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Cross-entangling electronic and nuclear spins of distant nitrogen-vacancy centers in noisy
environments by means of quantum microwave radiation
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Nitrogen-vacancy (NV) defect centers in diamond are strong candidates to generate entangled states in solid-
state environments even at room temperature. Quantum correlations in spatially separated NV systems, for
distances between NVs ranging from a few nanometers to a few kilometers, have been recently reported. In the
present paper, we consider the entanglement transfer from two-mode microwave-squeezed (entangled) photons,
which are in resonance with the two lowest NV electron spin states, to initially unentangled NV centers. We first
demonstrate that the entanglement transfer process from quantum microwaves to isolated NV electron spins is
feasible. We then proceed to extend the previous results to more realistic scenarios where 13C nuclear spin baths
surrounding each NV are included, quantifying the entanglement transfer efficiency and robustness under the
effects of dephasing/dissipation noisy nuclear baths. Finally, we address the issue of assessing the possibility of
entanglement transfer from the squeezed microwave light to two remote nuclear spins closely linked to different
NV centers.
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I. INTRODUCTION

Recently, a great deal of interest has arisen in quantum
systems operating in the microwave sector of the electro-
magnetic spectrum since they provide new opportunities for
exploring fundamental aspects of quantum physics as well as
possible applications in the field of quantum information and
computation. Important steps in profiting microwave active
quantum architectures include superconducting (SC) circuits
[1–5] and the manipulation of nuclear and electronic spins in
solids [6–11]. A promising idea pursued by several groups is
to combine different matter subsystems in a hybrid quantum
system to take advantage of the scalability, flexibility, and
large coupling to microwave fields of some of them; for
instance, SC circuits, and to exploit large coherence times of
other subsystems, such as solid-state spin systems, for storing
quantum information in stable quantum registers [12,13].
From this perspective, nuclear spins prove more suitable than
electronic spins. However, the direct control of spatially distant
nuclear spins is challenging due to the weak coupling between
themselves. Thus, the search for nuclear long-range entangling
mechanisms which allow for opportunities to overcome those
limitations are of great interest.

An excellent platform for undertaking that search is pro-
vided by nitrogen-vacancy (NV) centers in diamond. A single
NV center is a well-characterized defect in diamond, consisting
of a substitutional nitrogen atom next to a carbon vacancy
in an adjacent lattice site [14]. Selective addressing and
controlling of a single NV has been demonstrated even at room
temperature, and how its constituent electronic and nuclear
spins can be effectively manipulated and potentially coupled
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together [15,16]. On the other hand, the dipolar and hyperfine
interactions between the electronic and nuclear spins in NV
centers have been extensively studied. Individual control and
readout of nuclear spin qubits coupled to the electronic spin
has been demonstrated [17]. Besides that, the control of two
nuclear spins on an individual basis generates entanglement
of two 13C nuclear spins at the first coordination shell of the
vacancy [18] and mediates the entanglement between multiple
photons [19].

Numerous quantum information protocols with NV centers
have been previously discussed in the literature. The quantum
dynamics of distant 13C nuclear spins has been probed using a
weak coupling with the electronic spin in NV centers [20]. Fur-
thermore, the initialization of electron and nuclear spin qubits
[21], the transfer of quantum states [21,22], and the generation
of controlled quantum gate between distant nitrogen nuclear
spins [23] represent a step forward to build a quantum repeater
network for long distances. An important issue in the field of
quantum information is the generation of entangled states in
a scalable way. The combination of radiation excitation from
different wavelength sectors of the electromagnetic spectrum
(optical, microwave, and radio-frequency) has allowed us to
engineer protocols for reaching entanglement between electron
spins in two separate NVs [24], the electron spin of a single
NV and its neighbor nitrogen nucleus [25] or the NV elec-
tron and a closely placed 13C nucleus [18]. Moreover, other
proposals show protocols to generate spin-photon entangled
states between the ground state spin of a single NV center and
the polarization of an emitted optical photon [26], heralded
entanglement between solid-state qubits using optical photons
[27] and entanglement between NV electron spins separated
up to 1.3 Km have been reported [28].

In the present paper, we present a theoretical proposal
based on NV defect centers in diamond to reach entanglement
between distant electron and/or nuclear spins mediated by
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FIG. 1. (a) Two distant single NV centers, each one embedded
in its own nuclear spin bath, in different branches of a parametric
Josephson amplifier producing highly entangled microwave photons.
(b) Schematics of (a) where ei , νi denote the electronic and nuclear
spins of the individual NV center in branch i (i = A, B).

a quantum (squeezed) microwave field (QMF) as provided
by a two-mode Josephson mixer [29], see Fig. 1. The NV
center has an electronic spin S = 1 mostly localized at the
defect bond. However, about 11% of its electron spin density
is distributed over the nearest-neighbor carbon atoms and,
as a result, substantial hyperfine and dipolar couplings with
neighboring carbon nuclear spins (13C) are sizable [18]. On the
other hand, a diluted network of spin-1/2 13C-nuclei forms a
mesoscopic spin bath for a NV center. Under these conditions,
we demonstrate that the transfer of entanglement from the
QMF to a pair of distant NVs (both electronic and nuclear
spins) in such a noisy solid-state environment is feasible. First,
we propose to entangle the electronic spins with a third-party
or mediator: If the electronic spins are strongly coupled to their
nearest nuclear spins, the hyperfine interaction between them
allows an effective entanglement transfer to the nuclear spins.

Previous related works have proposed the use of NV
centers as hybrid quantum systems [30–33] in which electron
spins provide high-fidelity control and readout while nuclear
spins, with ultralong coherence times, support robust quantum
registers. Also, the entanglement transfer from continuous
variables to discrete spin systems has been considered from
different approaches [34–37]. By contrast with most of the
previous studies, our present approach not only proposes the
entanglement generation between NV electronic spins but,
most importantly, it also predicts the entanglement transfer
to distant nuclear spins in noisy spin environments.

The paper is organized as follows: In Sec. II, we address
the entanglement transfer from a two-mode entangled QMF
to the electronic NV spins in noisy environments associated
with nuclear spin baths. In Sec. III, we extend previous results
to the coupled electron-nuclear NV spins by discussing three
different scenarios: two distant NV electron spins, two nuclear
spins, and one nonlocal electron-nucleus spin pair. A relevant
result of this analysis is the identification of regimes for which
maximum entanglement is obtained in noisy environments. In
Sec. IV, we report numerical results for the time-dependent
entanglement generation and the identification of optimal
parameters for maximum entanglement transfer under nuclear
spin bath effects. Finally, in Sec. V, we draw our conclusions
and discuss some possible outlooks.

II. QMF POWER ENTANGLING OVER TWO DISTANT
ELECTRON-ELECTRON SPINS IN NOISY NVS

The physics contained in the full system displayed in Fig. 1
is quite rich and it is therefore instructive to consider a limiting
case before analyzing the full cross-entangling processes in the
composite multibath environment. In the following, we derive
and discuss separately results for the uncoupled electron-
nucleus NV system, for short ei-νi system, i = A,B, because
of its high relevance for the existing theoretical and experi-
mental literature. Thus, we start by considering the simplest
scenario where we disregard the effects of the closest nuclear
spin [see Fig. 1(b)]: a two-arm device where in each path, A and
B, we place a single NV electron driven by an entangled QMF
in the presence of a diluted 13C nuclear noisy bath. In each
path, a microwave cavity enhances the NV microwave-field
coupling strength. The subsystems labeled by A and B are
assumed to be identical. We assume that a magnetic field is
applied along the z axis, leading to a Zeeman splitting between
the electronic sublevels with spin z component ms = ±1 [38].
In this way, the QMF should be quasiresonant with the single
ms = 0,ms = −1 transition, which will be described as an
effective 1/2-spin.

Although electronic and nuclear spins are well known for
their long coherence times, for NV centers in diamond, a major
decoherence source is generated by the coupling between the
central spin and other spins in the sample, such as electronic
nitrogen spins or nuclear carbon spins. Here, we explore the
influence of a 13C spin bath on the entanglement transfer
process.

Thus, for the uncoupled ei − νi system the two-arm whole
Hamiltonian is

Ĥ =
∑

j=A,B

[
ωj

2
σ̂z,j + �j â

†
j âj + gj (â†

j σ̂
−
j + âj σ̂

+
j )

+ ĤEB,j + ĤB,j

]
. (1)

The first three terms in Eq. (1) correspond to the usual
Jaynes-Cummings Hamiltonian, where ωj and �j denote
the electronic spin splitting and microwave cavity frequency,
respectively, and gj describes the electron-cavity coupling in
arm j . The σ̂j,z operator represents the Pauli spin matrix for the
selected two-level NV transition, while â

†
j , âj are the creation

and annihilation operators for the QMF mode in arm j . The
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nuclear bath couples to the NV-electron spin through the term

ĤEB,j = σ̂z,j

Nj∑
k=1

[A(�rk )τ̂k,z + B(�rk )(τ̂k,xcosφk + τ̂k,ysinφk )],

(2)

where τ̂k,x and τ̂k,y denote the Pauli spin operators for the
nuclear spin. The unit vector joining the electron and the
kth nuclear spin �rk = (rk, θk, φk ) is characterized by the polar
angle θk and azimuthal angle φk , and Nj is the number of 13C

nuclear spin in the j th diamond lattice.
The large difference between electron and nuclear Zeeman

energies leads to ignore flip-flop terms involving σ̂x and σ̂y

operators. The coupling strengths in Eq. (2) are

A(�rk ) = − μ0

4π

γNV γC

r3
k

[3cos2(θk ) − 1], (3)

and

B(�rk ) = − μ0

4π

γNV γC

r3
k

3cos(θk )sin(θk ), (4)

where γNV (γC) denotes the gyromagnetic ratio of the NV
electron (nuclear) spin and rk is the distance between the NV
and the kth nucleus in the diluted spin bath.

The local nuclear spin bath Hamiltonian, ĤB,j , is given by

ĤB,j = ĤN,j + ĤDD,j , (5)

where

ĤN,j =
Nj∑
k=1

ωk

2
τ̂k,z, (6)

and

ĤDD,j =
∑
i<k

Ci,k (3τ̂i,zτ̂k,z − −̂→τ i · −̂→τ k ), (7)

with ωk the Zeeman energy splitting for the nuclear bath spins
and the intrabath secular dipolar coupling strengths are given
by

Ci,k = − μ0

4π

γ 2
C

r3
i,k

[3cos2(θi,k ) − 1], (8)

and ri,k denotes the distance between nuclei i and k, while θi,k

is the polar angle formed by the unit vector joining these two
bath nuclei and the z direction.

The exact solution of the dynamics for the system described
by Eq. (1) implies a huge number of correlations between the
central spin, the QMF, and the nuclear spin bath. We propose
an alternative solution for the problem: we approximate the
spin 13C bath with a classical noise field acting on the central
spin [39]. Therefore, let us denote by

Ĥ =
∑

j=A,B

[
ωj

2
σ̂j,z + �j â

†
j âj + Gj (t )(â†

j σ̂
−
j + âj σ̂

+
j )

]
,

(9)

the effective Hamiltonian coming from Eq. (1). The spin bath
terms ĤEB,j , ĤN,j , and ĤDD,j have been approximated as a
time-dependent electron-cavity coupling Gj (t ) implementing
a proposal for a classical field in our work [16]. The long-range

character of the dipolar coupling between 13C nuclear bath
spins warrants this approximation. More concretely, such a
noise field is represented by an Ornstein-Uhlenbeck random
process, which is Gaussian and stationary. To guarantee these
conditions, we consider the following elements: First, due
to the long-range character of the dipolar coupling, the NV
experiences the action of a large number of the bath spins
with comparable strength, therefore this field can be modeled
as a Gaussian field with zero mean. Second, due to the
interaction between a single NV and a 13C (A(�rk ) ≈ B(�rk ) =
10 kHz − 50 kHz) is small in comparison with the action of
hundred of spin bath on the NV (Ci,k ≈ 2 kHz − 10 kHz) we
can assume a small back action and it satisfies the stationary
condition. Now, to include the noisy environment, we consider
the case of a stochastic term added to the constant gj , i.e.,
Gj (t ) = g0,j + gj (t ) [16]. In the simplest case, when no
nuclear bath is affecting the NV-electron dynamics, we retrieve
a coupling term constant Gj (t ) = g0,j . The stochastic term
gj (t ) is described by an Ornstein-Uhlenbeck stochastic process
defined by its moments [39]

〈gj (t )〉 = 0, (10)

〈gj (t )gj ′ (t ′)〉 = b2
j e

− |t−t ′ |
τj δj,j ′ . (11)

The dispersion bj depends on the coupling between the central
spin and the spin bath, while the correlation decay rate τj

is determined by the intracoupling among nuclear spins of
the j th bath. For a justification of a similar Hamiltonian
in a classical context (no microwave photons but classical
microwave pulses in a rotating frame) and single NV-bath
system, see Refs. [16,38,40].

Now, we proceed to analyze the effect of this noisy envi-
ronment on the entanglement dynamics for the NV electronic
spins. We consider as the initial state two NV electronic spins
in their ground states |eg〉A, |eg〉B and the field in a two-mode
squeezed state |r〉

|r〉 = 1

cosh (r )

∞∑
n=0

tanhn(r )|n, n〉A,B, (12)

where the state for the radiation can be understood as the
superposition of twin photons propagating on spatially sep-
arated transmission lines [29]. The parameter r in Eq. (12) is
the squeezing value for the field and determines the degree
of entanglement of the QMF [41]. The photon number in
modes A and B are indicated with n in Eq. (12). Now we
proceed to evaluate the reduced two-spin density operator.
First, we calculate the state of the system at time t , |ψ (t )〉 (see
Appendix A), then we obtain tracing over the photon states
p and q (see details in Appendix B for a full density-matrix
expression ρ̄(t )):

ρ̄2e(t ) =
∞∑

p=0

∞∑
q=0

〈p, q|ρ̄(t )|p, q〉, (13)
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yielding to

ρ̄2e(t ) =

⎛
⎜⎜⎝

ρ1,1(t ) 0 0 ρ1,4(t )
0 ρ2,2(t ) 0 0
0 0 ρ3,3(t ) 0

ρ4,1(t ) 0 0 ρ4,4(t )

⎞
⎟⎟⎠, (14)

where the bar in ρ̄2e(t ) denotes averages over any stochastic term affecting the spin-cavity coupling term. The nonzero diagonal
matrix elements of ρ̄2e(t ) are

ρ1,1(t ) = 1

r2
c

∞∑
n=0

r2n
t

16
(2 + 〈e2iθA,n(t )〉 + 〈e−2iθA,n(t )〉)(2 + 〈e2iθB,n(t )〉 + 〈e−2iθB,n(t )〉),

ρ2,2(t ) = 1

r2
c

∞∑
n=0

r2n
t

16
(2 + 〈e2iθA,n(t )〉 + 〈e−2iθA,n(t )〉)(2 − 〈e2iθB,n(t )〉 − 〈e−2iθB,n(t )〉),

ρ3,3(t ) = 1

r2
c

∞∑
n=0

r2n
t

16
(2 − 〈e2iθA,n(t )〉 − 〈e−2iθA,n(t )〉)(2 + 〈e2iθB,n(t )〉 + 〈e−2iθB,n(t )〉),

ρ4,4(t ) = 1

r2
c

∞∑
n=0

r2n
t

16
(2 − 〈e2iθA,n(t )〉 − 〈e−2iθA,n(t )〉)(2 − 〈e2iθB,n(t )〉 − 〈e−2iθB,n(t )〉), (15)

while the nondiagonal elements are

ρ1,4(t ) = ρ∗
4,1(t )

= 1

r2
c

∞∑
n=0

r2n+1
t

16
(〈ei(θA,n(t )−θA,n+1(t ))〉 − 〈ei(θA,n(t )+θA,n+1(t ))〉 + 〈e−i(θA,n(t )+θA,n+1(t ))〉 − 〈e−i(θA,n(t )−θA,n+1(t ))〉)

× (〈ei(θB,n(t )−θB,n+1(t ))〉 − 〈ei(θB,n(t )+θB,n+1(t ))〉 + 〈e−i(θB,n(t )+θB,n+1(t ))〉 − 〈e−i(θB,n(t )−θB,n+1(t ))〉), (16)

where angular brackets in terms such as 〈e−iθj,n(t )〉 in Eqs. (15) and (16) denote averages over the stochastic process simulating the
nuclear bath noise. Expressions such as 〈e−i

∫ t

0 gr (t )〉 can be evaluated in a closed form with the noise functions given in Eqs. (10)
and (11):

〈
e−i

∫ t

0 gr (t )〉 = e−b2τ [t+τ (e− t
τ −1)], (17)

For future use, the noise effects are summarized in the function

R(t, p, b, τ ) = e−p2b2τ 2[e−( t
τ )+ t

τ
−1]. (18)

To test the validity of the above expressions, we have considered the case where the spin-cavity couplings are constant and
identical, i.e., g0,A(t ) = g0,B (t ) = g, thus no stochastic average is required, see Appendix C.

Expressions given by Eqs. (C1)–(C4) agree perfectly with those reported in Ref. [37]. Additionally, the entangle-
ment transferred from the QMF to the pair of spins is simply obtained as εNPT (t ) = −2[ρ1,4(t ) + ρ3,3(t )]. Introducing
decoherence and dissipation effects and considering each NV spin coupled to its own spin bath with parameters bj

and τj (j = A,B). Besides, identical deterministic spin-cavity constants strengths, g0,A = g0,B = g, Eqs. (15) and (16)
become

ρ1,1(t ) = 1

r2
c

∞∑
n=0

r2n
t

4
[1 + cos(2

√
ngt )R(t, 2

√
n, bA, τA)][1 + cos(2

√
ngt )R(t, 2

√
n, bB, τB )],

ρ2,2(t ) = 1

r2
c

∞∑
n=0

r2n
t

4
[1 + cos(2

√
ngt )R(t, 2

√
n, bA, τA)][1 − cos(2

√
ngt )R(t, 2

√
n, bB, τB )],

ρ3,3(t ) = 1

r2
c

∞∑
n=0

r2n
t

4
[1 − cos(2

√
ngt )R(t, 2

√
n, bA, τA)][1 + cos(2

√
ngt )R(t, 2

√
n, bB, τB )],

ρ4,4(t ) = 1

r2
c

∞∑
n=0

r2n
t

4
[1 − cos(2

√
ngt )R(t, 2

√
n, bA, τA)][1 − cos(2

√
ngt )R(t, 2

√
n, bB, τB )],
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ρ1,4(t ) = ρ∗
4,1

= − 1

r2
c

∞∑
n=0

r2n+1
t

4

× [sin((
√

n − √
n + 1)gt )R(t,

√
n − √

n + 1, bA, τA) − sin((
√

n + √
n + 1)gt )R(t,

√
n + √

n + 1, bA, τA)]

× [sin((
√

n − √
n + 1)gt )R(t,

√
n − √

n + 1, bB, τB ) − sin((
√

n + √
n + 1)gt )R(t,

√
n + √

n + 1, bB, τB )]. (19)

From Eqs. (19), it is straightforward to derive the degree of
entanglement between two electronic spins, including the envi-
ronmental dynamics of nuclear spin baths surrounding the two
central NV systems. To measure the degree of entanglement
contained in the spin quantum state, we have used the Wootters
concurrence [42].

III. QMF POWER ENTANGLING OVER TWO DISTANT
ELECTRON/NUCLEAR SPINS IN NOISY NVS

In the previous section, we discussed a simple situation
where only the electronic spin of each NV center has been
considered. We are now able to go beyond that simple scenario.
More realistically, each NV center is composed of an electronic
spin, ej , coupled via a hyperfine interaction to a nearest-
neighbor nuclear spin νj (j = A,B), which can be that of the
substitutional nitrogen atom itself 14−15N or a 13C atom in the
first-shell, see Fig. 1(b). The Hamiltonian for this system in-
cluding the nuclear bath within the mean field approximation is

Ĥ = ĤA + ĤB

=
∑

j=A,B

{
ωj

2
σ̂j,z + �j â

†
j âj + Gj (t )(â†

j σ̂
−
j + âj σ̂

+
j )

+σ̂z,j [A(�rj )τ̂j,z + B(�rj )(τ̂j,xcosφj + τ̂j,ysinφj )]

}
,

(20)

where the unit vector joining the electron-nuclear spin pair
in the j th NV is given by �rj = (rj , θj , φj ) with the polar
angle θj and azimuthal angle φj , respectively. Expressions for
coefficients A(�rj ) and B(�rj ) are the same as those quoted in
Eqs. (3) and (4). Let us now proceed to analyze the spin pair
system’s entanglement dynamics. Since subsystems A and B

are independent, their respective Hamiltonian operators com-
mute Ĥ = ĤA + ĤB with [ĤA, ĤB ] = 0. The Hamiltonian in
Eq. (20) commutes with the total excitation number operator

N̂ = N̂A + N̂B, (21)

N̂j = â
†
j âj +

(
σ̂j,z + 1

2

)
+

(
τ̂j,z + 1

2

)
; j = A,B. (22)

Consequently, for each subsystem, a subspace with a
well-defined number of excitations presents a closed dynamics
which proceeds independently from other subspaces with
different excitation numbers. Let |n, eσ , ντ 〉j denote a general
state for the subsystem j with n = 0, 1, 2, 3, ... photons,
the electron in one of the states |eσ 〉j = |eg〉j , |ee〉j with
σ̂j,z|eg〉j = −|eg〉j , σ̂j,z|ee〉j = |ee〉j and the nucleus in state
|ντ 〉j = |νg〉j , |νe〉j with τ̂j,z|νg〉j = −|νg〉j , τ̂j,z|νe〉j =

|νe〉j . Thus, the full Hilbert space for each subsystem can
be partitioned into independent subspaces in the following
way: a one-dimensional subspace corresponding to the
state |0, eg, νg〉j with Nj = 0 excitations; a single three-
dimensional subspace, with Nj = 1, spanned by the vectors

|1, 1〉j = |0, ee, νg〉j , (23)

|1, 2〉j = |1, eg, νg〉j , (24)

|1, 3〉j = |0, eg, νe〉j , (25)

and, finally, an infinite number of four-dimensional subspaces
with Nj � 2 (or equivalently n � 1 given the fact that
Nj = nj + 1) spanned by vectors

|N, 1〉j = |n, ee, νg〉j , (26)

|N, 2〉j = |n + 1, eg, νg〉j , (27)

|N, 3〉j = |n − 1, ee, νe〉j , (28)

|N, 4〉j = |n, eg, νe〉j . (29)

We assume an unentangled initial state of the form
|ψ (0)〉 = |r〉 ⊗ |eg, νg〉A ⊗ |eg, νg〉B , where the initial state
for the microwave radiation has the same form as in Eq. (12).
At later times, the system’s state becomes

|ψ (t )〉 = ÛA,B (t )rc

∞∑
n=0

rn
t |n, eg, νg〉A ⊗ |n, eg, νg〉B

= rc

∞∑
n=0

rn
t [ÛA(t )|n, eg, νg〉A] ⊗ [ÛB (t )|n, eg, νg〉B],

(30)

The evolution operator is ÛA,B (t ) = ÛA(t ) ⊗ ÛB (t ) because
we consider independent subsystems. The total evolution
operator ÛA,B is determined by the system’s Hamiltonian
given by Eq. (20). The state in Eq. (30) can be expanded in
terms of a set of time-dependent coefficients and the base
states Eqs. (23)–(29):

|ψ (t )〉 =
∑

j=A,B

[
C0,j |0, eg, νg〉j +

3∑
k=1

C1,k (t )|1, k〉j

+
∞∑

N=2

4∑
k=1

CN,k (t )|N, k〉j
]
. (31)

Due to the inclusion of the hyperfine interaction between the
ej − νj spins, we cannot obtain analytical expressions for
the density matrix that characterize the dynamical evolution
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of the spin system ρ(t ) = |ψ (t )〉〈ψ (t )|, therefore we have
calculated numerically the density matrix for the system
ρ̄(t ) = |ψ (t )〉〈ψ (t )| and then the reduced density operator
ρ̄2Q(t ) (16 × 16 matrix) tracing over the states of the field

ρ̄2Q(t ) =
∞∑

p=0

∞∑
q=0

〈p, q|ρ̄(t )|p, q〉, (32)

where p and q represent the photon states number in the two
branches and the bar in ρ̄2Q(t ) and ρ̄(t ) denotes averages over
the stochastic term affecting the spin-cavity coupling term.

Before starting to use this formalism, we have compared
the numerical results in the case where the hyperfine inter-
action between the ej − νj spins is zero, with the analytical
expressions obtained in Sec. II. First, we found numerically the
term 〈|C1,2(t )|2〉, where C1,2(t ) is one of the time-dependent
coefficients in Eq. (31), then we compare this solution with the
analytical expression

〈|C1,2(t )|2〉 = 1
2 (1 − cos(2gt )R(t, 2, bA, τA)). (33)

The above expression was obtained using the analytical result
for the density matrix presented in Appendix A [Eq. (A1)].
In Fig. 2(a), we present the obtained results. The next step
was to compare the analytical and numerical density-matrix
elements; in Fig. 2(b) we show the result for ρ11(t ), and
similar results were obtained for the other density-matrix
entries. Finally, we evaluate the concurrence between two
electronic spins eA − eB with the analytical and numerical
techniques, the results are shown in Fig. 2(c). Figures 2(a)–2(c)
were realized with noise conditions bA = bB = 0.5g, gτA =
gτB = 0.5, and n = 1000 numerical realizations. These results
allow us to determine the number of realizations where the
numerical results converge with the analytical solutions. Now
we are ready to use this formalism, following the procedure
described before, to evaluate the photon-induced spin quantum
correlations. In the stochastic simulation, we have considered
104 realizations for assuring numerical convergence in the
calculation of these averages.

A. Nonlocal electron-electron (eA − eB) entanglement

In this section, we calculate the entanglement between
eA − eB spins under noise conditions, including the hy-
perfine interaction between the nuclear spins associated to
each NV center (νA and νB). In this situation Eqs. (19)
are not valid, therefore we require to return to Eq. (32)
and calculate the reduced density matrix. Due to the in-
clusion of the nuclear spin interaction, we cannot anymore
evaluate analytically the density-matrix entries, therefore we
require to evaluate them numerically with an appropriate
average over many realizations of the noise effects. In a four-
spin base, ordered as {|eg, νg〉, |eg, νe〉, |ee, νg〉, |ee, νe〉}A ⊗
{|eg, νg〉, |eg, νe〉, |ee, νg〉, |ee, νe〉}B , we obtain a 16 × 16
density matrix. Now it is possible to obtain the two-
electron spin reduced density matrix. In the base ordered as
{|eA,g, eB,g〉, |eA,g, eB,e〉, |eA,e, eB,g〉, |eA,e, eB,e〉}, it reads as

e(t ) =

⎛
⎜⎝

e1,1(t ) 0 0 e1,4(t )
0 e2,2(t ) 0 0
0 0 e3,3(t ) 0

e4,1(t ) 0 0 e4,4(t )

⎞
⎟⎠, (34)

FIG. 2. Comparison between the analytical and numerical solu-
tion in the case where the hyperfine interaction between the ej − νj

(j = A,B) spins is zero. The red line corresponds to the analytical
solution, the blue line (points) the numerical results. Noise conditions
were included with bA = bB = 0.5g, gτA = gτB = 0.5, and n =
103 numerical realizations. (a) 〈|C1,2(t )|2〉 coefficient associated to
two electronic spins as a function of time (in g units) with the
corresponding error bars. (b) Density matrix entries ρ11(t ) of two
electronic spins as a function of time (in g units), with r = 0.5.
(c) Concurrence between two electronic spins as a function of time
(in g units), for r = 0.5.

with

e1,1(t ) = ρ1,1(t ) + ρ2,2(t ) + ρ5,5(t ) + ρ6,6(t ),

e2,2(t ) = ρ3,3(t ) + ρ4,4(t ) + ρ7,7(t ) + ρ8,8(t ),

e3,3(t ) = ρ9,9(t ) + ρ10,10(t ) + ρ13,13(t ) + ρ14,14(t ),

e4,4(t ) = ρ11,11(t ) + ρ12,12(t ) + ρ15,15(t ) + ρ16,16(t ), (35)

e1,4(t ) = e∗
4,1(t )

= ρ1,11(t ) + ρ2,12(t ) + ρ5,15(t ) + ρ6,16(t ). (36)

Numerical results for different QMF and noise parameters will
be discussed in Sec. IV.
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B. Nonlocal electron-nuclear (eA − νB) entanglement

Let us now consider the QMF entangling power over
an electron-nuclear spin pair in distant NVs under the ef-
fects of separate 13C spin baths. In a base ordered as
{|eA,g, νB,g〉, |eA,g, νB,e〉, |eA,e, νB,g〉, |eA,e, νB,e〉}, the A elec-
tron Bnucleus reduced density matrix reads as

q(t ) =

⎛
⎜⎝

q1,1(t ) 0 0 q1,4(t )
0 q2,2(t ) 0 0
0 0 q3,3(t ) 0

q4,1(t ) 0 0 q4,4(t )

⎞
⎟⎠, (37)

with

q1,1(t ) = ρ1,1(t ) + ρ3,3(t ) + ρ5,5(t ) + ρ7,7(t ),

q2,2(t ) = ρ2,2(t ) + ρ4,4(t ) + ρ6,6(t ) + ρ8,8(t ),

q3,3(t ) = ρ9,9(t ) + ρ11,11(t ) + ρ13,13(t ) + ρ15,15(t ),

q4,4(t ) = ρ10,10(t ) + ρ12,12(t ) + ρ14,14(t ) + ρ16,16(t ), (38)

q1,4(t ) = q∗
4,1(t )

= ρ1,10(t ) + ρ3,12(t ) + ρ5,14(t ) + ρ7,16(t ). (39)

Specific forms for the density-matrix elements are presented
in Appendix B. To analyze the entanglement transfer from the
QMF to the eA − νB system and, in particular, investigate in
detail its dependence on the noise sources, we have evaluated
numerically Eqs. (38) and (39) with averages over the noise
realizations.

C. Nonlocal nuclear-nuclear (νA − νB) entanglement

In the previous section, we show the mechanism to generate
entangled states between electronic spins with a correlated
field. Now we investigate the most intriguing possibility of
a controlled entanglement generation in a nuclear spin pair in
separate NV centers in the diamond lattice. Due to the weak
coupling between the correlated field and the nuclear spins,
we will use the hyperfine interaction between the electronic
and nuclear spins as a mediator of the correlation or quantum
bus, this kind of mechanism has been proposed in the past to
connect a finite number of nuclear spins I = 1/2 [43], and
nuclear qubits in NV centers have been coupled employing the
magnetic dipole-dipole interaction with electron spins [44].
First, we obtained the nucleus-nucleus density matrix in a base
ordered as {|νA,g, νB,g〉, |νA,g, νB,e〉, |νA,e, νB,g〉, |νA,e, νB,e〉};
the nucleus-nucleus density matrix reads as

ν(t ) =

⎛
⎜⎝

ν1,1(t ) 0 0 ν1,4(t )
0 ν2,2(t ) 0 0
0 0 ν3,3(t ) 0

ν4,1(t ) 0 0 ν4,4(t )

⎞
⎟⎠, (40)

with

ν1,1(t ) = ρ1,1(t ) + ρ3,3(t ) + ρ9,9(t ) + ρ11,11(t ),

ν2,2(t ) = ρ2,2(t ) + ρ4,4(t ) + ρ10,10(t ) + ρ12,12(t ),

ν3,3(t ) = ρ5,5(t ) + ρ7,7(t ) + ρ13,13(t ) + ρ15,15(t ),

ν4,4(t ) = ρ6,6(t ) + ρ8,8(t ) + ρ14,14(t ) + ρ16,16(t ), (41)

ν1,4(t ) = ν∗
4,1(t )

= ρ1,6(t ) + ρ3,8(t ) + ρ9,14(t ) + ρ11,16(t ). (42)

In Appendix B, we show the expressions for Eqs. (41) and (42).
We have evaluated numerically the expressions Eqs. (41) and
(42) for determining each of the density-matrix entries.

IV. RESULTS AND DISCUSSION

Up to now, we have described the general theoretical
formalism necessary for addressing the entanglement transfer
from two-mode microwave-squeezed radiation to a bipartite
system composed of electronic and/or nuclear spins of spatially
separated NV centers. Before going to the discussion of our
results, it is important to assess the point concerning realistic
numbers for the NV microwave coupling strength to which we
now turn our attention by briefly reviewing different proposed
setups. Direct magnetic coupling between an ensemble of
NVs and transmission line resonators (TLR) has been exper-
imentally achieved in the linear or Gaussian regime [12,45],
confirming additionally the scaling of the collective coupling
strength with the square root of the number of emitters. The
reported value for the collective coupling constant between an
ensemble of 1012 NV centers and the TLR can attain values up
to gcol/2π ≈ 10 MHz. Furthermore, the possibility of reaching
strong coupling between individual NV electronic spins and
TLR, g/2π ≈ 0.1 MHz, has been analyzed for the case of
an interconnecting quantum system such as a nanomechanical
resonator [46]. Moreover, a closely related method extended
those possibilities for reaching strong coupling between a
single NV electronic spin and a TLR [47]. In addition, related
works have proposed a direct coupling between NVs and SC
flux qubits with a coupling of g/2π ≈ 12 MHz for a NV
diamond located at the center of the SC small loop [31] and
the transfer of single excitations between the NV ensemble
with a flux qubit has also been presented in Ref. [48]. Finally,
the strong coupling between NV qubits and SC resonators
has made possible the transfer of quantum states between
them, under conditions of a coupling strength on the order of
g/2π ≈ 10 MHz as discussed in Ref. [49]. We stress that the
plots we describe below are given in terms of dimensionless
quantities (for instance, gt for dimensionless time, among
others), so that a feature in the entanglement evolution seen
at dimensionless gt = 1 means approximately occurring at a
time t ∼ 10−1 − 1 μs, well within the experimental reach of
most of the previously quoted works. Thus, our general results
may be testable under realistic experimental conditions.

In this section, we provide additional analysis of the entan-
glement transfer in the three bipartite systems presented before:
electron-electron, electron-nucleus, and nucleus-nucleus. In
particular, we investigate in detail its dependence on the noise
sources. The experimental values considered in our calcula-
tions are a driven microwave frequency �1 = �2 resonant with
the electron spin frequencies ω1 = ω2 = (3/5) × 104g.

As shown in Fig. 3, we start using the formalism presented
in Sec. II, where the hyperfine coupling between the ei −
νj (i, j = A,B) spins A(�r ) = B(�r ) = 0, and we calculate
analytically the concurrence and quantum discord between the
eA − eB spins. We have plotted two cases: In Fig. 3(a), we
evidence the effective entanglement for the eA − eB spins as
function of the squeezing parameter r and time with symmetric
conditions for the two branches, g0,A = g0,B = g. Further-
more, as the coherent dynamics of the NV centers is strongly
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e -e  concurrence 
  no spin bath

e -e  concurrence with
   nuclear spin bath

e -e  quantum discord 
         no spin bath

Concurrence and Quantum
 Discord values

e -e  quantum discord with 
      nuclear spin bath

FIG. 3. eA − eB concurrence [panels (a) and (b)] and quantum discord [panels (c) and (d)] as a function of the QMF squeezing parameter r

and dimensionless time gt . No nuclear spin bath effects in panels (a) and (c) while nuclear spin effects are displayed in panels (b) and (d) with
gτA = gτB = 0.5. In all plots, the static QMF-spin coupling strength is g0,A = g0,B = g.

influenced by the coupling with neighboring spins (13C spin
bath), the noise effect in entanglement transfer simulated with
the parameters b and τ is shown in Fig. 3(b). Comparing the
results between isolated spins in Fig. 3(a) and the realistic
situation of the spin bath in Fig. 3(b), we observe a wide
region of strong entanglement even with the noisy conditions.
As a consequence of the spins bath, we note a decrease in the
concurrence but principally for large r values. An apprecia-
ble entanglement is obtained for r � 1.0 in both situations:
isolated spins and, with a spin bath, this value corresponds
to a gain GE = cosh2[r] = 2.38 dB, therefore the required
squeezing for the microwaves to obtain maximum entangled
values is in the range of the reported experimental values [50].
The results reported allow us to determine the optimal region
for achieve entanglement in presence of a spin bath. To gain
insight in the quantum correlations beyond entanglement, we
have calculated the quantum discord [51] as a function of r and
time gt between eA − eB spins, Fig. 3(c), without spin bath
and in a noise environment, Fig. 3(d). Comparing the results
between concurrence and quantum discord, we can evidence
similar behaviors; however, the quantum discord persists at
longer times while concurrence falls to zero and vanishes in
the same period of time. A more detailed comparison between
concurrence and quantum discord is presented in Fig. 4,

where we have selected r = 0.87 values from Fig. 3 (dashed
lines).

Next, we have included the effect of the hyperfine cou-
pling and considered A(�r ) = B(�r ) ≈ 2g. We have evaluated

Q
D

C
on
cu
rr
en
ce

0 5 10gt 15

0.5

0.0

1.0

FIG. 4. eA − eB concurrence (dashed lines) and quantum discord
(continuous lines) with symmetric conditions as a function of gt for a
selected QMF squeezing parameter r = 0.87, marked with red dashed
lines in Fig. 3. Blue lines correspond to no nuclear spin bath effects
[Figs. 3(a) and 3(c)] while red lines represent results with nuclear spin
bath effects [Figs. 3(b) and 3(d)] as characterized by b = 0.5g and
gτ = 0.5.
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FIG. 5. Concurrence of different spin pairs in separate NVs as a
function of the QMF squeezing parameter r and dimensionless time
gt . Panels (a) and (b) denote eA − eB , panels (c) and (d) represent
eB − νA (or equivalently eA − νB ), panels (e) and (f) correspond to
νA − νB . In all plots, the static QMF-spin coupling strength is fixed to
g0,A = g0,B = g. No nuclear bath effects yield to results in (a), (c), and
(e). Nuclear bath effects with bA = bB = 0.5g and gτA = gτB = 0.5
in plots (b), (d), and (f).

numerically the expressions Eqs. (35), (36), (38), (39), (41),
and (42), which include the averages over the coefficients that
determine the density matrix entries. In the simulation, we
have considered 104 stochastic realizations for determining the
averages over nuclear noises.

For isolated spin systems, the time-dependent concurrence
is presented in Figs. 5(a), 5(c), and 5(e): for eA − eB , eA − νB

and νA − νB , respectively. The bath effect in the entanglement
transfer is illustrated in Figs. 5(b), 5(d), and 5(f) where the
noise parameters are b = 0.5g and gτ = 0.5. For the elec-
tronic spins, the maximum entanglement is achieved for small
squeezing value r , even including the hyperfine interaction
with the proximal nuclear spin. The bath inclusion slightly

0.00

0.08

0.04

C
on
cu
rr
en
ce

0 5 10 15gt
FIG. 6. Concurrence for distant NV spins as a function of di-

mensionless time gt , symmetric case g0,A = g0,B = g, for a selected
QMF squeezing parameter r = 0.87 [marked by dashed red lines in
Figs. 5(b), 5(d), and 5(f)]. The continuous blue line represents the
eA − eB spin pair, the dashed red line eA − νB [or (eB − νA)], and the
black dashed line νA − νB .

changes the optimal region to obtain entanglement but small
r values are again needed. The dynamics for nuclear spins
or the combination of electronic and nuclear spins allows
us to characterize the strength of the entanglement in terms
of the squeezing microwave parameter. The results obtained
show that for these systems the amount of squeezing in
the microwaves required to produce entanglement is greater
compared with the electron pair situation. Besides, we can
observe that the bath effect is greater in the entanglement
between electronic spins; this effect is evidenced more clearly
in Fig. 6, where we have selected r = 0.87 of Fig. 5 (dashed
red lines) and evaluate the concurrence as a function of time.
The blue continuous line represents the eA − eB entanglement,
while the medium dashed red line the eA − νB , and the small
dashed black line νA − νB .

It is worth noting that a longtime interest has existed for
reaching cross entanglement between different spin species,
in special electron-nucleus entanglement, due to the fact of its
nontrivial consequences for quantum computing devices. In the
field of NMR-based quantum information processing, malonic
acid molecular single crystals were used to demonstrate that
the entanglement between disparate spins (electronic spin
resonance in GHz while the nuclear spin resonance is in
the frequency domain of MHz) is not only achievable but
detectable [52]. On the other hand, magic number transitions
in few electron quantum dots have been proposed for affecting
and detecting the entanglement between the electron spins
and a single nuclear spin, providing reliable quantum gate
operations [53]. We stress that results discussed in this section
bring an alternative path for reaching such cross entangling,
with the added possibility of affecting spatially separated
different spin species.

Finally, the effect of the hyperfine coupling between the
ei − νj spin is illustrated in Fig. 7, where we compare the exact
analytical solution for the concurrence between two electronic
spins eA − eB (dashed line) without hyperfine interaction with
the numerical solution for I = 0.1g, I = g, and I = 2g, where
we have considered A(�r ) = B(�r ) = I . In Fig. 7(a), no spin
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FIG. 7. eA − eB concurrence as a function of dimensionless time
gt , symmetric case g0,A = g0,B = g, and QMF squeezing parameter
r = 0.87, for selected values of the hyperfine interaction between ej −
νj in the local j th NV. Solid lines represent the numerical solution:
the small blue line corresponds to I = 0.1g, the red medium line is
for I = 1g, while the black large line is for I = 2g. The dashed line
represents the exact analytical solution for the case of no hyperfine
interaction. (a) No nuclear spin baths. (b) Nuclear spin baths with
symmetric noise parameters b = 0.5g and gτ = 0.5.

bath was included and, in Fig. 7(b), symmetric noise conditions
were included with bA = bB = 0.5g and gτA = gτB = 0.5.
The results evidence that if we reduce the hyperfine coupling
between the ej − νj spins, the numerical solutions go identical
to the analytical results, validating the above results.

Now, we want to highlight two elements of the presented
results. First, we note that the nuclear entanglement persists for
longer times compared with the electron entanglement, even
under noisy environments. Second, in Figs. 3–5, we observe
very definite frequencies for the entanglement evolution in
each system: ej − ej , νj − νj , ej − νj . Therefore, we calculate
the Fourier transform of the concurrence to determine relevant
frequencies in the system’s entanglement dynamics. In Fig. 8,
we show the results for the Fourier transform of the concur-
rence between eA − eB [Fig. 8(a)] and νA − νB [Fig. 8(b)]
as a function of the frequency ω in g units, with symmetric
conditions g0,A = g0,B = g and no spin bath. The squeezing
parameter r was fixed as r = 0.87 because we note that the
central frequency in the Fourier transform does not change
with the squeezing of the microwaves. Besides that, in the
nuclear entanglement we have a greater spectrum of relevant
frequencies compared with the eA − eB entanglement where

FIG. 8. Fourier transform of the concurrence C as a function of
dimensionless frequency ω/g, symmetric case g0,A = g0,B , for r =
0.87 and no spin bath was included. Panel (a) denotes eA − eB , panel
(b) represents νA − νB .

the frequency appears as a more defined peak. Finally, we
present how to change the position of the peaks in the frequency
scale (ωp) of the Fourier transform for eA − eB [Fig. 9(a)]
and νA − νB [Fig. 9(b)] by varying the hyperfine coupling
A(�r ) = B(�r ) = I . The results show a high dependence with
the hyperfine coupling and, additionally, they recover the
expected result for the uncoupled case A(�r ) = B(�r ) = 0,
where ωp = 2

V. CONCLUSIONS

In summary, we have derived analytical expressions for
the density matrix describing the dynamics of distant elec-
tronic spins interacting with a two-mode squeezed state in
a noisy environment. We have characterized the dynamical
entanglement in terms of the concurrence for the two spins
approximating the effect of the bath with a classical theory,
as an Ornstein-Uhlenbeck process. From our analytical and
numerical results, we conclude that a squeezed microwave field
produced by a parametric amplifier can be efficiently employed
to induce entanglement in initially uncorrelated spin systems
even when embedded in a noisy environment. We performed
numerical simulations with the same initial states by varying
the QMF and noise parameters and obtained qualitatively
similar results.
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FIG. 9. Peak position of frequency in the Fourier transform
of concurrence between spin pairs as a function of the hyperfine
interaction A(�r ) = B(�r ) = I . (a) eA − eB spins. (b) νA − νB spins.

The proposed scheme allows us to evidence, as the inclusion
of noisy environments change, the optimal r values to obtain
maximum entanglement. In a realistic scenario, we have
included the hyperfine interaction between the proximal 14N

spin and the electronic spin. In this situation, the analytical
expressions are not valid; then a numerical solution was
realized.

We extend our calculations to nuclear spins and electron-
nucleus entanglement. Our result probes that even for nu-
clear spins which don’t interact directly with the entangled
microwave field is possible an effective transfer of correla-
tions mediated by the hyperfine electron-nuclear interaction.
Besides the nuclear systems, the entanglement persists in spin
bath environments that produce decoherence. While maximum
entanglement is reached for small squeezing values for the
electronic spins, highly entangled states for the microwaves
areis required to entangle nuclear spins in a spin bath.

A shift in the squeezing value to obtain maximum entangle-
ment was shown for the electronic spins in presence of a spin
bath, while for nuclear spins this value is constant. Moreover,
this scheme showed the required values of squeezing in the
studied systems and the limiting values to get entangled states
in a spin bath.

Finally, we showed that other quantum correlations besides
entanglement persist even in noisy environments and the
effect of the spin bath is small on other correlations beyond
entanglement.
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APPENDIX A: ENTANGLEMENT DYNAMICS
FORMALISM FOR NV ELECTRONIC SPINS

It is well known that the Hamiltonian Eq. (9) commutes
with the operator associated to the total number of excitations
N̂ = ∑

j=A,B [âj
†âj + ( σ̂z,j +1

2 )]. From this symmetry, it fol-
lows that the full spin-QMF Hilbert space can be separated in
invariant subspaces of dimension 2 for each arm

Ĥj =
∑

n

⊕Ĥn,j , (A1)

each subspace spanned by orthonormal bases with nj excita-
tions {|(nj − 1)+〉, |(nj − 1)−〉} expressed as

|(nj − 1)+〉 = cos

(
αn,j

2

)
|nj − 1, ee〉 + sin

(
αn,j

2

)
|nj , eg〉,

|(nj − 1)−〉 = − cos

(
αn,j

2

)
|nj − 1, ee〉

+ sin
(αn,j

2

)
|nj , eg〉, (A2)

with tan(αn,j ) = g0,j
√

nj

δj
, the detuning is given by δj = ωj −

�j , and |eg〉, |ee〉, represent the ground and excited states for
the electronic spin. This latter symmetry can also be exploited
by associating an SU(2)-Lie algebra within each invariant
subspace with n total excitations as

Ĵx,j = 1

2
√
N̂j

(â†
j σ

−
j + âj σ

+
j ), (A3)

Ĵy,j = i

2
√
N̂j

(â†
j σ

−
j − âj σ

+
j ), (A4)

Ĵz,j = 1

2
σz,j . (A5)

Therefore, the Hamiltonian for the subspace with Nj excita-
tions can be written as

Ĥ (t ) =
∑

j=A,B

�j N̂j + δj Ĵz,j + 2
√

njgj (t )Ĵx,j − �j

2
. (A6)

In the interaction picture, the Hamiltonian in Eq. (A6) describes
an effective spin in a time-dependent magnetic field

Ĥj (t ) =
∑

j=A,B

�̂Jj · �Bj (t ), (A7)

with

�Bj (t ) = (2
√
N̂j gj (t ), 0, δj ). (A8)

From now on, we restrict to the resonance case δj = 0, yielding
to a time-dependent field in the x direction. Under this latter
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assumption, the Hamiltonian commutes with itself at different
times, leading to an exactly solvable evolution operator:

Ûj (t ) = ei2θj,n(t )Ĵx,j , (A9)

with

θj,n(t ) = √
nj

∫ t

0
dtjg(tj ). (A10)

Note especially that at resonance

|(nj − 1),+〉 = 1√
2

[|(nj − 1), ee〉 + |nj , eg〉],

|(nj − 1),−〉 = 1√
2

[−|(nj − 1), ee〉 + |nj , eg〉]. (A11)

Within the subspace with Nj excitations, it holds that

Ĵx,j |(nj − 1)+〉 = 1
2 |(nj − 1)+〉, (A12)

Ĵx,j |(nj − 1)−〉 = − 1
2 |(nj − 1)−〉. (A13)

Equation (A9) acting on the initial state for the system
|ψ (t = 0)〉 = |r〉|eg〉A|eg〉B [with r given by the Eq. (12)], and

properties in Eqs. (A12) and (A13), allow us to easily obtain
the NV cavity quantum state at time t as

|ψ (t )〉 = ÛA,B (t )rc

∞∑
n=0

rn
t |n, g〉A ⊗ |n, g〉B, (A14)

where we have written rc = 1/cosh(r) and rt = tanh(r). To
proceed further, individual terms in Eq. (A14) can be developed
as

Ûj (t )|n, g〉j = rc

∞∑
n=0

rn
t

1√
2

[ei2
√

nj θj,n(t )|(nj − 1)+〉

+ e−i2
√

nj θj,n |(nj − 1)−〉]j , (A15)

with θj,n(t ) given by Eq. (A10).

APPENDIX B: TWO-NV FULL DENSITY MATRIX

Here we summarize some important intermediate steps to
reach the analytical expression for the reduced two-NV density
matrix. The density operator at time t becomes

r2
c ρ̄(t ) = |eg, 0〉AA〈eg, 0| ⊗ |eg, 0〉BB〈eg, 0| + 1

2

∞∑
n=1

rn
t [〈e−iθA,n(t )〉|eg, 0〉AA〈(n − 1) + | + 〈eiθA,n(t )〉|eg, 0〉AA〈(n − 1) − |]

⊗[〈e−iθB,n(t )〉|eg, 0〉BB〈(n − 1) + | + 〈eiθB,n(t )〉|eg, 0〉BB〈(n − 1) − |]

+1

2

∞∑
n=1

rn
t [〈eiθA,n(t )〉|(n − 1)+〉AA〈eg, 0| + 〈e−iθA,n(t )〉|(n − 1)−〉AA〈eg, 0|]

⊗[〈eiθB,n(t )〉|(n − 1)+〉BB〈eg, 0| + 〈e−iθB,n(t )〉|(n − 1)−〉BB〈eg, 0|]

+1

4

∞∑
n=1

∞∑
m=1

rn+m
t [〈ei(θA,n(t )−θA,m(t ))〉|(n − 1)+〉AA〈(m − 1),+|

+ 〈ei(θA,n(t )+θA,m(t ))〉|(n − 1)+〉AA〈(m − 1),−| + 〈e−i(θA,n(t )+θA,m(t ))〉|(n − 1)−〉AA〈(m − 1),+|
+〈e−i(θA,n(t )−θA,m(t ))〉|(n − 1)−〉AA〈(m − 1),−|][〈ei(θB,n(t )−θB,m(t ))〉|(n − 1)+〉BB〈(m − 1),+|
+〈ei(θB,n(t )+θB,m(t ))〉|(n − 1)+〉BB〈(m − 1),−| + 〈e−i(θB,n(t )+θB,m(t ))〉|(n − 1)−〉BB〈(m − 1),+|
+〈e−i(θB,n(t )−θB,m(t ))〉|(n − 1)−〉BB〈(m − 1),−|]. (B1)

The following expressions are valuable for that purpose:

∞∑
p=0

〈p||(n − 1)+〉〈(m − 1) + ||p〉 = 1

2
[δn,m(|eg〉〈eg| + |ee〉〈ee|) + δn−1,m|ee〉〈eg| + δn,m−1|eg〉〈ee|],

∞∑
p=0

〈p||(n − 1)+〉〈(m − 1) − ||p〉 = 1

2
[δn,m(|eg〉〈eg| − |ee〉〈ee|) + δn−1,m|ee〉〈eg| − δn,m−1|eg〉〈ee|],

∞∑
p=0

〈p||(n − 1)−〉〈(m − 1) + ||p〉 = 1

2
[δn,m(|eg〉〈eg| − |ee〉〈ee|) − δn−1,m|ee〉〈eg| + δn,m−1|eg〉〈ee|],

∞∑
p=0

〈p||(n − 1)−〉〈(m − 1) − ||p〉 = 1

2
[δn,m(|eg〉〈eg| + |ee〉〈ee|) − δn−1,m|ee〉〈eg| + δn,m−1|eg〉〈ee|]. (B2)
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APPENDIX C: DENSITY MATRIX FOR ELECTRONIC NV SPINS WITH CONSTANT SPIN-CAVITY COUPLINGS

To calculate the density-matrix elements in the case where the spin-cavity coupling is constant, we have evaluated the expression
Eq. (14) with g0,A = g0,B = g; in this limit, we have

ρ1,1(t ) = 1

r2
c

∞∑
n=0

r2n
t cos4(

√
ng0t ), (C1)

ρ2,2(t ) = ρ3,3(t ) = 1

r2
c

∞∑
n=0

r2n
t sin2(

√
ng0t ) cos2(

√
ng0t ), (C2)

ρ4,4(t ) = 1

r2
c

∞∑
n=0

r2n
t sin4(

√
ng0t ), (C3)

and the nondiagonal term becomes

ρ1,4(t ) = − 1

r2
c

∞∑
n=0

r2n+1
t sin2(

√
n + 1g0t ) cos2(

√
ng0t ). (C4)

APPENDIX D: TIME-DEPENDENT COEFFICIENTS

In this section, we provide the elements of the reduced 16 × 16 density matrix for the electronic and nuclear spins in a noisy
environment. In the main text, we present simplified analytical expression for two electronic spins when no hyperfine coupling
with the proximal nuclear spin is included. However a numerical solution is needed if we include this interaction and the spin
13C bath. We start defining the systems’s state at time t as

|ψ (t )〉 = ÛA,B (t )
∞∑

n=0

αn|n, eg, νg〉A ⊗ |n, eg, νg〉B

=
∞∑

n=0

αn[ÛA(t )|n, eg, νg〉A] ⊗ [ÛB (t )|n, eg, νg〉B]

= α0|n, eg, νg〉A ⊗ |n, eg, νg〉B + α1

[
3∑

i=1

C1,i (t )|1, i〉
]

A

⊗
[

3∑
i=1

C1,j (t )|1, j 〉
]

B

+
∞∑

N=2

αN

[
4∑

i=1

CN,i (t )|N, i〉
]

A

⊗
⎡
⎣ 4∑

j=1

CN,j (t )|N, j 〉
⎤
⎦

B

(D1)

where

|αN | = tanh(r )N

cosh(r )
. (D2)

The terms C1,i (t ), C1,j (t ) (where i and j can take values 1,2,3) are the coefficients at time t in the expansion for the state in the
subspace with N = 1 excitations in the branches A and B, respectively. The coefficients CN,i (t ) and CN,j (t ) (where i and j in this
case can take values 1,2,3,4) allow us to determine the state at time t in the four-dimensional subspaces with N � 2. Now, we can
proceed to evaluate the density matrix as ρ̂(t ) = |ψ (t )〉〈ψ (t )| and the reduced density-matrix tracing over the state of the field

ρ̄2Q(t ) =
∞∑

p=0

∞∑
q=0

〈p, q|ρ̄(t )|p, q〉, (D3)

with p and q the photon number in the two branches. The bar in ρ̄2Q(t ) and ρ̄(t ) represents stochastic terms due to the noise
spin bath. The diagonal elements obtained for the density matrix are given by

ρ1,1 = |α0|2 + |α1|2〈|C1,2(t )|2〉A〈|C1,2(t )|2〉B +
∞∑

N=2

|αN |2〈|CN,2(t )|2〉A〈|CN,2(t )|2〉B, (D4)

ρ2,2 = |α1|2〈|C1,2(t )|2〉A〈|C1,3(t )|2〉B +
∞∑

N=2

|αN |2〈|CN,2(t )|2〉A〈|CN,4(t )|2〉B, (D5)

ρ3,3 = |α1|2〈|C1,2(t )|2〉A〈|C1,1(t )|2〉B +
∞∑

N=2

|αN |2〈|CN,2(t )|2〉A〈|CN,1(t )|2〉B, (D6)
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ρ4,4 =
∞∑

N=2

|αN |2〈|CN,2(t )|2〉A〈|CN,3(t )|2〉B,

ρ5,5 = |α1|2〈|C1,3(t )|2〉A〈|C1,2(t )|2〉B +
∞∑

N=2

|αN |2〈|CN,4(t )|2〉A〈|CN,2(t )|2〉B,

ρ6,6 = |α1|2〈|C1,3(t )|2〉A〈|C1,3(t )|2〉B +
∞∑

N=2

|αN |2〈|CN,4(t )|2〉A〈|CN,4(t )|2〉B,

ρ7,7 = |α1|2〈|C1,3(t )|2〉A〈|C1,1(t )|2〉B +
∞∑

N=2

|αN |2〈|CN,4(t )|2〉A〈|CN,1(t )|2〉B,

ρ8,8 =
∞∑

N=2

|αN |2〈|CN,4(t )|2〉A〈|CN,3(t )|2〉B,

ρ9,9 = |α1|2〈|C1,1(t )|2〉A〈|C1,2(t )|2〉B +
∞∑

N=2

|αN |2〈|CN,1(t )|2〉A〈|CN,2(t )|2〉B,

ρ10,10 = |α1|2〈|C1,1(t )|2〉A〈|C1,3(t )|2〉B +
∞∑

N=2

|αN |2〈|CN,1(t )|2〉A〈|CN,4(t )|2〉B, (D7)

ρ11,11 = |α1|2〈|C1,1(t )|2〉A〈|C1,1(t )|2〉B +
∞∑

N=2

|αN |2〈|CN,1(t )|2〉A〈|CN,1(t )|2〉B,

ρ12,12 =
∞∑

N=2

|αN |2〈|CN,1(t )|2〉A〈|CN,3(t )|2〉B,

ρ13,13 =
∞∑

N=2

|αN |2〈|CN,3(t )|2〉A〈|CN,2(t )|2〉B,

ρ14,14 =
∞∑

N=2

|αN |2〈|CN,3(t )|2〉A〈|CN,4(t )|2〉B,

ρ15,15 =
∞∑

N=2

|αN |2〈|CN,3(t )|2〉A〈|CN,1(t )|2〉B,

ρ16,16 =
∞∑

N=2

|αN |2〈|CN,3(t )|2〉A〈|CN,3(t )|2〉B,

where N vary between 0 and the photon number state in the field. In our simulation, we have considered N = 85 and we
have probed the essential conditions for a density matrix. The results yield to Tr{ρ̄2Q(t )} = 1 as it should be. The stochastic
realizations in the coefficients 〈...〉 take into account many realizations in the systems when we include the noise parameters. In
our calculation, we have evaluated the average taking approximately 10 000 realizations in the coefficient average. Symmetric
conditions have been considered in the two branches. Nondiagonal elements in the density matrix are

ρ1,6 = ρ∗
6,1 = α0α

∗
1〈C1,3(t )〉A〈C1,3(t )∗〉B +

∞∑
N=1

αNα∗
N+1〈CN,2(t )C∗

N+1,4(t )〉A〈CN,2(t )C∗
N+1,4(t )〉B,

ρ1,7 = ρ∗
7,1 = α0α

∗
1〈C1,3(t )〉A〈C1,1(t )∗〉B +

∞∑
N=1

αNα∗
N+1〈CN,2(t )C∗

N+1,4(t )〉A〈CN,2(t )C∗
N+1,1(t )〉B,

ρ1,10 = ρ∗
10,1 = α0α

∗
1〈C1,1(t )〉A〈C1,3(t )∗〉B +

∞∑
N=1

αNα∗
N+1〈CN,2(t )C∗

N+1,1(t )〉A〈CN,2(t )C∗
N+1,4(t )〉B,

ρ1,11 = ρ∗
11,1 = α0α

∗
1〈C1,1(t )〉A〈C1,1(t )∗〉B +

∞∑
N=1

αNα∗
N+1〈CN,2(t )C∗

N+1,1(t )〉A〈CN,2(t )C∗
N+1,1(t )〉B,
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ρ1,16 = ρ∗
16,1 =

∞∑
N=0

αNα∗
N+2〈CN,2(t )C∗

N+2,3(t )〉A〈CN,2(t )C∗
N+2,3(t )〉B,

ρ2,3 = ρ∗
3,2 = |α1|2〈|C1,2(t )|2〉A〈C1,3(t )C1,1(t )∗〉B +

∞∑
N=2

|αN |2〈|CN,2(t )|2〉A〈CN,4(t )C∗
N,1(t )〉B,

ρ2,8 = ρ∗
8,2 = α1α

∗
2〈C1,2(t )C2,4(t )∗〉A〈C1,3(t )C2,3(t )∗〉B +

∞∑
N=2

αNα∗
N+1〈CN,2(t )C∗

N+1,4(t )〉A〈CN,4(t )C∗
N+1,3(t )〉B,

ρ2,12 = ρ∗
12,2 = α1α

∗
2〈C1,2(t )C2,1(t )∗〉A〈C1,3(t )C2,3(t )∗〉B +

∞∑
N=2

αNα∗
N+1〈CN,2(t )C∗

N+1,1(t )〉A〈CN,4(t )C∗
N+1,3(t )〉B,

ρ3,8 = ρ∗
8,3 =

∞∑
N=1

αNα∗
N+1〈CN,2(t )C∗

N+1,4(t )〉A〈CN,1(t )C∗
N+1,3(t )〉B,

ρ3,12 = ρ∗
12,3 =

∞∑
N=1

αNα∗
N+1〈CN,2(t )C∗

N+1,1(t )〉A〈CN,1(t )C∗
N+1,3(t )〉B,

ρ5,9 = ρ∗
9,5 = |α1|2〈C1,3(t )C1,1(t )∗〉A〈|C1,2(t )|2〉B +

∞∑
N=2

|αN |2〈CN,4(t )C∗
N,1(t )〉A〈|CN,2(t )|2〉B,

ρ5,14 = ρ∗
14,5 = α1α

∗
2〈C1,3(t )C2,3(t )∗〉A〈C1,2(t )C2,4(t )∗〉B +

∞∑
N=2

αNα∗
N+1〈CN,4(t )C∗

N+1,3(t )〉A〈CN,2(t )C∗
N+1,4(t )〉B,

ρ5,15 = ρ∗
15,5 = α1α

∗
2〈C1,3(t )C2,3(t )∗〉A〈C1,2(t )C2,1(t )∗〉B +

∞∑
N=2

αNα∗
N+1〈CN,4(t )C∗

N+1,3(t )〉A〈CN,2(t )C∗
N+1,1(t )〉B,

ρ6,7 = ρ∗
7,6 = |α1|2〈|C1,3(t )|2〉A〈C1,3(t )C1,1(t )∗〉B +

∞∑
N=2

|αN |2〈|CN,4(t )|2〉A〈CN,4(t )C∗
N,1(t )〉B,

ρ6,10 = ρ∗
10,6 =

∞∑
N=2

|αN |2〈CN,4(t )C∗
N,1(t )〉A〈|CN,4(t )|2〉B,

ρ6,11 = ρ∗
11,6 =

∞∑
N=2

|αN |2〈CN,4(t )C∗
N,1(t )〉A〈CN,4(t )C∗

N,1(t )〉B,

ρ6,16 = ρ∗
16,6 = α1α

∗
2〈C1,3(t )C∗

2,3(t )〉A〈C1,3(t )C∗
2,3(t )〉B +

∞∑
N=2

αNα∗
N+1〈CN,4(t )C∗

N+1,3(t )〉A〈CN,4(t )C∗
N+1,3(t )〉B,

ρ7,10 = ρ∗
10,7 = |α1|2〈C1,3(t )C∗

1,1(t )〉A〈C1,1(t )C∗
1,3(t )〉B +

∞∑
N=2

|αN |2〈CN,4(t )C∗
N,1(t )〉A〈CN,1(t )C∗

N,4(t )〉B,

ρ7,11 = ρ∗
11,7 = |α1|2〈C1,3(t )C∗

1,1(t )〉A〈|C1,1(t )|2〉B +
∞∑

N=2

|αN |2〈CN,4(t )C∗
N,1(t )〉A〈|CN,1(t )|2〉B,

ρ7,16 = ρ∗
16,7 = α1α

∗
2〈C1,3(t )C∗

2,3(t )〉A〈C1,1(t )C∗
2,3(t )〉B +

∞∑
N=2

αNα∗
N+1〈CN,4(t )C∗

N+1,3(t )〉A〈CN,1(t )C∗
N+1,3(t )〉B,

ρ8,12 = ρ∗
12,8 =

∞∑
N=2

|αN |2〈CN,4(t )C∗
N,1(t )〉A〈|CN,3(t )|2〉B,

ρ9,14 = ρ∗
14,9 =

∞∑
N=1

αNα∗
N+1〈CN,1(t )C∗

N+1,3(t )〉A〈CN,2(t )C∗
N+1,4(t )〉B,

ρ9,15 = ρ∗
15,9 =

∞∑
N=1

αNα∗
N+1〈CN,1(t )C∗

N+1,3(t )〉A〈CN,2(t )C∗
N+1,1(t )〉B,
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ρ10,11 = ρ∗
11,10 = |α1|2〈C1,3(t )C∗

1,1(t )〉A〈C1,1(t )C∗
1,3(t )〉B +

∞∑
N=2

|αN |2〈CN,4(t )C∗
N,1(t )〉A〈CN,1(t )C∗

N,4(t )〉B

ρ10,16 = ρ∗
16,10 = α1α

∗
2〈C1,1(t )C∗

2,3(t )〉A〈C1,3(t )C∗
2,3(t )〉B +

∞∑
N=2

αNα∗
N+1〈CN,1(t )C∗

N+1,3(t )〉A〈CN,4(t )C∗
N+1,3(t )〉B,

ρ11,16 = ρ∗
16,11 =

∞∑
N=1

αNα∗
N+1〈CN,1(t )C∗

N+1,3(t )〉A〈CN,1(t )C∗
N+1,3(t )〉B,

ρ14,15 = ρ∗
15,14 =

∞∑
N=2

|αN |2〈|CN,3(t )|2〉A〈CN,4(t )C∗
N,1(t )〉B. (D8)
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