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Quantum Monte Carlo calculations of energy gaps from first principles
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We review the use of continuum quantum Monte Carlo (QMC) methods for the calculation of energy gaps
from first principles, and present a broad set of excited-state calculations carried out with the variational and
fixed-node diffusion QMC methods on atoms, molecules, and solids. We propose a finite-size-error correction
scheme for bulk energy gaps calculated in finite cells subject to periodic boundary conditions. We show that
finite-size effects are qualitatively different in two-dimensional materials, demonstrating the effect in a QMC
calculation of the band gap and exciton binding energy of monolayer phosphorene. We investigate the fixed-node
errors in diffusion Monte Carlo gaps evaluated with Slater-Jastrow trial wave functions by examining the effects
of backflow transformations, and also by considering the formation of restricted multideterminant expansions for
excited-state wave functions. For several molecules, we examine the importance of structural relaxation in the
excited state in determining excited-state energies. We study the feasibility of using variational Monte Carlo with
backflow correlations to obtain accurate excited-state energies at reduced computational cost, finding that this
approach can be valid. We find that diffusion Monte Carlo gap calculations can be performed with much larger time
steps than are typically required to converge the total energy, at significantly diminished computational expense,
but that in order to alleviate fixed-node errors in calculations on solids the inclusion of backflow correlations is

sometimes necessary.
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I. INTRODUCTION

Accurate determination of the excited-state properties of
atoms, molecules, and solids is an outstanding goal of mod-
ern theoretical and computational physics. In the past few
decades, progress has been made in many avenues. Methods
for calculating excitation energies from first principles include
density functional theory (DFT) and its time-dependent ex-
tension, many-body perturbation theory, mainly in the GW
approximation, the various quantum chemistry methods, e.g.,
configuration interaction and coupled-cluster methods, and
also the continuum quantum Monte Carlo (QMC) methods
that we study here.

All of these methods have associated strengths and weak-
nesses. Kohn-Sham DFT, while having reasonable computa-
tional cost [O(N?) for a system of N electrons], suffers the
well-documented band-gap problem [1,2], whereby electronic
band gaps are systematically underestimated. It has been re-
peatedly shown that hybrid exchange-correlation functionals,
e.g., the B3LYP [3,4] and HSEO06 functionals [5], which
include a finite fraction of the exact exchange energy, go
some way towards remedying this problem, with significant
improvements being obtained for energy gaps in a range
of systems [6—8]. Newer functionals incorporating screened
exchange contributions have also demonstrated improvements
over standard DFT [9]. Approaches based on many-body
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perturbation theory in the GW approximation have proven to
be very effective in determining the excited-state properties
of weakly-correlated solids [10-13]. However, GW results
obtained under different levels of self-consistency can often
disagree substantially, and G W results themselves can depend
significantly on underlying single-particle orbital-generation
calculations (i.e., on the particular Gy and W, used to enter
the self-consistent cycle) [14,15]. The coupled-cluster and
configuration-interaction methods, although very accurate in
the description of small systems, scale very poorly with
system size. The computational cost of most coupled-cluster
implementations scales as O (N?), where p is a relatively high
power (e.g., p = 7 for coupled cluster including single and
double excitations, with triples treated perturbatively), and
configuration interaction scales exponentially with N. This
renders any application of these methods to solids prohibitively
expensive. Full configuration interaction QMC is another
example of a highly accurate method, which has recently been
used to study excited states, but ultimately shows the same
exponential scaling as configuration interaction, albeit with a
significantly smaller prefactor [16,17].

Continuum QMC techniques [18,19], on the other hand,
offer us an accurate means of probing both the ground- and
excited-state properties of atoms, molecules, and solids from
first principles and with excellent system-size scaling. Without
backflow correlations [20,21], the computational cost of QMC
scales as O(N?), as with DFT, although the prefactor is
typically over a thousand times larger. With backflow, the cost
scaling incurs an additional factor of N. QMC has previously
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been used to study the excited-state properties of silicon
[22,23], diamond [24,25], hydrogenated silicon clusters [26],
diamondoids [27], solid hydrogen [28], solid nitrogen [29],
zinc oxide and selenide [30], vanadium dioxide [31], nickel
oxide [32], manganese nickelate [33], the two-dimensional
(2D) homogeneous electron gas (HEG) [34-37], Rydberg
states [38], and various molecular systems [39—48].

In variational Monte Carlo (VMC), expectation values of
observables with respect to explicitly correlated trial wave
functions are evaluated using Monte Carlo integration tech-
niques. Starting with a product of Slater determinants of single-
particle orbitals {¢'} and {¢'} for up-spin and down-spin
electrons,

D(R) = det [¢; (r;)] det [¢; (r))], ey

with R=(r,rp,...,ry), i,j€{l,..., Ny}, and k,l €
{Ny+1,..., N}, we form the so-called Slater-Jastrow [18]
(8J) trial wave function

Ysi(R) = exp [J(R)] - D(R), @

where J(R) is the Jastrow exponent, and exp[J] > 0. The
Jastrow factor is an explicit function of interparticle coor-
dinates containing optimizable parameters, and allows the
many-electron trial wave function to obey the Kato cusp
conditions [49]. However, since exp(J) > 0, the Jastrow
factor does not affect the nodal surface of the trial wave
function.

We have also made use of Slater-Jastrow-backflow (SJB)
wave functions, to improve the nodal surfaces of our wave
functions. The backflow transformation corresponds to the
replacement R — X(R)in Eq. (1), with X = (x1, X2, ..., Xy)
being the “collective” or “quasiparticle” coordinates. Each of
these new coordinate vectors x; (R) depends on all the particle
positions and is given by

x; =1; + §;(R), 3)

where & is the backflow displacement. The resulting many-
body trial wave function is labeled Wgjp, and in general has
a nodal surface that differs from Wg; when evaluated with
the same single-particle orbitals and Jastrow factor. Provided
the backflow displacement & is a smooth function of R,
backflow describes a smooth transformation of space under
the Slater wave function, and is not therefore expected to alter
the nodal surface qualitatively (i.e., backflow cannot create
nor destroy individual nodal pockets). Hence backflow does
not address the issue of static correlation; however, in the
context of excited-state calculations the fact that backflow
does not alter nodal topology is useful, as it ensures that the
SJB trial wave function describes the same state of the system
as the SJ wave function. These trial wave functions describe
excited states of the interacting system that are adiabatically
connected to excited states of the noninteracting system. The
topology of the nodal surface, and its bearing on excited
state QMC calculations, is further discussed in Sec. IID.
Multideterminant wave functions, which can change nodal
topology, are discussed in Sec. I1IB 2.

In diffusion Monte Carlo (DMC), a wave function ¢ppc
is evolved in imaginary time with the use of stochastic
techniques, such that each excited-state component decays

exponentially with imaginary time at a rate proportional to
its total energy. In fixed-node DMC, the nodal surface is fixed
to that of the trial wave function; the set of points for which
¢pmc = 0 (the DMC nodal surface) coincides with the set
of points for which Wgy) = 0 (the trial nodal surface). This
means that the DMC algorithm projects out and samples the
lowest-energy state that is compatible with a given trial nodal
surface. This leads to the well-known fixed-node error, which
prevents the numerically exact evaluation of many-fermion
ground-state total energies in polynomial time. However, the
fixed-node approximation is the only tractable way in which
we are able to calculate excited-state energies in DMC. By
forming trial excited states, and fixing their nodes, we can
evaluate excited-state energies. If the nodal surface of a trial
excited-state wave function is exact, the DMC energy of that
excited state is also exact.

In this paper, we present the results of a systematic study
of static-nucleus energy gaps for various atoms, molecules,
and solids obtained using the VMC and DMC methods. The
rest of the article proceeds as follows. In Sec. II, we present
the theoretical background on the QMC evaluation of energy
gaps, the treatment of finite-size effects, and other technical
aspects of excited-state QMC calculations. In Sec. III, we
discuss the computational details of our example calculations,
the results of which are presented in Sec. IV. Finally, our
conclusions are drawn in Sec. V. Hartree atomic units (|e| =
me = 4meg = h = 1) are used throughout, unless otherwise
stated.

II. EXCITED-STATE QMC

A. Quasiparticle and excitonic gaps

In order to perform a QMC supercell calculation with
periodic boundary conditions, the trial wave function must
satisfy the many-body Bloch conditions outlined in Ref. [50].
Specifically, the wave function should acquire a phase exp(ik; -
R;) whenever a single particle is translated through a supercell
lattice point Ry, where the constant vector K is the supercell
Bloch vector or twist. Furthermore, the wave function should
acquire a phase exp(ik; - R,) when all the particles are together
translated through a primitive lattice point R, where k,, lies
in the first Brillouin zone of the primitive cell. This is usually
achieved by requiring the Jastrow factor and backflow function
to have the periodicity of the supercell under single-particle
displacements and the periodicity of the primitive cell under
all-particle displacements, while the Bloch orbitals in the Slater
determinant lie on a regular grid of primitive-cell reciprocal
lattice points offset by the supercell Bloch vector kg. For
example, for an / x m x n supercell, this grid would be an
I x m x n grid of k points in the primitive-cell Brillouin zone),
centered on the supercell Bloch vector ks. Folding of these
points into the supercell Brillouin zone results in all points
being mapped to k. The occupancies of the single-particle
orbitals at each k point in the primitive-cell Brillouin zone can
then be used define excitations.

The quasiparticle gap Agp of a system is the energy
required to create an unbound electron-hole pair in that system.
It is given by the difference between a conduction-band
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minimum Ecpy and a valence-band maximum Eygy,! i.e.,
Aqgp(ks, k)
= Ecmke) — Evem(kr)
= [Eny1(k) — En(K)] — [En(Kf) — Ex—1(Kp)]
= Enp1(k) + En_1(ke) — En(k) — Ex(Ke), (4

where Ey is the total ground-state energy of an N-electron
system. The labels k¢ and k; denote the k points from which
and to which excitations are made, and may be ignored in
finite systems. The ground-state energies Ey (k¢) and Ey (K¢)
are identical if the calculations used to evaluate the quasi-
particle energies Eyy; are performed on the same grid of k
vectors [i.e., for cells with the same supercell Bloch vector kg
we have Agp(ks, ki) = Ey41(k) + En—1(kf) — 2Ey]; other-
wise, they may differ. It is always possible to evaluate Agp
between any pair of k points k¢ and k; at any system size by
appropriate choices of the supercell Bloch vector K (i.e., the
offset of the k-point grid) in the two cases.

The excitonic gap (or optical gap) of a system is the energy
required to create a bound electron-hole pair in that system.
It is given by the difference of total energies obtained with an
electron promoted to an excited state of the system and the
total energy of the ground state

Agx(ks, k) = Ey (ki, k) — E, &)

with E; (Kkg, k¢ ) the excited-state total energy of an N-electron
system in which an electron has been promoted from an occu-
pied valence-band orbital at K¢ to an unoccupied conduction-
band orbital at k, (again, the k-point labels may be ignored
in the finite case). The ground-state energy E is in this case
unambiguous, and has to be evaluated with the same k-point
grid as the excited-state energy E; (K¢, k). In the rest of this
section, we will suppress the k-point labels k; and k;. Note
that, unlike the quasiparticle gap, the excitonic gap may only
be evaluated between pairs of k points that are simultaneously
included in the k-point grid (i.e., the set of k points must contain
both k¢ and k). This is not generally possible for a given pair
of k-points at all system sizes. For example, it is possible to
calculate a vertical excitonic gap (k¢ = k) in any supercell by
using an appropriate offset K, to the grid of k vectors; however,
it is only possible to calculate an excitonic gap from I" to K in
a 2D hexagonal cell in supercells of 3/ x 3m primitive cells,
where [ and m are integers.

For our purposes, the total energy En_; (En1) is evaluated
by calculation of the QMC energy of a state with the removal
(addition) of an electron from (into) an occupied (unoccupied)
state in the Slater determinant. Similarly, the total energy E};
is evaluated by calculation of the QMC energy of a state whose
valence- and conduction-band occupancies have been switched
for the particular orbitals of interest. This trial wave function
describes a correlated state of an excited electron and remnant
hole, i.e., an exciton. The difference Eg = Agp — Agxisequal
to the exciton binding energy for a particular configuration

Tn a finite system, the “conduction-band minimum” is —A, where
A is the electron affinity and the “valence-band maximum” is —/,
where [ is the first ionization potential.

of electron and hole, and is always greater than or equal
to zero for a finite system or for an extended system in
the thermodynamic limit, because the electron-hole Coulomb
interaction is attractive. This may not be the case in QMC
data obtained in a finite periodic cell, in which case finite-
size effects may lead to the apparently unphysical scenario
where Aqgp < Agx. The origin of this behavior is explained in
Sec. IIE. The exciton binding energy Ej can only be evaluated
at system sizes for which calculation of Agy is permitted. [t may
be reexpressed as

Ej (ke k) = Agp(Kr, ko) — Apy(kr, ko)
= Ex1(k) + Ex_1(kt) — E(k, k) — Ey,
(6)

with Ey = Eyx(ky) = Eyn(k;). The four QMC total energies
in Eq. (6) are statistically independent, unlike Agp and Agy,
which both depend on the same ground-state energy Ey.

B. Singlet and triplet excitations

In the preceding section, we neglected to include informa-
tion on the possible spin degree of freedom of the electrons
involved in excitations. For Hamiltonians that include no
spin-orbit coupling we can, with no added difficulty, define
the quasiparticle and excitonic gaps including explicitly the
spin o € {1, |} of the electron, which is excited from (K¢, o)
to (k¢, oy). Singlet excitations are those with oy = oy, while
triplet excitations incur a spin flip, oy # oy. In QMC, the spin
of any electrons involved in excitations can be controlled by
specification of the (spin-dependent) orbital occupancies in
the Slater part of the trial wave function. In most cases, singlet
excitations are more physically relevant, because triplet optical
excitations are forbidden in first-order perturbation theory.
The feasibility of calculating singlet-triplet splittings by QMC
techniques depends on the magnitude of the singlet-triplet
splitting; the resolution of a small energy difference requires
small QMC statistical error bars. We have calculated the
singlet-triplet splitting of the lowest lying excitonic states of
anthracene in Sec. IVB3 and of the ground state of O, in
Sec. IVB2.

C. Wave-function nodes and variational principles

DMC gives the energy of any eigenstate of the Hamiltonian
exactly if the nodal surface of the trial wave function is equal
to that of the true eigenfunction, even if the trial wave function
is approximate between the nodes [51]. In general, however,
each of the total energies Ey, Ey+;, and Ejv' suffers a fixed-
node error due to the inexact nodal surface of the trial wave
function. Assuming the excitations are made into the lowest-
energy quasiparticle bands, Ey and Eyy; are themselves
ground-state total energies, and hence the fixed-node errors
in Ex and Ey4; must be positive [51]. There is no rigorous
variational principle on the quasiparticle gap Agp = En41 +
En_1 — 2Ey, although in practice gaps evaluated using total
energies evaluated by a variational method usually provide
upper bounds. In Hartree-Fock theory, the absence of electronic
correlation has the consequence that electrons localize exces-
sively to avoid one another, and hence quasiparticle energy
gaps are overestimated significantly. For example, in Si, the
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Hartree-Fock quasiparticle gap is an overestimate by around
4.5 eV [52,53]. In QMC, as we recover more and more of the
electronic correlation energy by optimizing Jastrow factors and
backflow functions, and performing DMC to project out the
fixed-node ground state, we observe that quasiparticle gaps
reduce substantially from their Hartree-Fock values towards
their exact static-nucleus nonrelativistic values. Apart from
the unlikely case in which we recover significantly more
correlation energy in the (N £ 1)-electron systems compared
to the ground-state N-electron system, we therefore expect
QMC quasiparticle gaps to be upper bounds on the exact
gaps. Because individual contributions to the quasiparticle
gap separately obey ground-state variational principles, one
expects to obtain improved DMC estimates of quasiparticle
gaps by reoptimizing parameters that affect the nodal surfaces
in the (N &£ 1)-electron systems. Improving a Jastrow factor
is expected to improve VMC energy gaps, but not fixed-node
DMC gaps, since the Jastrow factor does not affect the nodal
surface. (Of course, improving the Jastrow factor reduces sta-
tistical error bars, finite-time-step bias, finite-population bias,
and pseudopotential locality errors; furthermore, parameters
that do affect the nodal surface should be optimized together
with the Jastrow factor.)

Let us now consider the fixed-node error in the excitonic
gap. Again, the ground-state energy can only be overestimated
by the fixed-node variational principle. The excited-state en-
ergy E;, however, is not bounded by variational principles
except in special circumstances. If the trial excited-state wave
function transforms as a one-dimensional (1D) irreducible
representation (irrep) of the full symmetry group of the many-
body Hamiltonian, then the resultant fixed-node DMC energy
provides an upper bound on the energy of the lowest-lying
eigenstate that transforms as that 1D irrep. In that case, the error
in the DMC energy is second order in the error in the nodal
surface of the excited-state trial wave function, and there is a
tendency for positive fixed-node errors to cancel in excitonic
gaps. In the likely case that we recover more correlation energy
in the ground state than in the excited-state calculation, QMC
excitonic gaps act as upper bounds to their exact counterparts.

If, however, the trial excited-state wave function does not
transform as a 1D irrep, or we are not studying the lowest-
energy eigenstate that transforms as the same irrep as the trial
wave function then the fixed-node error in the excited-state
energy E, can be either positive or negative, and hence
there could be cases in which the DMC excitonic gap is too
small. As a consequence, reoptimization of trial-wave-function
parameters affecting the nodal surface can lead to absurd
results, as the nodal surface becomes more like that of the
ground state. We provide an example illustrating this behavior
in Sec. IVA.

If the excited-state trial wave function transforms as a
multidimensional irrep of the full symmetry group of the
Hamiltonian, then weaker lower bounds on the estimate of
the excited-state energy can be realized by forming trial wave
functions that transform as 1D irreps of subgroups of the full
symmetry group of the Hamiltonian [18]. This is discussed in
Sec. IIB 2.

Importantly, for excitations made between different k
points, where complex Bloch states (having definite crystal
momentum kr) can be chosen to populate the Slater part of

the trial wave function, variational principles on the lowest
energy excitations are always realized because of translational
invariance (states of definite crystal momentum transform
according to 1D irreps of the space group, in line with the
many-body Bloch conditions) [18]. In the case where one
wishes to form real linear combinations of complex Bloch
states with crystal momenta kr and —Kr, respectively, the
subsequent real superposition does not generally transform as a
1D irrep of the space group, and hence excited-state variational
principles are not in general realized. If kt happens to be on the
edge of the Brillouin zone, however, kt and —kr are equivalent,
and an excited-state variational principle is realized once
again. If one is not able to recover an excited-state variational
principle in this way, then one should use complex Bloch
orbitals (maintaining a variational principle, at the cost of
added computational expense). The so-called fixed-ray method
of Hipes has been developed specifically to ensure the existence
of excited-state variational principles in cases of degeneracy
such as this [54].

Variational bounds on excited-state energies may also be
obtained by other means, e.g. via the MacDonald’s theorem
[55]. Zhao and Neuscamman have recently devised a method
which allows for the realization of a variational principle on
selected excited-state energies, and also for practical optimiza-
tion of excited-state QMC trial wave functions [56]. Mussard
et al. have extended the VMC method using the ideas of
time-dependent linear-response theory to extract excited-state
properties, and have presented example calculations within
the Tamm-Dancoff approximation to the linear-response equa-
tions [57].

D. Nodal topology

Fixed-node DMC works by obtaining exact ground-state
solutions to the Schrédinger equation within nodal pockets,
i.e., within the regions of configuration space bounded by the
nodes of the trial wave function [51]. The boundary conditions
on the Schrddinger equation in each nodal pocket are that the
DMC wave function goes to zero at the edges of the pocket.
If the nodes of an excited-state trial wave function are exact,
then the ground-state energy in each nodal pocket is equal to the
excited-state energy corresponding to the trial wave function.

From the point of view of fixed-node DMC, the fundamental
differences between the ground-state many-electron wave
function and its excited-state counterparts are codified in the
topology of their respective nodal surfaces, which completely
determine the corresponding fixed-node DMC energies. The
nodal surface of the many-electron ground state satisfies a tiling
property (all nodal pockets are equivalent under permutations
of identical fermions; this is also true of determinants of Kohn-
Sham orbitals) [58], and it is conjectured that the presence of
only two nodal pockets is a generic feature of the many-electron
ground state [59,60]. The nodal surfaces of excited states
are less-well-understood; they do not satisfy a tiling property
in general unless the trial state transforms as a 1D irrep of
the group of the Hamiltonian, and in the general case, the
number of nodal pockets they possess can only be bounded:
Hilbert and Courant [61] proved that the nodes of the nth
excited state divide configuration space into no more than
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n + 1 nodal pockets.? The fact that the number of inequivalent
nodal pockets remains small in low-lying excited states means
that, for a sufficiently large DMC target population, each
set of equivalent nodal pockets will have a significant initial
population of walkers; furthermore, the walker populations
in high-energy sets of pockets are expected to die out on an
imaginary-time scale given by the inverse of the difference
between the energies of the different nodal pockets. Hence
the fixed-node DMC energy with an excited-state trial wave
function is equal to the lowest of the pocket ground-state
energies. An example of this behavior is shown in Sec. IVA 1.

It is not possible for a Jastrow factor to alter the nodal
surface of a trial state, and nor is it possible for a smooth
backflow function to alter the fopology of a trial state. It
is this fact that prevents variational collapse of excited-state
energies in VMC calculations in the cases of electron addition,
removal, or promotion where the trial state is a state of definite
symmetry transforming as a 1D irrep. While nodal topology
is an important factor in the description of excited states in
QMC, and it is important that backflow functions preserve it,
as we show in Sec. IV A, the correct nodal topology does
not guarantee that one will obtain reasonable results when
optimizing backflow functions in trial excited states. In cases
where trial wave functions do not transform as 1D irreps of
the symmetry group of the Hamiltonian, preserving the nodal
topology can still lead to the formation of a pathological nodal
surface and a DMC energy which is too low. We note that,
while we will not explicitly consider their use here, Pfaffian and
geminal pairing wave functions have recently been shown to
be somewhat more efficient at accurately describing the nodes
of a few systems where the exact nodes are known [62].

E. Finite-size effects

A major source of error in gap calculations for condensed
matter using explicitly correlated wave-function methods such
as QMC is the presence of finite-size (FS) effects. For cal-
culations on solids, we are only able to simulate a finite
supercell subject to periodic boundary conditions. This means
that our raw DMC data contain unwanted contributions from
the electrostatic interaction of added (or removed) charges
with their periodic images, and we must either correct for
this effect or extrapolate to infinite supercell size. A general
simulation supercell in d dimensions is defined by a d x d
integer “supercell matrix” S, which expresses the supercell
lattice vectors {aj°} in terms of primitive-cell lattice vectors

{aP""y:

a =) §;alm )
J

A “diagonal supercell” is one for which the supercell matrix
is diagonal; such a supercell consists of an Sj; x Sy x S33

’In 1D, arigorous analysis of the topology of the ground and excited-
state nodal surfaces culminates in the Hilbert-Courant nodal line
theorem. The ground state is nodeless, and the nth (nondegenerate)
excited-state has n nodes, dividing the 1D configuration space into
n + 1 nodal pockets (saturating the earlier stated constraint, which
applies in dimensions greater than one).

array of primitive cells. In general, a supercell contains det (S)
primitive cells.

Various FS correction schemes exist for the total energies
per primitive cell of solids calculated at fixed system size
in DMC [63-65]. However, such FS errors cancel between
ground and excited states and are of little relevance to the
FS effects in excitation energies. Let us first consider the FS
effects in Agp. The leading-order FS error is due to the self-
interaction of added quasielectrons or quasiholes. The energy
of the resulting unwanted lattice of quasiparticles (each having
charge ¢ = %1) is given by a screened Madelung sum over
supercells, i.e., qva(aic, a3’, ay’)/2 with vm(aj‘, a3°, a5’) be-
ing the screened Madelung constant for the supercell [66].
There are two separate terms of this type in a quasiparticle
gap correction, one for —Eypy = Ey_1 — Ey and another for
Ecem = Ent1 — En. A physically reasonable FS correction
formula for Agp therefore reads

Agp(00) = Agp(af’, a¥, ay’) — vm(af", a¥, af), (8)

where Agp(oo) is the infinite-system quasiparticle gap. A
similar expression has previously been used at the DFT level
to study FS effects in the formation energies of charged defects
[67]. Assuming the separation of the neighboring images of the
quasiparticle is sufficiently large that linear response theory is
valid, vm(a}®, a3°, a3°) can be evaluated using an appropriately
screened Coulomb interaction. In QMC calculations with fixed
ions, only the electronic contribution to the susceptibility
is relevant to the FS effects in the quasiparticle gap, i.e.,
the permittivity that should be used to evaluate the screened
Madelung constant is the high-frequency permittivity. This can
usually be evaluated with sufficient accuracy using density
functional perturbation theory [68], if experimental results are
unavailable. In anisotropic materials, the Madelung constant
must be evaluated using the permittivity tensor, as is done
in DFT studies of charged defect formation energies [69]. A
simple expression for the anisotropically screened Madelung
constant can be obtained by a coordinate transformation to
the principal axes of the permittivity tensor. If Dy (aj®, a5°, a¥’)
is the unscreened Madelung constant, then the screened
Madelung constant is

|
J/det (e)vM(6

SC oSC ,SC —1/2,sc _—1/2_sc _—1/2_sc
vm(al, af, af) = Pa, e 12af e /a3),

)

where € is the high-frequency permittivity tensor of the system.
The properties of physical permittivity tensors mean that the
square root of the inverse is always well-defined: positive-
definite matrices have only one square root, also known as the
principal square root. This expression can be obtained from
an analysis of the Ewald interaction in the presence of an
anisotropic medium (supplied in the present case by the rest of
the system). Similar arguments were given by Fischerauer for
the interaction between aperiodic point charges in anisotropic
media [70]. In the case of an isotropic medium, Eq. (9) reduces
to division of the unscreened Madelung constant by the relative
permittivity, i.e., vy = v /€.

In layered and 2D materials, the in-plane polarizability of
the layers modifies the form of the Coulomb interaction to
the so-called Keldysh interaction [71-73]. Depending on the
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in-plane susceptibility and the spatial extent of the simulation
cell, it may be necessary to employ this modified form of inter-
action in the evaluation of the screened “Madelung” constant.
For supercells much larger than the length scale r, defined
by the ratio of the in-plane susceptibility to the permittivity
of the surrounding medium, the Keldysh interaction between
image charges reduces to Coulomb form, and the subtraction
of the screened Coulomb Madelung constant is reasonable. On
the other hand, if the supercell size is significantly less than r,
then the Keldysh interaction is of logarithmic form [74] and the
resulting Madelung constant is roughly independent of system
size, until the linear size of the simulation cell reaches r,.. We
discuss this further in Sec. IVD.

If the leading-order FS error in the quasiparticle gap is
removed by subtracting the screened Madelung constant, the
remaining systematic FS errors are expected to be dominated
by periodic charge-image quadrupole interactions, and to fall
off rapidly as L ™3, where L is the linear size of the supercell.
Depending on whether sufficient data are available, linear
extrapolation in 1/L3 can be used to remove these errors.
One could even attempt to eliminate these errors using the
Makov-Payne expression for the correction to the formation
energy of a charged defect [75]. For a 2D material with a
supercell size much less than r,, the charge-image quadrupole
Keldysh interaction falls offas 1/ L%: when the linear size of the
supercell exceeds r,, a crossover to 1/L? scaling takes place.

The corrected Agp(aj, a5, a5°) — vm(aj’, a3, a5°) data are
also subject to additional, beyond-linear-response effects.
These additional effects are quasirandom, scaling in no sys-
tematic way with system size; however, they do correlate
with analogous charged-defect formation energies evaluated
at the DFT level: see Sec. IVC1. We interpret these errors
as commensurability effects: oscillations in the electron pair
density arising from additional quasiparticles (in a metallic
system these would be Friedel oscillations) are artificially
made commensurate with the supercell.

Some earlier QMC studies have extrapolated gaps to infinite
system size assuming FS errors in energy gaps scale as
1/L [44,76]. For a fixed cell shape, vm(aj®, a¥, af’) itself
scales like 1/L, so this ansatz is reasonable. However, this
approach is invalid if the cell shape is varied. Furthermore,
it is difficult to extrapolate reliably from a small number of
data points suffering from unquantified quasirandom noise.
In many cases, averaging corrected energy gaps is a more
accurate way of removing systematic and quasirandom FS
effects. As shown in Sec. IVC1 (Table VI, specifically),
the magnitude of the quasirandom FS effects appears larger
than any remnant systematic FS error after application of
our proposed correction [Eq. (8)] in three-dimensional Si; in
2D phosphorene, however, residual systematic FS errors are
still present after the Madelung-constant correction has been
applied, as shown in Sec. IV D. Whether extrapolation in 1/L3
or simple averaging of corrected gaps is the most effective
way of removing FS effects depends on the system and on
the number of system sizes at which gap data are available.
In either case, provided the quantified QMC statistical error
bars are less than the unquantified quasirandom FS noise
(typically, around 0.1 eV), the data should not be weighted
by the inverse square QMC error bars when extrapolating or
averaging.

For a fixed supercell size N, one can choose a cell shape
to maximize the distance between periodic images, thereby
minimizing remaining systematic FS effects not accounted
for by Eq. (8). For cubic materials, the cells that maximize
the nearest-image distance are themselves cubic (n X n x n
arrays of unit cells). In other lattice systems, the supercells
maximizing the nearest-image distance need not be of the
same shape as the primitive cell, or even be diagonal in their
extent. Nondiagonal supercells have previously been used in
studies of lattice dynamics at the DFT level [77], but purely as
a means of reducing computational expense. The shape of the
simulation supercell may also be of significance with regards
to the quasirandom FS effects: see Sec. IVC 1.

For the case of excitonic gaps, there is another FS effect to
consider. The characteristic size of an exciton is usually the
exciton Bohr radius aj; = €/u, where . = mimy/(m¥ 4+ m;)
is the electron-hole reduced mass, € is the permittivity, and m
and m] are the electron and hole effective masses, respectively.
(Note that the size of an exciton is different in 2D materials
where the screened interaction is of Keldysh form [74]; in
that case, the size of the exciton is ro = +/r./(2u).) If the
simulation supercells used are of linear size much less than
the characteristic exciton size then the exciton is artificially
confined and the kinetic energy dominates the Coulomb
interaction. The exciton consists of two weakly attracting,
almost independent quasiparticles, and the FS behavior of the
resulting “excitonic” gap mimics that of the quasiparticle gap,
with a FS error dominated by the Madelung energies of the
free electron and hole. If, on the other hand, the simulation
supercell has a linear size exceeding the characteristic size
of the exciton, the hydrogenlike bound state forms, and the
leading-order systematic FS scaling in the excitonic energy
gap is given by the energy of a lattice of self-image-interacting
excitons. To investigate the binding energy of a lattice of
exciton images, we have performed a series of two-particle
DMC calculations in which an electron and a hole in the
effective mass approximation and interacting by the Ewald
interaction are confined to a face-centered cubic (FCC) cell
of lattice parameter L. The results of this investigation are
presented in Fig. 1, which clearly shows the crossover in the
scaling of the FS error in the exciton binding energy from L ™!
in small cells to L= in large cells when the linear size of the
cell is about twice the exciton Bohr radius. The 2D [78] and
3D [75,79] Ewald interactions, vgy(r), may be expanded into
the general form

2

U (r) = vm = veou(r) + a5+ 06H,  (10)
where vy is the Madelung constant and a is a geometrical
factor, which is sensitive to dimensionality and the supercell
shape. vcou(r) is the aperiodic Coulomb interaction. This
difference from the exact Coulomb interaction is the physical
source of the L3 FS error in the exciton binding energy
as evaluated in calculations employing periodic boundary
conditions.®> In a sufficiently large cell, the exciton wave

3In an anisotropic system, the quadratic term in Eq. (10) would be
replaced by a bilinear form r"7'r, with 7 a tensor depending on the
lattice structure.
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FIG. 1. Scaled difference of exciton binding energy Ex and the
exciton Rydberg against the lattice parameter L in an effective-mass
model of a three-dimensional exciton confined in a periodic FCC cell.
Ry = mim;/[2€2(m? + m;)] and af = e(m? + m})/(mm;) are the
exciton Rydberg and the exciton Bohr radius, respectively, where m
and m;, are the electron and hole masses and € is the permittivity. The
exciton Rydberg is the binding energy of an exciton in a cell of infinite
extent. The gradient on this log-log plot gives the scaling exponent of
the finite-size error in the exciton binding energy.

function is nearly independent of linear system size L, and
hence by first-order perturbation theory the effect of the ar? />
term goes as L~3. Once again, the situation is different in 2D
materials when the simulation supercell is much smaller than r,
(but larger than the exciton size r(); in that case, the finite-size
error in the exciton binding energy and hence excitonic gap
scales as L~2.

The approximate FS behavior of the excitonic gap is
determined by the FS behavior of the exciton binding energy
EX(af, a5, a¥). In particular, the excitonic gap in a finite
supercell is approximately given by

Apx(af, a¥, af) ~ Agp(co) — Ef (af, a¥, a¥).  (11)

If the exciton Bohr radius is large compared with the supercell
then EX(a, a¥, a) ~ —uv(aj°, a¥, a¥), so that the FS be-
havior of the quasiparticle and excitonic gaps is the same, and
either can be used to estimate the infinite-system quasiparticle
gap by subtracting the screened Madelung constant from the
result obtained in a finite supercell. There is no point in
attempting to calculate exciton binding energies using differ-
ences of quasiparticle and excitonic gaps in supercells smaller
than the exciton Bohr radius suggested by the effective-mass
approximation. On the other hand, if the simulation supercell
is larger than the exciton Bohr radius then the FS errors in
the exciton binding and hence excitonic gap are small and fall
off rapidly as L™3; in this case, it is possible to determine the
exciton binding energy.

We have investigated whether single-particle FS effects
(i.e., momentum-quantization effects) are significant in DMC
gaps by fitting A(N) = A(c0) + b/N'/3 + c[APFI(N, k) —
APFT(00)] to DMC gaps A(N) obtained in a series of cells
of the same shape but different size N, where APFT(N, k) is
the DFT energy gap evaluated for a finite supercell containing
N electrons, ks is the offset to the grid of k vectors used in
the DFT calculation, and AP¥T(c0) is the DFT gap converged
with respect to k-point sampling. However, we do not find the

fitted values of c to be statistically significant. Nor do we find
correlation between the ground-state DFT total energy and the
QMC gaps. On the other hand, we do observe some correlation
with FS effects in DFT-calculated defect-formation energies
(see Fig. 7). Twistaveraging [80] (TA) is amethod for removing
single-particle FS effects from ground-state expectation val-
ues. TA involves averaging results over simulation-supercell
Bloch vectors kg, i.e., over offsets to the grid of k vectors.
However, in gap calculations, the value of K is fixed by the
need to ensure that the k points involved in the excitation are
present in the grid; hence TA in the conventional sense cannot
be used in QMC excitation calculations.

F. QMC band structures: dipole matrix elements
and the spectral function

Quasiparticle energies are generally complex quantities,
because quasiparticle excitations have finite lifetimes. The
central quantity of interest in many spectroscopic experiments
is the spectral function A(K, w), which characterizes the
electronic states of wave vector K in a given material, having
peaks centered on the quasiparticle energies w whose widths
relate to the lifetime of the quasiparticle excitation in question.
It would be possible to try to extract the energy-momentum
spectral function from VMC calculations. As an example, one
could calculate the squared matrix element

S TN41)) |2,

(12)
for the HEG at the VMC level, where Wy is an optimized
N-electron wave function. This would allow for determination
of the broadening of the spectral peak at a particular momentum
k and extraction of the lifetime of quasiparticles in the quasi-
electron band at k, complementing previous works. This would
go some way to completing the first-principles description of
the properties of the HEG from the point of view of Landau’s
Fermi liquid theory [81-83].

A similar possibility would be to try to calculate the
radiative lifetime for an excitonic state. This relies on the
evaluation of dipole matrix elements, which again is possible
with VMC. This has already been performed for few-body
systems in a simple model [84] and for the 2°S — 2%P
transition of the Li atom [85].

One might think that a natural way to obtain improved
estimates of quasiparticle lifetimes and radiative rates would
be to evaluate the corresponding matrix elements at the DMC
level. However, this is not immediately possible. The DMC
method gives no direct information regarding many-electron
wave functions [i.e., produces no functional form for Wy R)14

{Wn(ry,...,ry)-exp ik - ryp][Wnpi(ry, ..

4The distribution that the DMC algorithm samples is either the
“mixed” distribution (the product of the fixed-node ground state with
the trial wave function) or, if the future-walking algorithm is used
[167], the “pure” distribution (the modulus square of the fixed-node
ground state itself). This does not change the salient point, which is
that DMC generates configurations and does not supply a functional
form for the fixed-node ground state.
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G. Excitations in metallic systems

Various studies have investigated, from a microscopic view-
point, the excited-state properties of the 2D HEG [34-37].
This involves the study of intraband excitations, in which
electrons are promoted or added into higher energy states on
the free-electron-like band of the HEG in order to determine the
quasiparticle effective mass and the Fermi liquid parameters.
All of these studies have observed the presence of severe
finite-size effects. In what remains of the present paper, we will
discuss only interband excitations to calculate energy gaps.

H. Computational expense

Methods developed to improve the scaling of QMC cal-
culations [86,87] may find use in excitation calculations. By
localizing low-lying states which are not directly involved
in excitations, the number of nonzero orbitals to evaluate at
a given point r is reduced, and the Slater matrix is made
sparse, improving the cost scaling of the Slater part of the
wave function by a factor of N. An additional side effect of
this is to reduce the computational expense of the inclusion
of backflow correlations (whose dominant cost arises at the
orbital-evaluation stage of a calculation). However, a major
problem with the use of localized orbitals is that, in order to ob-
tain efficiency increases, one sacrifices accuracy in individual
total energies by truncating localized orbitals to zero at finite
range. The extent to which this loss of accuracy will affect
total-energy differences in solids is unclear, although early
studies on molecules have provided positive results [42]. Given
that other biases (single-particle finite-size effects, time-step
bias, etc.) cancel so well in gap calculations in solids (see
Sec. IVC1) we expect the loss in accuracy in energy gaps
due to the truncation of localized low-lying electronic states
to be very small. On the other hand, computational expense
is often dominated by other factors such as the evaluations of
two-body terms in the Jastrow factor and updates to the Slater
matrix, limiting the scope for speedup.

Because highly precise total energies are required from
the DMC calculations used in forming energy gaps, the most
significant portion of computational time is spent in the
statistics-accumulation phase; the equilibration phase is only a
small fraction of the total computational expense. This means
that QMC gap calculations are particularly suited to massively
parallel computational architectures.

I. Nuclear relaxation and vibrational effects

The renormalization of static-nucleus energy gaps by zero-
point vibrational effects is important for any comparison of
theoretical results with experiment [88]. In the extreme case of
hexagonal ice, this effect contributes a correction in the range
of 1.5-1.7 eV [89,90]. Related work has also demonstrated
a large renormalization of the energy gap in the benzene
molecule by more than 0.5 eV [44]. We investigate this issue
in Sec. IVB 1, where we present results for an H, molecule
with a full quantum treatment of both protons and electrons.

A second issue is the equilibrium geometry of electronic
excited states. In an adiabatic ionization potential, electron
affinity, or quasiparticle gap, the geometry of the molecule
or crystal is allowed to relax after the addition or removal of

an electron. By contrast, in a “vertical” ionization potential,
electron affinity, or quasiparticle gap, the atomic structure of
the cation or anion is assumed to be the same as that of the
ground state. An important point to note here is that, from
the point of view of experiment, atomic relaxation may or
may not be relevant. Experimental measurements that occur
on timescales smaller than those associated with the structural
relaxation of a molecule or a solid (for example, as with photoe-
mission/inverse photoemission spectroscopy) are insensitive to
any relaxation effects which are instigated by the measurement.
On the other hand, in experimental measurements that occur
on timescales greater than those associated with the structural
relaxation (for example, as in zero electron kinetic energy
spectroscopy [91]), one can expect that one will measure
directly an adiabatic excitation energy, and that comparison
to fully relaxed ab initio results is reasonable. The situation
is less clear in the case that the experimental and structural
relaxation timescales are comparable. Geometrical relaxation
in excited states typically reduces quasiparticle gaps by 0.1—
0.5 eV. We present many of our quasiparticle-gap results with
and without relaxation in excited states, using DFT to relax
structures. A closely related issue is the Stokes shift, which
is the difference between excitonic absorption and emission
gaps. In an absorption gap, the geometry is that of the ground
state; in an emission gap, the geometry is that of the excited
state. QMC calculations have previously been performed to
calculate Stokes shifts in diamondoids using DFT geometries
[92].

Both of these issues complicate the detailed comparison of
ab initio gaps with experimental measurements.

III. COMPUTATIONAL DETAILS

A. DFT orbital generation

Our DFT calculations were carried out with the CASTEP
plane-wave-basis code [93]. In the case of molecules and
of phosphorene, prior to any wave-function generation cal-
culation, we relaxed the ground-state (and, where explicitly
stated, excited-state) geometries to within a force tolerance
of at most 0.05 eV//OX, with ultrasoft pseudopotentials [94]
representing the nuclei and core electronic states. All of our
DFT calculations used the Perdew-Burke-Ernzerhof (PBE)
parametrization of the generalized gradient approximation to
the exchange-correlation energy [95]. For our calculations on
solids, we used experimentally obtained geometries (Si from
Ref. [96], cubic boron nitride (BN) from Ref. [97], and «-SiO,
from Ref. [98]).

We have used Trail-Needs Dirac-Fock averaged-
relativistic-effect ~ pseudopotentials  [99,100] for all
wave-function generation calculations and subsequent QMC
calculations, except in our all-electron calculations. We have
chosen the local channels of our pseudopotentials such that
no ghost states exist, and we have used plane-wave cutoff
energies, which lead to an estimated DFT basis-set error per
atom of at most 10~* a.u. (2.72 meV) [101].

After their generation, the DFT single-particle orbitals were
re-represented in a blip (B-spline) basis [102]. This allows for
improved computational efficiency of QMC calculations, and
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the removal of unphysical periodicity in calculations on zero-,
one-, and two-dimensional systems.

B. QMC calculations
1. Slater-Jastrow(-backflow) wave functions

We have used Jastrow factors of the form outlined in
Ref. [103] in all of our QMC calculations, with system-
appropriate terms and with free parameters optimized by
unreweighted variance minimization and subsequent energy
minimization [104—107]. We have not (except where explicitly
stated) reoptimized Jastrow-factor parameters in trial excited
states. We have used backflow functions of the form outlined in
Ref. [20], optimizing free parameters by energy minimization
[107].

The results of our DMC calculations have been simul-
taneously extrapolated to infinite population size, and zero
time step in an efficient manner [108]. We have used the
“T-move” method of Casula to ensure that our DMC energies
are variational in the presence of nonlocal pseudopotentials
[109]. All of our QMC calculations have been carried out using
the CASINO code [110].

2. Multideterminant trial wave functions

In a multideterminant wave function, the Slater part of the
wave function of Eq. (2) is replaced by

DR) —> DR)+ Y _ c;D;(R), (13)
J

where the original determinant D is chosen as the “dominant”
determinant, and the excited determinants D; are populated
with single-particle orbitals with substituted degenerate or
near-degenerate orbitals of interest with respect to those ap-
pearing in D. Unless one believes the single-particle theory
used to generate the orbitals to be qualitatively incorrect,
the order of the eigenvalues of the orbitals occupied in the
Slater determinant of single-particle orbitals is preserved with
respect to the interacting case: the states of the interacting
and noninteracting systems are assumed to be adiabatically
connected. In the case of a failure of the single-particle
theory, this is not guaranteed, and the state formed from
the determinant of single-particle orbitals is not a reasonable
trial state. For example, in a case where DFT metallizes an
insulator, one might attempt to remedy the problem by, e.g.,
inclusion of exact exchange (the use of a hybrid functional, or
even Hartree-Fock theory itself) or artificial separation of the
occupied and unoccupied manifolds (i.e., the use of a scissor
correction) in the orbital-generation calculation.

One is able to obtain better estimates of ground-state total
energies by variation of the multideterminant expansion coeffi-
cients {c;}. One might also be able to obtain better estimates of
certain excited-state energies (see Sec. Il A). However, general
excited states do not obey variational principles, and so it is
not obviously the case that one would always want to form a
multideterminant expansion for the excited state.

There are cases where the formation of a (restricted)
multideterminant expansion is desirable. Firstly, excited-state
multideterminant expansions transforming as 1D irreps of the
full symmetry group of the Hamiltonian of a system can

be shown to obey variational principles in fixed-node DMC
[18], as discussed in Sec. IIC. Secondly, in cases of states
with degeneracy or near degeneracy, one might expect that
the wave function should have some multireference character.
Such degeneracies are much more likely to occur in the excited
state than in the ground state. The inclusion of determinants
characterizing electron promotions (or additions, or removals)
from the degenerate or near-degenerate energy levels might
reduce excited-state energies, leading to lower QMC energy
gaps. Towler et al. [24] paid a great deal of attention to
the correct inclusion of degenerate determinants of specified
symmetry classes in their study of diamond (which has the
same symmetry properties as Si, with the same consequence
that the valence-band maximum and conduction band at I" are
triply degenerate at the single-particle level). When choosing
a multideterminant expansion to describe an excited state, one
must apply a group theoretical projection operator to each of
the possible degenerate determinants in order to determine an
excited-state trial wave function of definite symmetry. This
“safe” trial wave function is then a few-determinant expansion
in the space of degenerate determinants of single-particle
orbitals, with a definite symmetry. However, this symmetry
may only be maintained at the VMC level, and the fixed-node
DMC algorithm may still break it if the trial wave function does
not transform as a 1D irrep. The weaker variational principle
for DMC excited states mentioned in Sec. IIC still applies
in cases where trial functions have specific transformation
properties, however. We have explicitly tested the formation
of multideterminant trial wave functions in some of our
calculations in Si (see Sec. IV C 1), where three bands at the I"
point are degenerate in the absence of spin-orbit coupling.

IV. RESULTS AND DISCUSSION
A. Atoms

1. H atom: a model of excited-state fixed-node errors

An important class of fixed-node errors in excited-state
DMC calculations is that which may arise due to the lack of a
variational principle. Here, we consider various modifications
to the hydrogenic 2s orbital, whose exact energy is —%
a.u. The corresponding wave function is isotropic and hence
transforms as the trivial 1D irrep of the SO(3) geometric
symmetry group of the H atom; however, it is not the lowest
energy eigenfunction of this symmetry. The nodal surface
of the 2s orbital is a sphere of radius 2 a.u. This example
was previously investigated analytically in Ref. [18]; here we
provide numerical results that corroborate the argument in
Ref. [18], and we investigate the consequences for optimization
of backflow functions in excited states.

The two ways that a spheroid nodal surface can be inexact
are that (a) the average positions of nodes is incorrect, and/or
(b) the curvature of nodes is incorrect. We have studied two
inexact nodal surfaces for the 2s state using the trial wave
functions

Y () =G,y —rexp (=3). (14)
r

Vil (r,0) = Dupl2pll +aYio@)] = riexp (=5). (15)
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FIG. 2. Approximations to the first-excited-state energy of an H
atom using the {7 excited-state trial wave function of Eq. (14) as a
function of y, obtained by various means. DMC errors are smaller than
the thickness of the lines. The pocket eigenvalues outside and inside
the nodal surface, EP%* and EP**, were determined by numerical
integration of the Schrodinger equation with fixed-node boundary

conditions, and (H) = (Yr |H |[y¥?), where H is the Hamiltonian.

which are exact (2s) eigenstates for y = 1, « =0, and 8 =
1. The wave function {7 (r) encodes the scenario already
explored in Ref. [18]. The normalization constants C,, and Dy g
are irrelevant in DMC, and ), ,,, is a spherical harmonic. We
have used {7 as a DMC trial wave function with y being a
control parameter which varies the nodal volume, keeping the
node spherical. This addresses point (a). We have also used
l/fZ’ﬂ as a DMC trial wave function, with « a control parameter
that sets the degree of nonspherical distortion of the nodal
surface, this time with 8 chosen to fix the nodal volume to the
exact value. This addresses point (b). The nodal topology of
our trial wave function does not change as a function of y and
o; there are always two nodal pockets. The results of varying
y and « are presented in Figs. 2 and 3.

Define the pocket eigenvalues EP°ot and EP° to be the

energy eigenvalues associated with single electrons occupying
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FIG. 3. DMC first-excited-state energies of an H atom with the
trial wave function 1//2”9 [see Eq. (15)] for L =2 and 4 at various
amplitudes « of wrinkling of the nodal surface [see Eq. (15)]. DMC
error bars are of order the size of the symbols.

the regions outside and inside the nodal surface of 7,
respectively, where the boundary conditions are that the pocket
eigenfunctions are zero outside of their respective pockets.
For the first case, the pocket eigenvalues can be determined
via numerical solution of a model eigenvalue problem. If
the radial Schrodinger equation is integrated, but with a
“nodal boundary condition” ¥ (2y) = 0, then the lower of
the corresponding eigenvalues min{ EX%', EP***} matches
very closely the DMC energy. Moreover, we can also find
the pocket eigenvalues corresponding to solutions inside and
outside the nodal surface for all y (see extended dotted lines;
only the lesser of these solutions is sampled by the DMC
algorithm). Even in the y — 0 and y — oo nodeless limits
the ground-state variational principle is always obeyed, i.e.,
E > —% a.u.

There is a qualitative difference in the behavior of the energy
expectation value (H) (which could be evaluated by VMC)
versus the fixed-node DMC energy as a function of y: the
error in the DMC excited-state energy due to the use of an
inexact nodal surface is more severe, and is first-order in the
error in the nodal surface (as quantified by y). Recall that the
fixed-node error in the DMC ground-state energy is second
order in the error in the trial nodal surface.

In the second case, as is shown in Fig. 3, the fixed-node
error is always positive for o 7 0. This is not too surprising,
given that if the wave function is to satisfy the nodal constraint,
it must adopt additional curvature in both nodal pockets.
Additional curvature in space corresponds to an increased
kinetic energy of the wave function in both nodal pockets.
The fixed-node DMC energy is second-order in the parameter
o, because it is an even function of «.

This model serves as an illustrative example of the fact that
excited-state fixed-node errors can be either positive or nega-
tive, depending on the nature of the inexactness of the nodal
surface. This is important, in particular, if one is to attempt to
improve the nodal surface in a trial excited state. Even if the
optimizable parameters of a trial excited-state wave function
cannot change the nodal topology, optimization by energy
minimization may result in the development of a pathological
nodal surface that gives a DMC energy that is too low.

We have tested this explicitly for the case of a trial wave
function wz:g']'ﬂ (r,0), with an electron-nucleus backflow
function. Successive cycles of energy minimization lower the
VMC energy of this state from —0.1180(2) a.u. (> —% a.u.,

positive error) to —0.1445(3) a.u. (< —% a.u., negative error).
This is exacerbated at the DMC level, where the energy of
the state with the optimal backflow function drops further
still to —0.1562(3) a.u. Throughout VMC optimization, the
nodal surface alters significantly, as shown in Fig. 4. This
investigation of the hydrogen atom suggests that the lack
of variational principle for excited-state energies is only a
significant problem if one attempts to reoptimize a parameter
that moves the nodal surface in an excited state.

2. Ne atom: VMC and backflow?

In terms of computational cost, VMC is several times
cheaper than DMC. It would therefore be desirable to know
whether or not energy gaps at the VMC level can be of
comparable quality to their DMC counterparts. To this end, we
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FIG. 4. Nodal surface of the SIB trial wave function 1//222'1"8
[see Eq. (15)] for the first excited state of an H atom. The wave
function is optimized by VMC energy minimization. SJB-n labels the
nodal surface of the SJB wave function after the n cycle of energy
minimization. The n = 3 and 4 cases are indistinguishable from each
other, and correspond to the termination of the optimization process.

have calculated the nth ionization potential of all-electron Ne
uptoandincludingn = 8, at various levels of theory (SJ-VMC,
SJIB-VMC, SJ-DMC, and SJB-DMC). It has previously been
shown that SJB-VMC is capable of retrieving large fractions
(more than 99%) of the correlation energy (defined with
respect to the then-best SIB-DMC energy) of the Ne and
Ne™ species [111]; however, no attempt was made to evaluate
the effectiveness of this approach beyond n = 1. Our results
for the Ne atom are given in Table I, alongside corrected
nonrelativistic literature values [112].

As can be seen, the DMC ionization potentials match very
closely the “exact” nonrelativistic results. The general trend
that more sophisticated levels of theory capture more of the
correlation energy in excited states is observed, in that the
MAE follows the expected trend: SJ-VMC does very well,
SJIB-VMC does better, SJ-DMC does better still, and SJB-
DMC is our best method. In this case, the system is absent of
vibrational effects and relativistic effects have been removed

from the experimental data. Hence the major source of error
in the DMC calculations is fixed-node effects. To test the
impact of fixed-node error on our ionization potentials, we
have performed a test calculation with a SJB wave function
which was reoptimized in the Ne™ cationic state. Ionization
potentials are differences in ground-state energies for different
numbers N of electrons, and hence fixed-node error is always
positive in each of the two energies involved in forming the
difference. We find that the SJB-VMC and SJB-DMC first ion-
ization potentials are 21.51(1) and 21.73(1) eV, respectively.
The SJB-DMC first ionization potentials with and without
reoptimization are consistent with each other. On the other
hand, the SIB-VMC first ionization potentials with and without
reoptimization are 21.51(1) and 21.96(2) eV, respectively [with
MAE values of 0.47(6)% and 1.62(8)%], and here we see
the most improvement from reoptimization. The MAE of
the SJB-DMC result is 0.52(5)%, meaning that the results
from SJB-VMC and SJIB-DMC with reoptimized backflow
functions are effectively as good as each other—although
SJB-VMC underestimates and SIB-DMC overestimates the
ionization potential.

A recent coupled cluster [CCSD(T)] calculation determined
the first and second ionization potentials of Ne as 21.564
and 44.3 eV, respectively [absolute errors of 0.04930 eV
(0.23%) and 3.30890 eV (8.1%) with respect to the “exact”
nonrelativistic results that we have compared against] [113].
A less recent configuration interaction calculation determined
the eighth ionization potential of Ne as 238.78440 eV [absolute
error of 0.00509 eV (0.0021%)] [114].

B. Molecules
1. H, dimer

We have evaluated the SJ-DMC first ionization potential of
the H, dimer using orbitals expanded in plane-wave and Gaus-
sian basis sets. Our plane-wave calculations employed Trail-
Needs pseudopotentials, while our Gaussian basis set calcula-
tions were all-electron. In our all-electron calculations, we have
used bond lengths matching the G2 values [115]. In the pseu-
dopotential calculations, we have relaxed geometries in the
ground (and excited, where specifically mentioned) states in
DFT with the use of the PBE exchange-correlation functional.

TABLE 1. nth ionization potential of an all-electron Ne atom at various levels of QMC theory, together with corrected nonrelativistic
experimental values [112]. The mean absolute errors (MAEs) have been calculated over all ionization potentials obtained within a given level

of theory.

Ionization potential (eV) Error in ionization potential (eV)
n Exact SJ-VMC SIB-VMC SJ-DMC SIB-DMC SJ-VMC SIB-VMC SJ-DMC SIB-DMC
1 21.61333 22.08(2) 21.96(2) 21.72(1) 21.72(1) 0.465 0.350 0.104 0.109
2 40.99110 41.48(2) 41.39(2) 41.10(1) 41.06(1) 0.590 0.397 0.108 0.074
3 63.39913 63.44(2) 63.23(1) 63.35(2) 63.39(1) 0.037 —0.173 —0.050 —0.010
4 97.29312 97.91(2) 97.78(1) 97.75(2) 97.72(1) 0.616 0.489 0.458 0.424
5 126.28846 126.85(2) 126.72(2) 126.85(1) 126.79(1) 0.565 0.436 0.564 0.504
6 157.80001 158.43(2) 158.30(1) 158.25(2) 158.34(1) 0.630 0.496 0.453 0.545
7 207.04137 204.48(2) 204.56(1) 205.04(2) 205.26(1) —2.561 — 2477 —2.005 —1.786
8 238.78949 238.10(1) 238.49(1) 238.70(2) 238.79(1) —0.687 —0.303 —0.089 0.002
MAE 0% 0.83% 0.67% 0.38% 0.34%
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TABLE II. DMC ionization potentials of the H, and O, dimers.
All-electron (AE) and pseudopotential (PP) calculations have been
performed with Gaussian (G) and plane-wave (PW) bases. Cal-
culations employing relaxed excited-state geometries are denoted
“ER.” The “J-DMC (p*pte~e™)” calculations used a Jastrow wave
function to describe the ground state of two distinguishable quantum
protons and two distinguishable electrons for parahydrogen H,, and
the ground state of two distinguishable protons and one electron
for the parahydrogen cation Hy. Self-consistent quasiparticle GW
results are denoted “QSGW,” coupled cluster results with single,
double, and (triple) excitations “CCSD(T)” (“EPT” means electron
propagator theory), second-order Mgller-Plesset perturbation theory
results “MP2,” quadratic configuration interaction “QCI” (with levels
of excitations as with coupled cluster), and results obtained by means
of the generalized James-Coolidge expansion “JCE.”

Ionization potential (eV)

Method H2 02
SI-DMC (AE-PW) 16.465(3) -
SI-DMC (AE-G) 16.462(6) 13.12(7)
SJ-DMC (PP-PW) 16.377(1) 12.84(2)
SJ-DMC (PP-PW-ER) 15.582(1) 12.33(2)
J-DMC (ptpte~e™) 15.4253(7) -

QSGW 16.04 [116], 16.45 [117] -
CC-EPT - 12.34, 12.43 [118]
MP2 - 11.72[119]
CCSD - 11.76, 12.13 [120]
CCSD(T) - 11.95 [120]
QCISD(T) - 12.18 [119]
JCE 15.42580 [121] -
Experiment 15.4258068(5) [122]  12.0697(2) [123]

We have also carried out plane-wave-basis all-electron
calculations, where the full Coulomb interaction was used
to evaluate the DFT total energy. Such calculations are pro-
hibitively expensive for atoms beyond C, requiring very large
plane-wave cutoff energies to achieve reasonable convergence
of total energies. We have carried out total-energy convergence
tests for this system, the results of which informed our choice
of plane-wave cutoff in orbital-generation calculations (500
a.u.). We estimate the error in DFT total energies due to this
choice of plane-wave cutoff energy to be ~2 x 1072 a.u., and
much smaller in DMC (where cusp corrections [49] act to
correct the wave function behavior at short range, which is
the most difficult region to represent in a plane-wave basis).
Our findings are displayed alongside experimental and other
theoretical estimates in Table II.

It is clear that the use of pseudopotentials has some bearing
on the quality of the excitation results, but also that structural
and vibrational effects are critically important, as evidenced by
the strong reduction of the ionization potentials upon relaxation
of the excited-state geometry.

Experimental zero-point energies suggest that a reduction
in the calculated ionization potential of H, of around 0.02 eV is
appropriate to properly allow for comparison with experiment
[124]. This is not enough to fully bridge the gap between our
best SJ-DMC results and the experimental ones. However, we
have used DFT-derived geometries, and have already shown

that the use of pseudopotentials incurs an error of order the
remaining difference between the (pseudopotential) SJI-DMC
and experimental ionization potential.

For the simple case of a parahydrogen H, molecule (i.e., a
molecule with opposite-spin protons), it is feasible to perform
DMC calculations in which both the protons and electrons
are treated as distinguishable quantum particles. Since the
ground states of both the parahydrogen molecule H, and
the parahydrogen cation H;’ are nodeless, the fixed-node
DMC calculations are exact nonrelativistic calculations (in
the limit of zero time step, etc.). We find the J-DMC total
energies of parahydrogen H, and the parahydrogen cation Hy
tobe —1.16401(2) and —0.5971396(3) a.u., respectively.S As
shown in Table II, the resulting ionization potential then agrees
with experiment to within 0.01 eV. Another experimental study
was able to resolve a para-ortho splitting of 19(9) ueV in
the ionization potential, and determined the first ionization
potential of parahydrogen specifically as 15.425808(6) eV
[125], a value which is consistent with the averaged result of
Ref. [122].

The results shown here demonstrate the critical importance
of nuclear geometry and vibrational effects on energy gaps
on a subelectronvolt scale. To obtain excellent agreement with
the experimental ionization potential of Hy in ab initio DMC
calculations, it was necessary to treat both the electrons and
the protons as quantum particles. Even for heavier atoms than
hydrogen, it is unreasonable to expect quantitative agreement
with experiment in the absence of vibrational corrections.

2. O, dimer

We have performed static-nucleus SJ-DMC ionization-
potential calculations for the O, molecule, similar to the
calculations described in Sec. IVB 1. Our results are shown
in Table II.

The triplet ground-state 32; electronic configuration was
used to obtain the results given in Table II, with a geometry
obtained from structural relaxation of the triplet state in
spin-polarized DFT, and with explicitly spin-polarized single-
particle orbitals populating the single Slater determinant of
orbitals in the trial wave function.® However, we have also
evaluated the lAg singlet-state energy, evaluated with a ge-

>To extrapolate the J-DMC H, energy E () to zero time step we used
nine different time steps 7, ranging from 0.0005 to 0.032 a.u., and we
found the time-step bias to consist of a crossover between two different
linear regimes. This is because there are two small length scales in the
problem: the Bohr radius and the root-mean-square displacement of
the protons in their vibrational ground state. We therefore performed
the time-step extrapolation by fitting the Padé form E(t) = [E(0) +
at + bt]/(1 4+ Ct) to our data, where E(0), a, b, and C are fitting
parameters. We recommend this form of time-step extrapolation in
other DMC calculations in which there is a separation of length scales
that results in a crossover between two linear-bias regimes.

5We have calculated the energy of the triplet state with and without
the use of spin-polarized DFT orbitals, finding that the spin-polarized
orbitals provide a DMC total energy which is lower, but by a statisti-
cally insignificant amount [0.016(16) eV]. We have given results with
the spin-polarized orbitals, owing to the physically reasonable nature
of their use.
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TABLE III. SJ-DMC ionization potentials and electron affinities of various nondimer molecules. Calculations employing relaxed excited-
state geometries are designated with “(ER).” Adiabatic gaps are given the subscript “A” and vertical gaps the subscript “V.”

Tonization potential (eV)

Electron affinity (eV)

Molecule SJ-DMC SJ-DMC (ER) GW TDDFT  CCSD(T) Expt.

SJ-DMC SJ-DMC (ER) GW TDDFT  CCSD(T) Expt.

CuHy  73503) 7313)  7.06[15] 7.025 [127] 7.52[128] 7.439(6)a [129]
7.09y [127]

C/HsNS  8.92(2) 8.80(2)  8.48[15]

BF; 16.226(6)  16.227(6)

0.33(3) 0.45(3) 0.32[15] 0.534 [127] 0.33 [128] 0.530(5)A[130]

0.43y [127]

8.72(5)a [131] - - - _ _ _
15.96(1)y [132] - - - _ _ _

ometry obtained from structural relaxation of the singlet state
in DFT, finding that it is higher by 1.62(2) eV than the triplet
ground-state energy. This is rather higher than the experimental
splitting between these two spin configurations of 0.9773 eV
[126].

There is an important way in which the single-determinant
wave function we have thus far used to describe the singlet
state of O, might be inadequate. The singlet state is degenerate
at the single-particle level, and one could in principle find
a significantly better singlet wave function by inclusion of
all symmetry-allowed determinants in the subspace of these
degenerate states; at the single-determinant level, the DMC
energy of the singlet state is essentially arbitrary. We have
performed multideterminant DMC calculations for the sin-
glet state, forming a few-determinant expansion with spin-
unpolarized DFT orbitals populating the Slater part of the
trial wave function, and find that the multideterminant singlet
ground state energy is lower in energy by 1.37(2) eV with
respect to the single-determinant singlet state. The DMC
singlet-triplet splitting of O, is then 0.20(3) eV, which is
significantly lower than the previously quoted experimental
value of 0.9773 eV [126].

The underestimate of the singlet-triplet splitting reflects the
fact that the singlet trial wave function has more variational
freedom via the use of multiple (degenerate) determinants.
We could easily improve the triplet wave function by forming
a multideterminant expansion using nondegenerate determi-
nants. However, this illustrates a general difficulty with the
use of multideterminant wave functions in QMC calculations
of energy differences. Most QMC calculations rely on a
cancellation of fixed-node errors and in general it is difficult
to provide multideterminant wave functions of equivalent
accuracy for two different systems.

3. Nondimer molecules

The aromatic compounds anthracene (C14H /o) and benzoth-
iazole (C7HsNS) are known to possess sizable first ionization
potentials, as is boron trifluoride (BF3). Tetracyanoethylene
(CgNy), on the other hand, is a strong Lewis acid, with a large
electron affinity. With this in mind, we have calculated the
ionization potentials and, where positive, the electron affinities
of these molecules using SJI-DMC, with and without the effects
of structural relaxation in the excited state at the DFT level.
Our results for the first three of these molecules are displayed
in Table III. The structures of the molecules we have studied
are shown in Fig. 5.

As an example of an excitonic gap in a molecule, we
have evaluated the first singlet and triplet excitation energies
of anthracene at the SJ-DMC level. We find that the singlet
excitation energy is 3.07(3) eV, while the corresponding triplet
excitation energy is 2.36(3) eV. A recent QMC study obtained
a significantly larger (vertical) singlet VMC excitation energy
0f4.193(17) eV [4.00(4) eV at the DMC level] [133]; however,
the form of trial wave function was qualitatively different,
and various details of the underlying geometry-relaxation
and orbital-generation calculations differ from what we have
reported here. Available experimental values for the singlet
excitations are 3.38 [134] and 3.433 [135], while a single
experiment (on molecules in a solvent) has claimed that the
triplet excitation energy lies in the range 1.84-1.85 eV [136].
However, comparison is complicated due to the presence of
vibrational effects, which generally differ for singlet and triplet
excitations.

For the cases of C¢N4 and BF3, we have also performed
some test SJB calculations. We find that the SJB-DMC
ionization potential of BF3 is 16.221(4) eV [the difference

FIG. 5. Nondimer molecules whose energy gaps we have calculated. From left to right: anthracene (C14H)0), tetracyanoethylene (C¢Ny),

benzothiazole (C;HsNS), and boron trifluoride (BF3).
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TABLE IV. DMC ionization potentials (IPs) and electron affini-
ties (EAs) of C¢Ny at various levels of QMC theory, compared
to experiment and other methods. Calculations employing relaxed
excited-state geometries are designated “(ER),” and those employing
reoptimized backflow functions “(R).” Adiabatic gaps are given the
subscript “A,” vertical gaps the subscript “V.”

Method IP (eV) EA (eV)
SI-DMC 11.87(1) 3.23(1)
SI-DMC (ER) 11.85(1) 3.25(1)
SIB-DMC 11.88(1) 3.20(1)
SIB-DMC (ER) 11.86(1) 3.23(1)
SIB(R)-DMC 11.87(1) -
SIB(R)-DMC (ER) 11.84(1) -
GW 11.192-12.517 [128]  3.30— ~ 3.9 [137]
2.732-3.804 [128]
CCSD(T) 11.99 [138] 3.05 [138]
Expt. 11.79(5)y [139] 3.16(2)4 [140]

11.765(8)4 [141]

from the SJ-DMC value of 16.226(6) eV being statistically
insignificant], and present our C¢Ny results in Table IV.
Backflow correlations have little effect on the calculated ion-
ization potentials and electron affinities. Nor are the calculated
energy differences significantly affected by the reoptimization
of excited-state geometries. We therefore expect that the
dominant sources of error in these cases arise from the use
of pseudopotentials and (in comparisons with experiment)
vibrational renormalization.

C. Three-dimensional solids
1. Diamond Si

Silicon in the diamond structure is an indirect-band-gap
semiconductor with a valence-band maximum at the I" point
(I'y) in the FCC Brillouin zone and a conduction-band min-
imum at around 85% of the distance along the line T'X.
Extensively studied over the past few decades by experi-
mentalists and theorists alike, Si provides an ideal test-bed
on which to benchmark QMC band-gap results. To this end,
we have calculated the excitonic gaps of Si between various
high-symmetry points in the Brillouin zone. Specifically, we
have considered promotions from I'y — I, I'y — L., I'y —
X., Ly => L., and X, — X,.. Calculations of the I'y — L,
and I'y — X, excitonic gaps are forbidden in the 3 x 3 x 3
supercell, where no choice of supercell reciprocal lattice vector
Kk, can ensure that both L and X appear simultaneously with I"
in the 3 x 3 x 3 grid of k points used to generate our single-
particle orbitals. In order to address the issue of finite-size
effects in our energy gaps, we have used simulation supercells
comprised of 2 x 2 x 2, 3 x 3 x 3, and 4 x 4 x 4 arrays of
primitive cells, and averaged the finite-size-corrected SJI-DMC
results. The exciton binding energy of Siis very weak (15.01(6)
meV [142]), and the exciton Bohr radius is much larger than the
simulation cells available to QMC calculations. We therefore
expect the excitonic and quasiparticle gaps to be very similar
and to show the same finite-size scaling. Our energy-gap results
are given in Table V and Fig. 6.
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FIG. 6. Finite-size errors in uncorrected SJ-DMC quasiparticle
and excitonic gaps Agp and Ag, of Si as a function of the number
of primitive cells Np in the supercell. The dashed lines show the
infinite-system gaps estimated by subtracting the supercell Madelung
constant from the gaps obtained in finite cells and averaging over the
different cells.

As a further test of our method and our treatment of finite-
size effects, we have calculated the quasiparticle energy gap at
the I" point. We have also calculated excitonic and quasiparticle
gaps at the I point in various differently shaped (noncubic,
but diagonal) supercells.” The results of this investigation are
given in Table VI, showing the quasirandom variation with cell
shape. We have found that the finite-size effects that exist in
our SJ-DMC energy-gap data correlate with those obtained
from DFT calculations wherein charged defects have been
introduced. Specifically, we have calculated the DFT total
energies of supercells of intrinsic Si, Si with one P substitution,
and Si with one Al substitution, with the total number of
electrons fixed to that of the intrinsic Si calculation. This
mimics the introduction of two point charges, and a DFT analog
quasiparticle gap can be defined as

ARGp = Ep + Ea — 2Es;, (16)
where Ex is the energy of the Si system with one substitution
of atom type X. Our analog DFT energies have been obtained
with a fixed (dense) k point sampling, and with ultrasoft
pseudopotentials generated on-the-fly in CASTEP.2 A plot of
ARGp against Agp obtained from SJ-DMC simulations is given
in Fig. 7. The correlation is statistically significant with or

"Specifically, noncubic cells comprised of 2 x 1 x 1, 3 x 1 x 1,
2x2x1,3x2x1,and 3 x 3 x 1 arrays of primitive cells.

8Versions of CASTEP before 17.2 were subject to a bug which led
to incorrect total energies in charged calculations. We have worked
with version 17.2, avoiding the undesirable behavior. We also note
that tests with earlier versions of CASTEP indicate that the errors in
individual total energies reported by CASTEP do not cancel when one
calculates a defect formation energy. We thank S. Murphy for drawing
our attention to this issue.
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TABLE V. Uncorrected quasiparticle and excitonic energy gaps Aqp and Ag, of Si evaluated in SJ-DMC for different simulation supercells.

SI-DMC gap (eV)

Excitation 2 x 2 x 2 supercell 3 x 3 x 3 supercell 4 x 4 x 4 supercell FS corr. and av.
Agp(Ty — T¢) 3.56(6) 3.9(2) 4.0(2) 4.18(6)
Ag(Ty = T) 3.57(4) 3.82(9) 3.9(1) 4.14(3)
Ap(Ty = Xo) 1.24(4) - 1.8(1) 1.9(1)
Apx(Ty = L) 2.39(4) - 2.8(1) 2.97(7)
Apc(Xy = X.) 4.55(4) 5.01(8) 5.1(1) 5.3(1)
Agc(Ly = L) 3.77(4) 4.00(8) 4.2(1) 4.35(4)

without the inclusion of the data point corresponding to the
smallest cell size. This directly confirms that finite-size errors
in QMC gap calculations are analogous to those in DFT
defect-formation-energy calculations.

All of our DMC calculations for this system have employed
time steps of 0.01 and 0.04 a.u., except for our tests in noncubic
cells, and our SJB tests, which employed larger time steps of
0.04 and 0.16 a.u (with a computational speed-up factor of
four). However, we have observed in tests that, in conjunction
with the T-move scheme [109], it is possible to use far larger
time steps in SJ-DMC gap calculations. The results of these
tests are displayed in Fig. 8. While time-step bias in total
energies is significant at larger DMC time steps (of order a
few eV), this bias cancels almost entirely in both excitonic
and quasiparticle energy gaps at fixed system size and DMC
population size. We expect that the use of even larger DMC
time steps in other systems could allow for computational
savings of at least an order of magnitude.

Our largest family of calculations for Si, those in the
4 x 4 x 4 supercell, required around 1.7 million core hours
to complete. Had we opted to employ time steps of 0.04
and 0.16 a.u., which are still conservative choices in light of
the information presented in Fig. 8, we would have required
0.5 million core hours of computer time.

To address the impact of fixed-node errors in our calculated
energy gaps, we have carried out tests including backflow
correlations in our trial wave functions. We find that the
inclusion of backflow lowers the (Madelung-corrected) DMC
excitonic and quasiparticle gaps in a 2 x 2 x 2 supercell of
Si from the SJ-DMC values of 4.08(4) and 4.07(6) eV to
the SIB-DMC values of 3.95(1) and 3.95(3) eV, respectively.
This is an O(0.1 eV) effect, which we expect to affect our

TABLE VI. Finite-size-corrected SJ-DMC vertical quasiparticle
gaps Agp and SJ-DMC vertical excitonic gaps Agy at the I" point in
Si for various noncubic supercells. After correction, the Agp and Agy
data sets have lower variances by a factor of more than two.

Madelung const. SJ-DMC gap (eV)

Supercell V) Agp Agx
2x1x1 —0.7364 4.00(7) 4.08(4)
2x2x1 —0.6009 3.8(1) 3.93(6)
3x1x1 —0.4116 4.3(1) 4.34(7)
3x2x1 —0.4370 3.8(1) 3.97(8)
3x3x1 —0.3342 4.512) 4.3(1)

results at larger system sizes to at least a similar extent.
However, to explicitly verify this for the larger cells would
incur significant further computational expense. Furthermore,
we have considered the impact of reoptimization of back-
flow functions in excited states. We find that in the case of
the I'y — I'. quasiparticle gap, this reoptimization lowers
the (Madelung-corrected) SJB-DMC gap even further, from
3.95(3)t03.77(3)eVina2 x 2 x 2cell. Forthe I'y — 0.85X,
quasiparticle gap in a 2 x 2 x 2 supercell, reoptimization
lowers the (Madelung-corrected) SJIB-DMC gap from 1.66(2)
to 1.46(1) eV. In summary, the use of SJ trial wave functions
leads to positive fixed-node errors in energy gaps of at least
0.2 eV for Si. In a material with a negligible exciton binding
energy such as Si, one may choose to calculate “the gap” as
either an excitonic gap or a quasiparticle gap; both exhibit the
same finite-size errors. The quasiparticle gap allows the safe
reoptimization of backflow functions when electrons are added
to or removed from a simulation supercell, and furthermore
the quasiparticle gap can be calculated between any pair of
wavevectors in any supercell. On the other hand, the excitonic
gap requires just two QMC calculations to be performed in each
simulation cell, rather than three or four for the quasiparticle

gap.
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FIG. 7. Uncorrected SJ-DMC quasiparticle and excitonic energy
gaps of Si at I', plotted against DFT analog “quasiparticle” (AQP)
gaps, obtained using the defect formation energies for positive and
negative charged defects. The results were obtained in different sizes
and shapes of periodic cell. The straight lines are linear fits of SJ-DMC
gap against DFT AQP gaps.
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FIG. 8. Time-step bias in (a) SJ-DMC energy gaps and (b) SJ-
DMC total energies for ground (I'°), excitonic (I' — I'), cationic
('), and anionic (I'") states of Si. All calculations have been
performed in a 2 x 2 x 2 supercell with a target population of 256
walkers. The Madelung correction is not included (and would only
offset the gaps by a constant).

A further potential source of fixed-node error at the I'
point arises from the threefold degeneracy of the light-hole,
heavy-hole, and “spin-orbit split-off” bands. Here, a DFT
code will output three arbitrary linear combinations of the
single-particle orbitals in question. To investigate the possible
consequences of this, we have performed SJ-VMC test calcula-
tions with trial wave functions formed from three determinants
including each of the three degenerate single-particle states at
I". We find that the formation of a few-determinant expansion
has, in this case, no statistically significant effect on the resul-
tant quasiparticle band energy. We have further investigated the
potential impact of degeneracy by repeating these calculations
on a grid with kg # 0. Here, the I" point is not explicitly sam-
pled, but instead the grid is centered on a wave vector of very
small magnitude, k; = (¢, €, €”), so as to break the threefold
degeneracy of the orbitals at I". Here, we again find no change in
the resultant quasiparticle band energy: if all three determinants
are included in the expansion, the total energy of the cationic
state at the SJ-VMClevelis —7.8179(1) a.u. The total energy of
the single-determinant state is (again) —7.8179(1) a.u., while
the total energies corresponding to singlet excitations made
from the two other (once degenerate) states are —7.8177(1)
and (again) —7.8177(1) a.u. The differences are statistically
insignificant, and we have therefore eliminated degeneracy as
a source of error at the I" point.

Early QMC studies on solids had claimed some success in
the evaluation of band structures and energy gaps. The earliest
examples of such calculations (diamond in Refs. [24,25], Si in
Ref. [23], solid atomic (I2;3) N in Ref. [29], and manganese
(I) oxide in Ref. [143]) considered direct calculation of the
excitonic gap in small supercells [8 atoms for diamond, Si, and
solid N, 16-20 atoms in manganese (II) oxide]. Quasiparticle
energy gaps were evaluated, if at all, by means of an addition of
an estimate of the exciton binding energy (in the Mott-Wannier
model, for example). SJ trial wave functions were used exclu-

sively, and no attempts were made to examine explicitly the
nature of finite-size effects in energy gaps themselves, or to
explore fixed-node errors. In common supercell shapes, the
Madelung constant is typically negative, so that a positive
correction to quasiparticle gaps is required; this would have
been partially offset by fixed-node errors. Note that the cells
used in QMC studies of Si are small compared with the exciton
Bohr radius, so finite-size errors in the excitonic gap behave
the same as finite-size errors in the quasiparticle gap (see
Sec. IIE).

Our QMC quasiparticle gaps in silicon are generally larger
than those obtained from GW calculations. For example, a
recent all-electron Gy W, calculation determined the I' — T,
I'> X, I' > L, X — X, and L — L quasiparticle gaps of
siliconas 3.07,0.95,2.21,3.46,and 4.09 eV, respectively [ 144].
A different study determined somewhat larger (pseudopoten-
tial) quasiparticle self-consistent GW quasiparticle gaps from
I' > I', X,and L as 3.54, 1.60, and 2.41 eV, respectively [ 145].

2. Cubic boron nitride

Cubic BN has the zinc-blende crystal structure, with
diamond-structure sites alternately occupied by B and N atoms.
Itis an insulator with a large and indirect fundamental gap from
I'y — X.. Experimental estimates of the indirect excitonic
gap range from 5.5-7.0eV [146,147] and previous DFT
investigations give a range for the indirect quasiparticle gap
from 4.2-8.7 eV [148,149]. Theoretical studies based on DFT
[150] and on the Bethe-Salpeter equation [151], predict that
many-body effects in the absorption spectra of cubic BN are
significant, and that a Mott-Wannier exciton formed between
the valence and conduction bands at I', with binding energy
around 0.35 eV, should exist in the bulk material. We have
calculated the excitonic energy gaps of cubic BN between the
same high-symmetry points as for Si, and have also calculated
the quasiparticle gap from I'y — I'.. Our energy-gap results for
cubic BN are given in Table VII. We find that the quasiparticle
gap from I'y — I'; is 12.8(2) eV, but are unable to resolve
a statistically significant I'y — I’ exciton binding energy,
because our SJ-DMC error bars are ~0.2 eV, compared to the
expected exciton binding of around 0.35 eV. Our value of 7.5(3)
eV for the indirect excitonic gap is consistent with the range
of experimental estimates.

3. a-quartz: SiO,

The a-quartz polymorph of SiO; is the most thermodynam-
ically stable at ambient conditions, and hence common. Recent
quasiparticle self-consistent GW (QSGW) calculations [152]
corroborate earlier theoretical claims [153] that the system
hosts a very-well-bound exciton formed at the I point in
the Brillouin zone. The exciton binding energy obtained in
Ref. [152] is 1.2 eV, compared with 1.7 eV in Ref. [153].
Experiment finds that the exciton binding is around 1 eV [154].
We have calculated the quasiparticle and excitonic gaps from
I'h > I';,inl x 1 x 1and 2 x 2 x 2 supercells in an attempt
to explore this phenomenon. The crystal structure of «-quartz
makes the study of larger supercells prohibitively expensive
(the unit cell consists of three Si atoms and six O atoms,
or 48 electrons when using Trail-Needs pseudopotentials to
describe core electronic states). We find that the SJ-DMC
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TABLE VII. Uncorrected quasiparticle and excitonic energy gaps Aqp and Ag, of cubic BN evaluated in SJ-DMC for different simulation

supercells.
SJ-DMC gap (eV)

Excitation 2 x 2 x 2 supercell 3 x 3 x 3 supercell 4 x 4 x 4 supercell FS corr. and av.
Agx(Ty — T0) 10.45(4) 11.60(9) 12.06(4) 12.9(2)
Agp(Ty — T) 10.37(5) 11.7(2) 12.00(8) 12.8(2)
Ap(T'y = Xo) 5.12(4) - 6.76(5) 7.5(3)
Agx(Ty = L) 11.67(4) - 13.16(4) 14.0(2)

A (Xy = X0) 10.77(4) 11.85(8) 12.50(5) 13.2(2)
Ax(Ly —> L) 13.60(4) 14.81(8) 15.37(5) 16.1(2)

quasiparticle and excitonic gaps of «-SiO, are 11.4(2) and
11.51(7) eV, respectively. We are hence unable to extract a
statistically significant exciton binding in «-Si0O,, perhaps due
to the limited sizes of simulation cell that we can study in this
case.

D. Two-dimensional phosphorene

Phosphorene (monolayer black phosphorus) is a 2D mate-
rial that exhibits a large exciton binding according to G W-BSE
calculations [155-157], an effective-mass model parameter-
ized by DFT [158], and experimental studies of few-layer black
phosphorus on a substrate together with an effective-mass
model [159]. Phosphorene consists of phosphorus atoms, four
in each unit cell, in a 2D armchair structure with a rectangular
Bravais lattice (see Fig. 9). We used DFT-PBE to obtain
a relaxed geometry with lattice parameters a = 3.31 A and
b =4.56A.Asa2D material, the screened interaction between
charge carriers is of Keldysh form, and care is required in the
treatment of finite-size effects. The electron and hole effective
masses m: = 0.44 my and m{ = 0.98 m( may be roughly
estimated as geometrical means of the masses in the zigzag and
armchair directions [160]; the vacuum in-plane susceptibility
parameter is estimated to be r,, = 24.24 A [158). The physical
size of the exciton in the effective-mass approximation is there-
fore rg = «/r+/(211) = 4.6 A for free-standing phosphorene in
vacuum.

Due to phosphorene’s anisotropic nature, we studied simu-
lation supercells comprised of 2 x 2,3 x 2,4 x 3,5 x 4, and
7 x 5 primitive cells. Each supercell was chosen to be as square
as possible, maximizing the nearest-image distance in the space
of diagonal supercells. The radii of the largest spheres that
can be inscribed in the Wigner-Seitz cells of the simulation
supercells are 3.3, 4.6, 6.6, 8.3,and 11.4 A, respectively. Thus
we are in the regime in which the Keldysh interaction must be
used to evaluate the Madelung correction to the quasiparticle
gap, with the correction being roughly independent of system
size, at least for the smaller cells. We exclude the 2 x 2
supercell from our extrapolation of the excitonic gap to the
thermodynamic limit, since it is too small to contain the
exciton. Residual finite-size errors in the Madelung-corrected
quasiparticle gap and in the excitonic gap are expected to scale
as 1 /Lz, i.e., as 1/Np, where Np is the number of primitive
cells, over our range of supercell sizes (this would cross over
to 1/L3 behavior if the supercell size exceeded r,). We have

also studied one nondiagonal supercell containing six primitive
cells, which has a slightly larger Wigner-Seitz cell radius
(4.9 A) than the 3 x 2 supercell. We find that the energy gaps
in the nondiagonal cell differ from those obtained in the 3 x 2
supercell by amounts which are not statistically significant.
Our results for the excitonic gap Agy, the quasiparticle gap
Aqp, and the exciton binding energy E are shown in Fig. 10.
Aqp and E} have been corrected with the Keldysh Madelung
constant, which was evaluated using the same procedure as the
Madelung constant of the 2D Coulomb interaction, but with
the reciprocal-space interaction being 27 /[g (1 4 r,q)] rather
than 27 /g [161]. We then extrapolate the excitonic gap and

FIG. 9. Geometry of a phosphorene layer: (a) tilted view, (b) top
view, and (c) front view.
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FIG. 10. DMC quasiparticle gaps Agp, excitonic gaps Agy, and
exciton binding energies EX at I' against the inverse of the number
Np of primitive cells in the supercell for a free-standing phosphorene
monolayer. The Keldysh Madelung constant correction has been
applied to the quasiparticle gaps; no finite-size correction has been
applied to the excitonic gaps. The nondiagonal supercell results (filled
symbols) have been slightly shifted relative to the 3 x 2 supercell
result for readability.

Madelung-corrected quasiparticle gap to the thermodynamic
limit assuming the error scales as 1/L? (i.e., we neglect the
effects of the crossover to 1/L3 scaling at L ~ r,).

The resulting energy gaps are slightly larger than pre-
vious estimates [155-159] for a free-standing phosphorene
monolayer, but our exciton binding energy is consistent with
these estimates, as shown in Table VIII.

We have explicitly tested the effect of a backflow trans-
formation in the optimal nondiagonal Np = 6 supercell of
phosphorene, finding that the inclusion of a backflow trans-
formation (optimized in the ground state) has no statistically
significant effect on the DMC energy gaps. The SIB-DMC
quasiparticle gap is 0.03(9) eV lower in energy than the
SJ-DMC quasiparticle gap, and the SIB-DMC excitonic gap is
0.04(5) eV lower in energy than the SJ-DMC excitonic gap.

Comparison with experiment is complicated by the fact
that the exciton binding energy is strongly dependent on the
dielectric environment of the monolayer sample. For example,
available theoretical [162,163] and experimental [164,165]
results for phosphorene on a SiO; substrate show a decrease in
the exciton binding and a larger excitonic gap, as compared to
vacuum results. Using the exciton fitting function developed in
Ref. [74] and phosphorene parameters available in the literature

SiO, substrate  hBN encapsulation
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FIG. 11. Exciton binding energy in phosphorene within the
effective-mass approximation with the Keldysh interaction between
charges as a function of the permittivity of the surrounding medium
€. Results were obtained using the fitting formula from Ref. [74].

[158,160], we show the dependence of the exciton binding
energy on the dielectric medium surrounding the monolayer in
Fig. 11.

We attempted an ab initio calculation of the biexciton
binding energy in monolayer phosphorene. The biexciton
binding energy is ExX =2E;;, — Ey — Ey*, where E;" is
the energy of a doubly promoted N-electron system. E§X was
calculated to be —29(10) meV and 16(13) meV in 2 x 2 and
3 x 2 supercells, respectively. The former of these cells is too
small to describe the exciton, let alone the biexciton, and the
latter cell is too small for the biexciton. Unfortunately, it was
infeasibly expensive for us to look at larger cells with the
required precision.

A very recent QMC study of phosphorene has explored
the use of “hard-wall” boundary conditions for the evaluation
of energy gaps, by studying hydrogen-terminated molecular
flakes of phosphorene [166]. In this case, the dominant finite-
size effect appears as an O(L~2) confinement effect in the
kinetic energy of the added or removed charge rather than
the slowly decaying image-interaction effect that occurs in a
periodic supercell.

For 3D crystals, itis relatively straightforward to remove the
O(L™") finite-size error in the quasiparticle gap under periodic
boundary conditions by using the Madelung correction. The
use of finite clusters to approximate the bulk introduces other
nonsystematic finite-size errors, such as edge-termination ef-
fects. Indeed, the nature of the electronic states involved in the

TABLE VIII. Comparison of the SJ-DMC energy gaps and exciton binding of monolayer phosphorene with results available in the literature

for a free-standing monolayer and a monolayer on an SiO, substrate.

Environment Method Agp (V) Agx (V) EX (eV)
Vacuum (SJ-DMC, linear extrapolation in Ny D) 3.13(4) 2.2(2) 0.9(1)
Vacuum Effective-mass approx. [155—158], effective-mass approx./experiment [159] 2.0-2.26 1.2-1.41 0.762-0.85
Si0, substrate Theory [162,163] 2.15 1.77 0.38-0.396
SiO, substrate Experiment [164,165] 2.05 1.75 0.3
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excitation are not necessarily even qualitatively similar to the
relevant electronic states in the infinite system. For example,
the lowest unoccupied molecular orbital in a diamondoid
molecule is a delocalized surface state that does not correspond
to the bulk diamond conduction-band minimum [27] and were
one to attempt to calculate the band gap of bulk diamond by
consideration of larger and larger diamondoids one would have
to address this difficulty.

For 2D materials, however, hard-wall boundary conditions
provide a relatively attractive method for ab initio calculations
of quasiparticle gaps and the energies of charged excitations.
As shown here, calculations in periodic supercells smaller
than r, are absolutely dependent on a Madelung correction
evaluated using the Keldysh interaction; since this is roughly
constant in cells with L < r,, itis not possible even in principle
to extrapolate gaps to the thermodynamic limit. By contrast,
gaps obtained in hydrogen-terminated flakes can be extrapo-
lated to infinite size without relying on model interactions. For
excitonic gaps, the finite-size errors go as 1/L? under periodic
boundary conditions on supercells with L < r,, and hence can
be extrapolated if the crossover to 1/L3 behavior is neglected.
In this case, calculations using periodic boundary conditions
maybe preferable, as they are less affected by surface effects.

We emphasize that the need for large periodic cells to
describe charged quasiparticles in 2D materials is not an
artifact of QMC calculations, but an inevitable consequence of
the physics of 2D materials and the Keldysh interaction, which
must affect all attempts at ab initio gap calculations in these
materials. Similar considerations must arise in calculations of
charged defect formation energies in layered and 2D materials.

V. CONCLUSIONS

We have reviewed the use of QMC methods to calculate
energy gaps in atoms, molecules, and crystals. Although
the quasiparticle gap does not formally satisfy a variational
principle, in practice the fixed-node error in the quasiparticle
gap is overwhelmingly likely to be positive. Reoptimization of
trial wave functions for systems in which electrons have been
added or removed can be expected to improve the calculated
quasiparticle gaps. For neutral excitations (excitonic promo-
tions) this is not necessarily the case, as was demonstrated
in Sec. ITA, and reoptimization can potentially result in the
formation of a pathological excited-state trial nodal surface.
Unless the neutral excitation results in a trial wave function
that transforms as a 1D irrep of the full symmetry group of the
system and the target state is the lowest-energy eigenstate that
transforms as that irrep, reoptimization of the free parameters
in the excited-state wave function should not be attempted.
Since Jastrow factors do not affect the nodal surface and hence
DMC energy, there is little to be gained by reoptimizing Jastrow
factors in excited states; on the other hand, reoptimizing
backflow functions in states in which electrons have been added
to or removed from the neutral ground state can significantly
improve DMC quasiparticle gaps.

The use of larger-than-typical DMC time steps for excitation
calculations has been shown to be a major source of possible
computational savings in DMC energy-gap calculations. Time-
step bias appears to cancel extraordinarily well in energy gaps.

In Si, we have made computational savings of a factor of four
by using larger time steps in backflow calculations.

Our calculations employing multideterminant trial wave
functions for Si at the I" point show that, even where bands
are exactly degenerate, it is not necessarily the case that
a few-determinant excited-state wave function comprised of
contributions from all possible combinations of degenerate
single-particle orbitals performs any better than the single-
determinant alternative. On the other hand, such a multide-
terminant wave function significantly lowers the energy of the
singlet first-excited state of O,. The need for multideterminant
wave functions appears to be more of an issue in studies of
molecules than crystalline solids.

We have evaluated energy gaps in atomic, molecular, and
solid systems using the VMC and DMC methods with single-
determinant SJ and SJB trial wave functions. In atomic Ne,
where vibrational and finite-size effects are not present, we
have achieved highly accurate ionization potentials in com-
parison with experimental data from which relativistic effects
have been removed. The MAE across all of our SJB-DMC
calculated ionization potentials for Ne is 0.34%, demonstrat-
ing the intrinsic high accuracy achieved by the SIB-DMC
method.

In various molecules, where vibrational effects may be
present, but finite-size effects are not, we have repeatedly
achieved energies which are in reasonable agreement with
their experimental counterparts, with differences attributable
to vibrational corrections. We have investigated using DFT
to relax excited-state geometries. It too is important, having
the largest impact in the H, (~ 0.8eV) and O; (~ 0.5¢eV)
dimers, of the molecules we have studied. For the parahydrogen
molecule, we performed DMC calculations of the ionization
potential with the protons treated as distinguishable quantum
particles, finding excellent agreement with experiment. This
demonstrates the fundamental importance of geometrical and
vibrational effects when comparing ab initio gaps with exper-
iment.

‘We have probed the effects of fixed-node errors in SJI-DMC
energy-gap calculations for atoms, molecules, and solids,
finding that the inclusion of backflow functions generally
improves DMC energy gaps in these systems (especially in
solids, where backflow lowers gaps by 0.1-0.2 eV). We have
shown that, in the case of Si, the use of backflow functions
reoptimized in anionic and cationic states is crucial in order
to achieve reasonable agreement with experiment. Residual
overestimates (of order 0.5 eV for first-row atoms) are expected
in solids due to the presence of vibrational effects, which
are the dominant remaining source of uncertainty when it
comes to comparison with experiment. We have also performed
gap calculations for free-standing monolayer phosphorene,
showing that systematic finite-size effects are qualitatively
different in 2D materials.
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