’s functions Gνμ(τ ) =
−〈cν (τ )c†μ(0)〉 are defined for 0 � τ � β, where β is
the inverse temperature, and Greek letters correspond to
orbital indices. Outside this interval, fermionic Green’s
functions satisfy β antiperiodicity G(−τ ) = −G(β − τ ),
whereas bosonic response functions are β-periodic,
χ (−τ ) = χ (β − τ ). In the following, we will work on
the interval [0, β], and we use the mapping x(τ ) = 2τ

β
− 1 to

map it to the interval [−1, 1].
The Chebyshev polynomials of the first kind, Tj (x) [30],

form a complete basis for bounded functions in this interval.
Any Green’s function, or other response function can therefore
be expanded into a sum of Chebyshev polynomials and
approximated by a truncated Chebyshev series

Gνμ(x) ≈
m∑

j=0

′
g

νμ

j Tj (x) =
m∑

j=0

g
νμ

j Tj (x) − 1

2
g

νμ
0 , (1)

g
νμ

j = 2

π

∫ 1

−1

Gνμ(x)Tj (x)√
1 − x2

dx. (2)

The primed sum denotes the special treatment of the coefficient
g0 customary in this context [31]. Based on the discrete orthog-
onality properties of the Chebyshev polynomials [31], if the
values of Gνμ(x) are known at the zeros of the mth Chebyshev
polynomial, xk = cos ( 2k−1

2m
π ), k = 1, . . . , m, the calculation

of the coefficients in Eq. (2) simplifies to a discrete cosine
transform. In addition, values of the Chebyshev approximant
anywhere in the interval 0 � τ � β can be obtained from g

νμ

j

using Clenshaw recursion relations [32].
Chebyshev representations are particularly efficient for

approximating analytic functions on the interval [−1, 1], as
approximation theory guarantees that the magnitude of the
coefficients g

νμ

j decays at least exponentially as j → ∞,
and that the maximum difference between G and its Cheby-
shev approximant decreases exponentially [30]. The fermionic
and bosonic imaginary-time Green’s functions, polarization
functions, self-energies, and response functions appearing in
finite-temperature many-body theory are all analytic functions
between 0 and β.

As we will show in Sec. III, fast convergence of Green’s
functions and self-energies with the number of Chebyshev
coefficients is observed, and the discrete cosine transforms
and recursion relations allow for quick numerical operations
on the data in practice. We find that our examples converge to
a precision of 10−10 within about 40 coefficients for the simple

realistic systems, such as hydrogen molecules, whereas around
500 Chebyshev nodes are required to describe a krypton atom
in a pseudopotential approximation.

B. Convolutions

Products of Matsubara Green’s functions correspond to
convolutions in imaginary time. The convolution

A(t ) =
∫ β

0
dτ B(t − τ )C(τ ), (3)

with A, B, and C Green’s functions or self-energies, requires
careful treatment of the discontinuity of B(t − τ ) at t = τ , so
that standard Chebyshev convolution formulas [33] cannot be
applied. Instead, we express Eq. (3) by expanding the rescaled
integral into Chebyshev components (appropriately rescaling
the zero coefficients)

∑
j

′
a

νμ

j Tj (x) =
∑
klξ

b
νξ

k c
ξμ

l Ikl (x), (4)

Ikl (x) = β

2

[ ∫ x

−1
Tk (x − y − 1)Tl (y)dy

∓
∫ 1

x

Tk (x − y + 1)Tl (y)dy

]
, (5)

where the minus (plus) sign corresponds to a convolution
of fermionic (bosonic) functions, and Ikl (x) is an integral
of polynomials in [−1, 1] and can therefore be written as a
Chebyshev series,

Ikl (x) = β

2

∑
j

′
t
j

klTj (x), (6)

resulting in the formulation of the fermionic convolution as a
matrix multiplication,

a
νμ

j = β

2

∑
klξ

b
νξ

k c
ξμ

l t
j

kl . (7)

This representation becomes more efficient than the Fourier
representation whenever a very large number of Fourier com-
ponents is required. A detailed derivation of recursion relations
for bosonic and fermionic integrals t

j

kl is provided in the
Appendix.

C. Dyson equation

Most diagrammatic algorithms are formulated in imaginary
time, where the interaction vertex Vpqrs is instantaneous.
However, most contain a step for solving a Dyson equation,
either for adjusting a chemical potential to the desired particle
number or to obtain self-consistent propagators. This Dyson
equation G = G0 + G0�G is most conveniently expressed in
frequency space, where it can be solved for each frequency
independently. In imaginary time, the Dyson equation de-
termining G, given G0 and �, corresponds to a Fredholm
integral equation of the second kind [34,35]. As in the case
of the Fourier transforms and convolutions, the discontinuity
at zero and the highly nonuniform nature of the Green’s func-
tions make uniform discretizations [6] inefficient. Defining
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B(t ) = ∫
dτ G0(t − τ )�(τ ) and expanding into Chebyshev

coefficients, we obtain the equation

g
νμ

j = g
νμ

(0)j + β

2

∑
klξ

b
νξ

k g
ξμ

l t
j

kl (8)

with t
j

kl defined as above. This linear system can be
recast as

∑
jξ A

νξ

ij g
ξμ

j = g
νμ

0i with a matrix A
νμ

ij = δij δνμ −
β

2

∑
k b

νμ

k t
j

kl . The solution of the Fredholm integral equation
is thereby mapped onto the solution of a system of linear
equations, bypassing the Matsubara domain entirely.

D. Fourier transforms

Fourier transforms between time and frequency domains
require a careful treatment of the Green’s function around
τ = 0. At this point, fermionic Green’s functions are discon-
tinuous due to the fermion anticommutation relation. This
discontinuity is usually absorbed in an explicit treatment of
the short-time (high-frequency) behavior using high-frequency
expansions and suitable model functions [19,36,37]. Even
with this high-frequency treatment, the number of Matsubara
frequencies required for accurate energies and spectra of
realistic systems at low temperature is very large. This is
because the spacing of the Matsubara points is given by the
temperature, whereas the location of the main features of the
function is given by the energy scale of the Hamiltonian. In
realistic systems, these energy scales are different by many
orders of magnitude, requiring millions to billions of frequency
points. Adaptive grids, such as the one developed in Ref. [10],
provide a partial solution to this problem.

Fourier transforms of Chebyshev polynomials to Matsubara
frequencies ωn = (2n+ζ )π

β
(ζ = 0 for bosons and ζ = 1 for

fermions) are obtained by evaluating the integral [38]

F (Tm)(iωn) =
∫ β

0
dτ Tm(x(τ ))eiωnτ

= β

2

∫ 1

−1
dx Tm(x)eiλn

x+1
2 = F ζ

mn (9)

for dimensionless Matsubara frequencies λn = (2n + ζ )π . In
the special case of bosonic Matsubara frequency zero, we find
that

F 0
m0 = β

2

∫ 1

−1
dx Tm(x) = β

2

{
1+(−1)m

1−m2 , m 
= 1,

0, m = 1.
(10)

For all nonzero λn, partial integration yields

I ζ
m(n) =

∫ 1

−1
dx Tm(x)eiλn

x+1
2 = 2

iλn

eiλn
x+1

2 Tm(x)

∣∣∣∣
1

−1

− 2

iλn

∫ 1

−1
dx T ′

m(x)eiλn
x+1

2 , (11)

where the boundary term evaluates to

2

iλn

eiλn
x+1

2 Tm(x)

∣∣∣∣
1

−1

= 2i
(−1)m − (−1)ζ

λn

. (12)

Using T ′
m(x) = mUm−1(x), where Um(x) are Chebyshev poly-

nomials of the second kind related to Tm(x) via

Um(x) =
⎧⎨
⎩

2
(∑m

j odd Tj (x)
)
, m odd,

2
(∑m

j even Tj (x)
)

− 1, m even,
(13)

we transform the second integral in (11) as

2

iλn

∫ 1

−1
dx T ′

m(x)eiλn
x+1

2 = 2m

iλn

∫ 1

−1
Um−1(x)eiλn

x+1
2

= 2m

iλn

∫ 1

−1
dx eiλn

x+1
2

{
2

∑m−1
j,odd Tj (x), m even,

2
∑m−1

j,even Tj (x) − 1, m odd.

(14)

This results in a recursion relation with respect to index m,

I ζ
m(n) = 2i

(−1)m − (−1)ζ

λn

+ 2im

λn

⎧⎨
⎩

2
(∑m−1

j odd I
ζ

j (n)
)
, m even,

2
(∑m−1

j even I
ζ

j (n)
)

− I
ζ
0 (n), m odd,

(15)

which we start by explicitly computing I 0
0 (n) = 2δn,0 or

I 1
0 (n) = 4i/λn. This recursion relation is unstable [39] and

therefore has to be implemented in high-precision arithmetic.
With Eq. (9) we then write the Fourier transform as

F (G)(iωn) =
∑

j

gjF
ζ

jn, (16)

where the Fourier matrix F
ζ

jn is computed once and tabulated.
The inverse transform is done by evaluating the function at
the Chebyshev nodes and using a discrete cosine transform to
obtain the corresponding coefficients.

Accurate Fourier transforms and energy evaluations in
Fourier space require high-frequency expansion coefficients
for the Green’s function to at least third order, so that G(iωn) =
c1
iωn

+ c2
(iωn )2 + c3

(iωn )3 + O(iω−4
n ). Fourier transform of the

Green’s function implies that c1 = −[G(0+) + G(β−)], c2 =
G′(0+) + G′(β−), and in general ck+1 = (−1)k+1[G(k)(0+) +
G(k)(β−)]. These expansion coefficients are available to any
order due to the identities

dpTn

dxp

∣∣∣∣
x=±1

= (±1)n+p

p−1∏
k=0

n2 − k2

2k + 1
, (17)

and in particular

dTn

dx

∣∣∣∣
x=±1

= (±1)nn2, (18)

d2Tn

dx2

∣∣∣∣
x=±1

= (±1)n
n4 − n2

3
. (19)

III. RESULTS

To demonstrate the efficiency of the proposed method, we
consider four test systems. To make the results reproducible,
we use electronic structure systems in standardized basis sets
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FIG. 1. Convergence of the Hartree-Fock Green’s function with
the number of Chebyshev polynomials. Red curves correspond to the
sum of all differences with respect to the exact result. Blue curves
correspond to the maximum difference when compared to the exact
result. Top panel: H2 molecule (open square) and H10 molecule (open
circle). Bottom panel: periodic one-dimensional LiH (open diamond)
and three-dimensional Si crystal (filled circle). Parameters as specified
in Table I.

that are well documented [40] and readily available [41,42].
The first two systems are hydrogen molecules, both as H2

and as a one-dimensional chain of ten hydrogen atoms. We
use the minimal STO-3g basis [43] and place the atoms at an
interatomic distance of d = 1.5 Å. These cases are chosen as
“easy” examples of realistic calculations. We also consider two
periodic systems. First, a one-dimensional periodic LiH solid
in the triple-zeta quality basis set (pob-TZVP) from Ref. [44],
and second, a three-dimensional Si crystal in the following
basis set: the innermost 1s, 2s, and 2p shells are replaced
with the LANL2DZ effective core potentials [45–47], while
the basis functions for the outer 3s, 3p, and 3d shells are taken
from the Si_88-31G*_nada_1996 basis [48–50]. All systems
were evaluated at an inverse temperature of β = 100 Ha−1.
The detailed parameters are shown in Table I.

The exponential convergence predicted by theory can be
observed in practice. Figure 1 shows the convergence of the
Chebyshev Green’s function to the exactly evaluated Hartree-
Fock solution as a function of the number of coefficients.
Shown is the difference � between the interpolated Green’s
function and a reference Green’s function evaluated analyti-
cally on a uniform-power grid (with 15 power points and 18
uniform points between each pair of power points) as a function
of the number of coefficients, both as the maximum deviation
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10

H
F

c
|

|
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FIG. 2. Exponential decay of the Chebyshev coefficients for
the Hartree-Fock Green’s function. H2 molecule (green) and H10

molecule (red, dashed) with parameters as specified in Table I.

(dark red curves) and as the sum of all deviations at all points
(blue curves).

It is evident that the Chebyshev approximation converges
to the exactly evaluated Hartree-Fock solution as a function of
the number of expansion coefficients, until numerical roundoff
errors are reached at a precision of 10−12. For the hydrogen
systems used here, between 30 and 40 coefficients lead to a
maximum uncertainty of around 10−10. More complex systems
require more coefficients, as illustrated by the one-dimensional
LiH and three-dimensional Si, which only reach a precision
of 10−8 within 180 and 230 coefficients, respectively (lower
panel of Fig. 1). This convergence stems from the fast decay of
the Chebyshev expansion coefficients. Figure 2 illustrates this
point by showing the maximum magnitude of the Chebyshev
coefficients of a given polynomial order as a function of order.
There, the noise floor is reached for around 40 (H2) or 80 (H10)
coefficients, at a coefficient size of around 10−16.

Figure 3 shows the number of Chebyshev coefficients
required to reach a predetermined precision as temperature
is varied. The top panel analyzes the Hartree-Fock Green’s
function as the temperature is lowered, while the bottom panel
analyzes the second-order self-energy. The systems used are
a linear chain of ten hydrogen atoms in the STO-3g basis
and a periodic one-dimensional arrangement of LiH, both
systems with parameters chosen as in Table I. For the systems
illustrated here, the log-log axes suggest a power-law behavior,
and a square-root fit shows that the scaling as a function of
temperature grows slower than ∼T −1/2, similar to observations
in the context of model calculations in a Legendre basis [51].

The number of Chebyshev points required is strongly
system-dependent, and depends in particular on the energy
spread of the atomic orbitals. This is illustrated in the top
panel of Fig. 4, which shows the maximum and total difference
between an exactly evaluated Hartree-Fock Green’s function
and its Chebyshev approximant for a Kr atom as a function
of the number of coefficients. One can see that, for the bases
chosen, the maximum error remains ∼10−4 even when 700
components are chosen, independent of the basis. This slow
convergence is due to low-lying core states, which are fully
occupied and in the τ -domain represented as an exponential
decay toward zero with a large decay constant.
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TABLE I. Geometries and basis sets for the systems used. All systems were evaluated
at an inverse temperature of β = 100 Ha−1.

Molecular systems

Basis Interatomic distance (Å)

H2 STO-3g 1.5000
H10 STO-3g 1.5000

Periodic systems

Basis Unit-cell coordinates (Å) Translation vectors (Å)
Li 0.0 0.0 0.0

LiH pob-TZVP (3.342572, 0.0, 0.0)
H 1.671286 0.0 0.0

(0.0, 2.7150, 2.7150)
Si 0.0000 0.0000 0.0000

Si Custom, see text (2.7150, 0.0, 2.7150)
Si 1.3575 1.3575 1.3575

(2.7150, 2.7150, 0.0)

Alternatively, choosing effective core potentials (lower
panel of Fig. 4) eliminates these low-lying states and causes
a more rapid convergence of the polynomial expansion with
the number of coefficients (maximum difference of 10−9 at
∼450 coefficients). Whether a different treatment of the core
states, for example by analytically modeling them with a δ

function in real frequency, is more effective than a brute force
expansion into Chebyshev polynomials is an open question for
future research.

To contrast these results with the commonly used uniform
power grids, Fig. 5 shows the convergence of power grid data
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FIG. 3. Number of Chebyshev coefficients required to resolve the
Hartree-Fock Green’s function (top panel) and the bare second-order
self-energy (bottom panel) at temperature T measured in Hartree up to
the precision indicated, for one-dimensional H10 and one-dimensional
periodic LiH. Parameters as specified in Table I.

to the exact result for the periodic one-dimensional LiH solid
of Fig. 1 (lower panel). Data on the power grid are interpolated
using cubic splines. This leads to a convergence ∼u−4 as a
function of the uniform spacing u. It is evident that there is
an “optimal” number of power points (12, in this case), which
minimizes the prefactor of the convergence to the exact result
(but does not change the scaling). For results accurate to 10−8,
350 τ -points were necessary for the optimal choice of power
grid parameters, around twice as many as for the Chebyshev
grid.
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FIG. 4. Total (red) and maximum (blue) difference between the
Chebyshev Green’s function and the exact Hartree-Fock Green’s
function as a function of the number of Chebyshev coefficients for
a krypton atom in four different basis sets [42,52,53] without (top
panel) and with (bottom panel) effective core potentials.
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FIG. 5. Convergence of the power grid interpolation of a Hartree-
Fock Green’s function with the total number of points in the grid
for the periodic one-dimensional LiH solid. p denotes the power
discretization of the grid; parameters as specified in Table I.

The full power of the Chebyshev representation becomes
apparent when Fourier integrals or a solution of the Dyson
equation have to be computed for data known in the imaginary-
time domain. Figure 6 shows the convergence of the solution of
the Dyson equation using trapezoidal integration in imaginary
time, as originally proposed in Ref. [54]. The system studied is
H2 in the STO-3g basis, and discrete imaginary-time points are
defined on a power grid with different numbers of power points.
The precision of this method is limited by the convergence rate
of the trapezoidal integration of the uniform part, which is only
quadratic, such that even with 500 time slices, only a precision
of roughly 10−4 can be achieved. In contrast, Fig. 7 shows that
with the method introduced in this paper, convergence is faster
than exponential. Using around 50 slices, a precision close to
10−10 can be reached.

Similar behavior is obtained whenever Fourier integrals
need to be computed from a uniform-power grid (not shown
here). Data are usually first interpolated by a spline onto
a uniform grid and then Fourier-transformed to Matsubara
frequencies using a fast Fourier transform. The convergence
of the spline to the exact result is the leading contribution
to the error of the transform and leads to inaccuracies in the
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c N

τ

-2

FIG. 6. Convergence of the Dyson equation solution for the H2

molecule in discretized imaginary time using the method proposed
in Ref. [54]. p denotes the number of power points of the grid, and
parameters are as specified in Table I.
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FIG. 7. Convergence of the Dyson equation solution for H2 and
H10 with the number of Chebyshev polynomials with parameters
specified in Table I. Red lines: sum of errors. Blue lines: maximum
error. Squares: H2. Circles: H10.

intermediate- to high-frequency region. In contrast, the closed
form of Eq. (16) avoids this interpolation step entirely.

Finally, we summarize the different aspects of basis func-
tions for imaginary-time Green’s functions in Table II. The
comparison is subjective by nature, and the suitability of a
given basis set will very much depend on the application. We
list the compactness (or suitability for large realistic systems),
the cost of constructing the basis set (cheap or expensive),
the ways of evaluating arbitrary imaginary-time points (via
interpolation, recursion, analytic continuation formula, fast
Fourier transform, or nonequidistant FFT), the ways of eval-
uating Matsubara points, and the preferred (or so far tested)
ways of solving the Dyson equation.

IV. CONCLUSIONS

In conclusion, we have explored the use of an orthogonal
polynomial basis for imaginary-time Green’s functions in the
context of realistic materials. We have observed the exponential
convergence guaranteed by the analytic nature of Green’s
functions in practice, and we showed that for typical systems,
substantially fewer imaginary-time points are needed than for
a uniform-power grid. The convergence rate of the expansion

TABLE II. Subjective comparison of different aspects of the
various basis sets for finite-T Green’s functions. The basis sets
vastly differ in their Compactness (Comp.), basis construction effort
(Const.), way of evaluating imaginary time (Imag.) or Matsubara
(Mat.) Green’s function values, and ways of solving the Dyson
equation (via Fourier to Matsubara space, where the equation is
diagonal, or as described in the main text).

Basis Comp. Const. Imag Mat. Dyson

Uniform No cheap interp. FFT Fourier
Power No cheap interp. Fourier Fourier
Chebyshev Yes cheap Recursion Sec. II D Sec. II C
Legendre ∼Yes cheap Recursion Ref. [27] Fourier
IR [29] Very exp. ac ac ac
Matsubara No cheap FFT diag.
Spline [9] ∼Yes exp. NFFT interp. diag.
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depends on the system. While low-lying core states present a
difficulty for this basis and lead to a slow convergence of the
expansion, the complex spectral behavior near the chemical
potential is well captured by the first 50–100 coefficients in the
systems examined here. We have also shown that convolutions,
Dyson equations, and Fourier transforms, which correspond
to commonly used operations on imaginary-time Green’s
functions, can be performed accurately and efficiently. This
paves the way for using Chebyshev approximated imaginary-
time Green’s functions in calculations of realistic and model
systems, replacing the uniform and uniform-power grids that
have so far been used in this context.
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APPENDIX A: CONVOLUTION OF CHEBYSHEV
POLYNOMIALS AND t-COEFFICIENTS

Chebyshev interpolation can be used to solve Fredholm
integral equations with piecewise-continuous convolution ker-
nels. The solution of such problems requires knowledge of a
special system of coefficients t

j

kl defined according to

Tkl (x) =
∑

j

′
t
j

klTj (x), (A1)

Tkl (x) = T −
kl (x) ± T +

kl (x), (A2a)

T −
kl (x) ≡

∫ x

−1
Tk (x − τ − 1)Tl (τ )dτ, (A2b)

T +
kl (x) ≡ −

∫ 1

x

Tk (x − τ + 1)Tl (τ )dτ. (A2c)

The plus (minus) sign in Eq. (A2c) corresponds to the fermionic
(bosonic) Green’s function case. In the following derivations,
we will use the product formula for Tm(x):

Tm(x)Tn(x) = 1
2

[
Tm+n(x) + T|m−n|(x)

]
, (A3)

and, in particular, its special case of n = 1,

Tm+1(x) = 2xTm(x) − T|m−1|(x). (A4)

The Chebyshev polynomials Tm(x) form an orthogonal system
of functions on segment [−1; 1] with respect to a scalar
product,

〈f (x), g(x)〉 =
∫ 1

−1
f (x)g(x)

dx√
1 − x2

, (A5)

〈Tm(x), Tn(x)〉 = π
1 + δn,0

2
δm,n. (A6)

The orthogonality property means that two equal Chebyshev
polynomial expansions have to be equal order by order.

Another result we will need is the indefinite integral of the
Chebyshev polynomials,

∫
Tn(x)dx =

{
1
2

(
Tn+1(x)

n+1 + Tn−1(x)
n−1

)
+ C, n 
= 1,

T2(x)+T0(x)
4 + C, n = 1.

(A7)

1. Symmetry properties of Tkl (x)

Theorem 1. Functions Tkl (x) are symmetric with respect to
their indices, Tlk (x) = Tkl (x).

Proof.

T −
lk (x) =

∫ x

−1
Tl (x − τ − 1)Tk (τ )dτ =

{
x − τ − 1 = t

dt = −dτ

}

= −
∫ −1

x

Tl (t )Tk (x − t − 1)dt

=
∫ x

−1
Tk (x − t − 1)Tl (t )dt = T −

kl (x).

Similarly, T +
lk (x) = T +

kl (x), and, according to definition (A2a),
Tlk (x) = Tkl (x).

Corollary 1.1. t-coefficients are symmetric with respect to
their lower indices, t

j

lk = t
j

kl .
Theorem 2. Functions Tkl (x) are either even or odd

functions, depending on the value of k + l, Tkl (−x) =
(−1)k+l+1Tkl (x).

Proof. Using the symmetry property of Chebyshev polyno-
mials, Tk (−x) = (−1)kTk (x), we can write

T −
kl (−x) =

∫ −x

−1
Tk (−x − τ − 1)Tl (τ )dτ

= (−1)k
∫ −x

−1
Tk (x + τ + 1)Tl (τ )dτ

=
{

−τ = t

dt = −dτ

}

= −(−1)k
∫ x

1
Tk (x − t + 1)Tl (−t )dt

= (−1)k+l+1
∫ x

1
Tk (x − t + 1)Tl (t )dt

= −(−1)k+l+1
∫ 1

x

Tk (x − t + 1)Tl (t )dt

= (−1)k+l+1T +
kl (x).

Similarly, T +
kl (−x) = (−1)k+l+1T −

kl (x),

Tkl (−x) = T −
kl (−x) ± T +

kl (−x)

= (−1)k+l+1[T +
kl (x) ± T −

kl (x)] = (−1)k+l+1Tkl (x).

Corollary 2.1. t
j

kl = 0 for even values of k + l + j .
Proof. Chebyshev polynomials Tk (x) are even functions for

even k and odd functions for odd k. Therefore, expansion (A1)
can contain only even j terms when Tkl (x) is even and only
odd j terms when Tkl (x) is odd. Combining this observation
with the proven theorem, we conclude that terms with different
parities of k + l + 1 and j do not contribute to the sum (A1).
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2. Recurrence relation for the convolutions T±
kl (x)

Chebyshev polynomials of shifted argument fulfill the
following recurrence relation:

Tk+1(x − τ ± 1) = 2xTk (x − τ ± 1) − 2τTk+1(x − τ ± 1)

± 2Tk+1(x − τ ± 1) − T|k−1|(x − τ ± 1).

Therefore, integrands in Eqs. (A2b) and (A2c) can be
expressed as

Tk+1(x − τ ± 1)Tl (τ )

= 2xTk (x − τ ± 1)Tl (τ ) − Tk (x − τ ± 1)[2τTl (τ )]

± 2Tk (x − τ ± 1)Tl (τ ) − T|k−1|(x − τ ± 1)Tl (τ )

= 2xTk (x − τ ± 1)Tl (τ ) − Tk (x − τ ± 1)

× [Tl+1(τ ) + T|l−1|(τ )] ± 2Tk (x − τ ± 1)Tl (τ )

− T|k−1|(x − τ ± 1)Tl (τ ). (A8)

Plugging this into Eq. (A2b) or (A2c), we get a recurrence
relation for T ±

k,l (x),

T ±
k+1,l (x) = 2xT ±

k,l (x) − T ±
k,l+1(x)

− T ±
k,|l−1|(x) ± 2T ±

k,l (x) − T ±
|k−1|,l (x), (A9)

with boundary conditions

T −
k,0(x) = T −

0,k (x) =
∫ x

−1
Tk (x − τ − 1)dτ

=
{
x − τ − 1 = t

dt = −dτ

}
= −

∫ −1

x

Tk (t )dt =
∫ x

−1
Tk (t )dt,

T +
k,0(x) = T +

0,k (x) = −
∫ 1

x

Tk (x − τ + 1)dτ

=
{
x − τ + 1 = t

dt = −dτ

}
=

∫ x

1
Tk (t )dt = −

∫ 1

x

Tk (t )dt,

which lead to

T −
k,0(x) = T −

0,k (x)

=
⎧⎨
⎩

T2(x)−T0(x)
4 , k = 1,

1
2

(
Tk+1(x)+(−1)k

k+1 − T|k−1|(x)+(−1)k

k−1

)
, k 
= 1,

(A10)

T +
k,0(x) = T +

0,k (x)

=
⎧⎨
⎩

T2(x)−T0(x)
4 , k = 1,

1
2

(
Tk+1(x)−1

k+1 − T|k−1|(x)−1
k−1

)
, k 
= 1,

(A11)

or generally

T ±
k,0(x) = T ±

0,k (x)

=
⎧⎨
⎩

T2(x)−T0(x)
4 , k = 1,

1
2

(
Tk+1(x)−(±1)k+1

k+1 − T|k−1|(x)−(±1)k−1

k−1

)
, k 
= 1.

(A12)

To apply recurrence (A9), one needs expressions for T1,l (x)
in addition to the boundary values given above. These can be
derived from Eq. (A9) with k = 0,

T1,l (x) = 1
2

[
2xT ±

0,l (x) − T ±
0,l+1(x) − T ±

0,|l−1|(x) ± T ±
0,l (x)

]
.

(A13)

The complete set of equations reads as follows:

T ±
k,0(x) = T ±

0,k (x)

= 1

2

(
Tk+1(x) − (±1)k+1T0(x)

k + 1

− T|k−1|(x) − (±1)k−1T0(x)

k − 1
(1 − δk,1)

)
,

T1,l (x) = 1

2

[
2xT ±

0,l (x) − T ±
0,l+1(x) − T ±

0,|l−1|(x) ± T ±
0,l (x)

]
,

T ±
k+1,l (x) = 2xT ±

k,l (x) − T ±
k,l+1(x)

− T ±
k,|l−1|(x) ± 2T ±

k,l (x) − T ±
|k−1|,l (x). (A14)

3. Chebyshev expansion of the convolution

In this subsection, we derive a recurrence relation that
allows for efficient evaluation of t

j

k,l in constant time per coef-
ficient. Let us consider a Chebyshev expansion of Eq. (A14),

T ±
k,l (x) =

l+k+1∑
j=0

′
t
j (±)
k,l Tj (x). (A15)

Summation limit k + l + 1 comes from the fact that Tk (x −
τ ± 1)Tl (τ ) is a polynomial of degree at most k + l in τ , and
the integration in (A2b) and (A2c) adds one to the degree.

First, consider the boundary conditions. In the case of l =
0, the coefficients t

j (±)
k,0 are obtained from the solution of the

following equations:

k+1∑
j=0

′
t
j (±)
k,0 Tj (x) = Tk+1(x) − (±1)k+1T0(x)

2(k + 1)

− T|k−1|(x) − (±1)k−1T0(x)

2(k − 1)
(1 − δk,1).

k = 1,

t
j (±)
1,0 =

⎧⎪⎨
⎪⎩

− 1
2 , j = 0,

1
4 , j = 2,

0, otherwise.
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k 
= 1,

k+1∑
j=0

′
t
j (±)
k,0 Tj (x) = Tk+1(x) − (±1)k+1T0(x)

2(k + 1)

− T|k−1|(x) − (±1)k−1T0(x)

2(k − 1)

= Tk+1(x)

2k + 2
− T|k−1|(x)

2k − 2
+ 2(±1)k+1

k2 − 1

T0(x)

2
.

By grouping Chebyshev polynomials of the same order, we get
the following expressions:

t
j (±)
k,0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(±1)k+1

k2−1 , j = 0,

− 1
2k−2 , j = k − 1, k > 0,
1

2k+2 , j = k + 1, k > 0,

1, k = 0, j = 1.

l > 0, k = 1,

l+2∑
j=0

′
t
j (±)
1,l Tj (x) = 1

2

l+2∑
j=0

′
[
t
j−1(±)
0,l

2δj,1
δj>0

+ 1

2
t

0(±)
0,l δj,1 + 2δj,0 t

j+1(±)
0,l δj�l

− t
j (±)
0,l+1−t

j (±)
0,l−1δj�l ± 2t

j (±)
0,l δj�l+1

]
Tj (x).

General case l > 0, k > 0,

k+l+2∑
j=0

′
t
j (±)
k+1,lTj (x) =

k+l+2∑
j=0

′
[
t
j−1(±)
k,l

2δj,1
δj>0

+ 1

2
t

0(±)
k,l δj,1 + 2δj,0 t

j+1(±)
k,l δj�k+l

− t
j (±)
k,l+1−t

j (±)
k,l−1δj�k+l ± 2t

j (±)
k,l δj�k+l+1

− t
j (±)
k−1,lδj�k+l

]
Tj (x).

Now we can summarize the results for the t
j (±)
kl coefficients:

k = 1, l = 0,

t
j (±)
1,0 =

⎧⎪⎨
⎪⎩

− 1
2 , j = 0,

1
4 , j = 2,

0, otherwise.

(A16a)

k 
= 1, l = 0,

t
j (±)
k,0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(±1)k+1

k2−1 , j = 0,

− 1
2k−2 , j = k − 1, k > 0,
1

2k+2 , j = k + 1, k > 0,

1, k = 0, j = 1.

(A16b)

k = 1, l > 0,

t
j (±)
1,l = 1

2

t
j−1(±)
0,l δj>0

2δj,1
+ t

0(±)
0,l δj,1

2
+ 2δj,0 t

j+1(±)
0,l δj�l

− t
j (±)
0,l+1 − t

j (±)
0,l−1δj�l ± 2t

j (±)
0,l δj�l+1. (A16c)

k > 0, l > 0,

t
j (±)
k+1,l = t

j−1(±)
k,l δj>0

2δj,1
+ t

0(±)
k,l δj,1

2
+ 2δj,0 t

j+1(±)
k,l δj�k+l

−t
j (±)
k,l+1 − t

j (±)
k,l−1δj�k+l ± 2t

j (±)
k,l δj�k+l+1

−t
j (±)
k−1,lδj�k+l . (A16d)

And the final expression for t-coefficients will be

t
j

kl = t
j (−)
kl ± t

j (+)
kl , (A17)

where the plus (minus) sign corresponds to the fermionic
(bosonic) convolution.

APPENDIX B: COMPARISON TO THE LEGENDRE BASIS

Reference [27] proposed the use of Legendre polynomials
as a basis for Monte Carlo Green’s functions. These Green’s
functions could in principle be adapted to the real materials
context. Figure 8 shows the maximum error curves of Fig. 1
in the main text. It is evident that the Legendre basis also
converges exponentially, but is substantially less compact
than the Chebyshev basis. This is expected from the min-
max properties of the Chebyshev polynomials. It is also the
expected behavior for core states, as the zeros of the Chebyshev
polynomials are closer to −1 and 1 than those of Legendre
polynomials of the same order [55], and they are therefore
better able to resolve the exponential decay core states and
high-lying excitations.

The two types of polynomials differ in several technical
aspects. For instance, the roots of Chebyshev polynomials are
known analytically, whereas those of Legendre polynomials
need to be evaluated numerically and tabulated. On the other
hand, the orthogonality relation of the Legendre polynomials
is easier.

10 20 30 40
N

10-12

10-10

10-8

10-6

10-4

10-2

Δ

H     Chebyshev

H     Chebyshev

H     Legendre

H     Legendre

2

10

2

10

FIG. 8. Convergence of the Hartree-Fock Green’s function with
the number of Chebyshev and Legendre expansion coefficients. Blue
curves correspond to the maximum difference of the Chebyshev
expansion when compared to the exact result (Fig. 1). Green curves
show the same data, for the Legendre basis [27]. H2 molecule (open
square) and H10 chain (open circle) parameters as specified in Table I.
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