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We provide strong evidence for a quantum critical point (QCP) associated with the destruction of Kondo
screening in the Anderson-Hubbard model for interacting electrons with quenched disorder. The evidence
comprises three elements: (a) the identification of an energy scale, ω∗, that delineates infrared Landau damping
from higher frequency non-Fermi liquid(nFL) dynamics; (b) the finding that this crossover scale ω∗ appears to
vanish with increasing disorder; and (c) the concomitant appearance of a finite intercept in a broad distribution
of Kondo scales. Our findings indicate a Kondo destruction scenario, albeit distinct from the local QCP picture.
The nFL behavior is shown to stem from an interplay of strong electron-electron interactions and the systematic
inclusion of short-range dynamical fluctuations induced by the underlying random potential. The results have
been obtained through a computational framework based on the typical medium dynamical cluster approximation.
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I. INTRODUCTION

The paradigm of Landau’s Fermi liquid (FL) theory [1]
provides a robust foundation for understanding metals in terms
of weakly interacting electronlike “quasiparticles.” However,
there exist several classes of materials where deviations from
FL theory have been observed. A universal feature of such ma-
terials is the simultaneous presence of strong electron-electron
(e−-e−) repulsive interactions and disorder [2]. Examples
include heavy fermions [3–9], rare earths [10,11], cuprates
[12–14], and doped semiconductors [15]. Of particular rele-
vance to this paper is the breakdown of the FL paradigm in the
dual presence of strong e−-e− interactions (U ) and quenched
disorder (W ) [5].

The origin of non-FL (nFL) behavior in strongly corre-
lated disordered systems has eluded theorists and experimen-
talists alike [5] and has thus received a sustained interest
[16]. Some early experimental [17] and theoretical work on
the phenomenological Kondo disorder model [5,18,19] and
on microscopic strongly correlated models [20,21] showed
that responses from anomalously low Kondo scales may be
connected to singular thermodynamic responses and nFL
behavior. These sites with anomalously low Kondo scales
form sparse regions of local moments [21], consistent with
an interpretation in terms of Griffiths effects [21,22]. Fur-
thermore, a relatively recent work [23] has highlighted the
importance of disorder-induced spatial inhomogeneities in
such scenarios. Experimental imaging of disordered strongly
correlated systems [24,25] reveal the emergent role of
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disorder-induced spatial inhomogeneities on the microscopics
of such systems that in turn would influence the thermo-
dynamics. Such experiments show how even nonmagnetic
randomness in a Kondo system can induce strong hybridization
modulation, thus influencing the electron scattering dynamics.
Proposed mean-field approaches neglecting spatial fluctua-
tions due to disorder cannot adequately address the specific
low-energy scales that determine the nFL nature revealed by
strongly correlated disordered systems. The theory for such
systems should therefore comprise two critical ingredients,
namely, systematic inclusion of short-range dynamical fluc-
tuations due to disorder and its interplay with the local Kondo
physics due to strong correlations.

There now exists compelling evidence of a disorder-driven
quantum-critical, metal-insulator transition in correlated two-
dimensional systems [26,27] and associated nFL charge dy-
namics [27]. The quantum-critical nature of the metal-insulator
transition in bulk, lattice systems in the presence of disorder
and Hubbard-type interactions has also been reported [6,7,28–
30]. Theoretically, the quantum-critical nature of such a metal-
insulator transition in the disordered two-dimensional electron
gas was established using the two-loop renormalization group
approach [31]. Irrespective of the experimental details, these
observations generically support a scenario where at T = 0
and W = 0, the system is a normal FL metal gradually de-
veloping nFL excitations before undergoing a metal-insulator
transition at W = Wc, demonstrating critical nFL dynamics
in the vicinity of a quantum critical point (QCP). Despite the
early reports on disorder-induced nFL phenomenology based
on emergent local moments [5,20,21], a fundamental challenge
remained, namely, (1) do these rare regions of “emerging” local
moments, dubbed as Griffiths singularities, act as precursors
to a “genuine” QCP, and (2) what is the feedback effect of
these local-moment instabilities on the underlying interacting
FL from which they emerge?
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FIG. 1. Schematic representation of the obtained crossover en-
ergy scale separating FL and nFL dynamics: The black solid line
represents the crossover scale derived within our T = 0 calculations.
This scale marks a crossover from FL dynamics to nFL dynamics
with increasing energy, and its vanishing would eventually lead to
a QCP at a critical disorder strength Wc. This dynamics would
manifest in the finite-temperature fan of the QCP. The black dotted line
represents a high-energy cut-off, �, beyond which such a description
of the dynamics becomes invalid. The red dashed line separates the
nFL phase from a second phase, the nature of which cannot be
determined within the current theory, but is inferred from previous
studies [6,7,26–30].

In our work we provide unambiguous evidence of the
“existence of such a QCP” starting from the FL phase of
a microscopic Hamiltonian, namely, the Anderson-Hubbard
model (AHM), where the idea of a local-moment-induced
QCP was ruled out in Ref. [21]. We discern the emergent nFL
excitations in proximity to the QCP, by investigating the many-
body scattering dynamics in the metallic phase. The schematic
presented in Fig. 1 summarizes results from our simulations of
the AHM and incorporates inferences from previous studies
[15,30,32,33]. On the metallic side of the QCP, we find a
heretofore unidentified crossover energy scale, ω∗, that appears
to vanish at a QCP. The system shows characteristic Fermi
liquid dynamics for energies |ω| < ω∗ and gradually deviates
from ∼ω2 dynamics to |ω|α for ω∗ < |ω| < �, as the disorder
is increased, where the exponent α varies continuously with W .
For larger W ’s, beyond the QCP, we assume that there must be
some phase transition to quench the entropy associated with
the unscreened moments.

In this work we establish that the key to quantifying Fig. 1
and understanding the origin of an nFL and a QCP, lies in
the systematic incorporation of short-range correlations due
to disorder into the full many-body scattering dynamics of
the electrons. We achieve this by adapting the typical medium
dynamical cluster approximation (TMDCA) [34,35] such that
the physics due to multiple scales could be handled. Within this
framework, (1) we explore the precise evolution of the disorder
averaged scattering dynamics and the associated distribution
of Kondo scales; (2) subsequently, we predict the emergence
of a disorder-induced nFL dynamics and a unique disorder-
dependent FL to nFL crossover scale that presumably leads
to the QCP, thus delineating the FL-nFL boundary in Fig. 1.
We emphasize that an identification of “Phase 2” is beyond the

scope of the current formalism and that we can only probe the
disorder-driven transition starting from a Fermi liquid phase.

The paper is organized as follows. We discuss the model
and theoretical framework in Sec. II, followed by Results and
Discussions in Sec. III. We finally conclude in Sec. IV.

II. MODEL AND THEORETICAL FRAMEWORK

We investigate the AHM for describing the physics due to
the interplay of disorder and electron-electron interactions,

H =
∑

ij,σ

tij c
†
iσ cjσ +

∑

i,σ

(Vi − μ)n̂iσ + U
∑

i

n̂i↑n̂i↓, (1)

where c
†
iσ (ciσ ) is the fermionic creation (annihilation) operator

for an electron with spin σ at site i, and n̂iσ = c
†
iσ ciσ ; tij is

the nearest-neighbor hopping amplitude and U is the on-site
Coulomb interaction energy. The lattice is represented by a
three-dimensional (3D) cubic density of states (DOS) with
full bandwidth, D = 3 eV. The random disorder potential,
Vi , is drawn from a box distribution P (Vi ) of width W and
represented as P (Vi ) = 1

2W
�(W − |Vi |), where �(x) is a

step function. The disorder averaging is represented using the
shorthand notation, 〈· · · 〉 = ∫

dViP (Vi )(· · · ). The particle-
hole symmetry is imposed by setting μ = U/2. We define the
on-site energy as εi = −U/2 + Vi for the rest of the paper.

The AHM has been explored using various methods such
as quantum Monte Carlo [33,36], dynamical mean-field theory
based approaches [37–43], and Hartree-Fock based approaches
[22,44]. However, in order to understand the dynamical signa-
tures of the QCP, more sophisticated and advanced theory is
required. The theory should be able to tackle the dynamical
scales generated by strong correlations and its interplay with
the spatial fluctuations brought on by disorder; hence we re-
quire a multiscale approach. We develop a multiscale approach
where we incorporate the dynamical spatial fluctuations due
to disorder within the framework of TMDCA [34].

The TMDCA [34] is based on the same self-consistent
framework of the standard DCA [45–47]. However, the crucial
difference with the standard DCA lies in the utilization of an
appropriately disorder-averaged (momentum, K), dependent
hybridization, �(K, ω). One starts with the usual DCA cluster
mapping of a d-dimensional periodic (or disorder averaged to
restore translational invariance) lattice in momentum space.
The cluster consists of Nc = Ld

c cells in d dimensions, with K
being the cell momentum and Lc being the linear dimension
of the cluster. This cluster is then embedded into a self-
consistently obtained effective medium, given by �(K, ω). We
now outline the steps below.

(1) While initializing the problem, one can consider it to be
a uniform field, given by �init .

(2) With this, one can obtain the cluster excluded Green’s
function, G(K, ω), given by G(K, ω) = [ω+ − �init − ε̄K]−1,
where ε̄K is the coarse-grained bare dispersion. Hence, spatial
correlations up to a range ξ � Lc are explicitly retained, while
the longer length scale physics are described at a mean-field
level.

(3) G(K, ω) is then Fourier transformed to get the
real-space cluster excluded Green’s function Gi,j (ω) =∑

K G(K, ω) exp[iK.(ri − rj )].
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(4) Then for a given disorder configuration, V̂ , we
may calculate the cluster Green’s function Ĝc(V̂ , ω) with
the effects of disorder and electron-electron interactions
incorporated.

We now discuss the second stage of the self-consistent
computational setup involving the treatment of the electron-
electron interactions. Our primary focus is to explore the
influence of disorder-induced dynamical spatial fluctuations
on the Kondo physics governed by U . This requires us to use
a nonperturbative many-body impurity solver that can capture
the single-particle spectrum over all energy scales efficiently.
We utilize the local-moment approach (LMA) [48–50] in order
to obtain the interaction self-energy �̂(ω) that is calculated in
real space. Each site in the TMDCA cluster is mapped onto a
single impurity Anderson model, the self-energy of which is
calculated using the LMA. We now outline the steps involved
in this self-consistency below.

(1) For this part of the calculation, we utilize the diag-
onal part of Gi,j (ω) calculated previously. This serves as
an initial guess input site–local hybridization, �init

i (ω) =
1

ω+−1/Gii (ω) to the impurity solver along with the local site
energy, εi .

(2) The inverse cluster Green’s function, [Ĝc(V̂ , ω)]−1 =
Ĝ−1(ω) − �̂(ω) − ε̂ is then calculated utilizing the interaction
self-energy �̂(ω) obtained from the impurity solver. Note that
�̂(ω) and ε̂ are diagonal matrices and Ĝ(ω) has off-diagonal
elements.

(3) A new �i (ω) is calculated using the relation �i (ω) =
ω+ − �i (ω) − εi − 1/Gc

ii (V̂ , ω);

(4) in the subsequent iterations within the cluster solver,
each site is thus provided with a site-dependent �i (ω) input to
the impurity solver.

(5) The iterative loop within the real-space cluster solver
is repeated until

∫
�i (ω)dω converges for all Nc sites within

some tolerance.
Note that this scheme resembles the stat-DMFT (dynamical

mean-field theory) formulation in the sense that the diagonal
Green’s functions of a finite (Nc × Nc ) real-space cluster are
being solved self-consistently within a DMFT-like scheme. In
all the results presented below, we use Nc = 38 and U = 1.6
unless otherwise specified.

The converged Ĝc(V,ω), from the above cluster
solver in real space, is Fourier transformed to K
space and the typical density of states ρc

typ(K, ω) is
constructed using the following ansatz: ρc

typ(K, ω) =
exp( 1

Nc

∑Nc

i=1〈ln ρc
i (ω, V̂ )〉)〈 ρc (K,ω,V̂ )

1
Nc

∑
i ρc

i (ω,V̂ )
〉. The typical cluster

Green’s function Gc
typ(K, ω) is then obtained via Hilbert

transform of Gtyp(K, ω) = ∫ ρtyp(K,ω′ )dω′

ω−ω′ . The coarse-grained
Green’s function Ḡ(K, ω) is then calculated via Ḡ(K, ω) =∫ Nc

0 (K,ε)dε

[Gc
typ(K,ω)]−1+�(K,ω)−ε+ε̄(K)

, where Nc
0 (K, ε) represents the

bare partial DOS with which we can further calculate
the new momentum-dependent hybridization �(K, ω) as
�new(K, ω) = �old + ζ [(Gc

typ)−1 − (Ḡ)−1], where ζ is a mix-
ing factor used to get smooth convergence and is typically set to
a value of 0.5. At convergence, Gc

typ(ω) = Ḡ(ω) within some
tolerance. We outline this whole procedure in the form of a
flowchart in Fig. 2.

Cluster mapping

G(K, ω)

Gi,j(ω)

Fourier 
transform

Cluster 
Solver

1. Initial guess, site-local hybridization,

Δinit
i (ω) = Δi(ω) =

1
ω+ − 1/Gii(ω)

2. Input to impurity solver :
Δi(ω), i = −U/2 + Vi;
Output: Σi(ω)

3. Inverse cluster Green’s function:

Ĝc(V̂ , ω)
−1

= Ĝ−1(ω) − Σ̂(ω) − ˆ

4. new Δi(ω) = ω+ − Σi(ω) − i − 1/Gc
ii(V̂ , ω)

new Δi(ω) Check Convergence
Stat-DMFT Self Consistency

Converged

Gi,j(ω)
ρc

typ(K, ω)

Gc
typ(K, ω)

Coarse grained Green’s function
Ḡ(K, ω)
Γnew(K, ω)

Check DCA
convergence

Initial guess 
hybridization 

Not Converged,
Repeat 
steps: 2, 3

FIG. 2. Flowchart representing the multiscale approach used in the current calculations. The TMDCA self-consistency ensures the systematic
and explicit incorporation of short-range correlations, due to disorder into the (stat-DMFT-like) loop that utilizes the local-moment approach
to solve for the strong correlation problem at a single-site level.
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We now conclude this section with a brief discussion
about the LMA. This technique has been successfully utilized
in several impurity [48,51–53] and lattice models within
DMFT [54–58], describing both FL and nFL phases of the
respective models. In fact, the LMA, although approximate,
has been shown to capture almost all of the aspects of Kondo
physics in the conventional single-impurity Anderson model,
in “an almost exact” way, as evident from the agreement with
Bethe ansatz, numerical renormalization group [50,59–61],
and even with experiments [54,56]. Moreover, the LMA has
been successfully utilized (and benchmarked with numerical
renormalization-group calculations) to understand the physics
due to local quantum phase transitions between a Fermi liquid
(Kondo screened phase) and a local-moment phase consisting
of unquenched “impurity” moments [51–53]. Recently, it has
also been applied to disordered systems within coherent poten-
tial approximation [62,63], and again, good agreement with
numerical renormalization-group (NRG) results was found,
and a new non-Fermi liquid mechanism was also proposed.
LMA was also implemented for the Anderson-Hubbard model
within typical medium theory [64], which was again in good
agreement with NRG calculations [43].

The current implementation of LMA considers infinite
resummation of a specific class of diagrams describing dynam-
ical spin-flip scattering processes inherent to the physics of the
Kondo effect. We refer interested readers to several previous
works for more details, e.g., [48,51,53–55]. Thus, the current
formalism of LMA makes it a perfectly suitable tool for han-
dling local quantum critical points involving criticality due to
the breakdown of Kondo screening. These spin-flip processes
generate a peak at a low-energy scale, ωm, in the imaginary
part of the transverse spin polarization propagator, where ωm

is of the order of the Kondo scale, TK . In clean systems the
Fermi liquid to local-moment formation is therefore signaled
as a spin-flip pole in the imaginary part of the transverse spin
polarization propagator. In a disordered system this pole would
occur at certain sites where the local moment forms.

The generalization of LMA to symmetry-breaking phase
transitions and cluster geometries involving nonlocal Coulomb
interaction effects is not straightforward. The many-body
diagrams considered within the LMA should be accordingly
adapted to handle such situations. The extension of LMA
to clusters has been attempted in the present work, in an
approximate way, through an integration of the DCA (and
TMDCA) with a stat-DMFT-like cluster solver based on LMA.
This extension for a disordered interacting system indeed
deciphers a generic microscopic mechanism for observing
non-Fermi liquid dynamics due to disorder and local Coulomb
interactions as described in the subsequent sections of this
paper. However, we agree that a true cluster extension of LMA
has not yet been carried out.

III. RESULTS AND DISCUSSIONS

A. Scattering dynamics

One of the main highlights of this work is the iden-
tification of a critical low-energy scale, ω∗, such that in
the presence of disorder the scattering dynamics has the
usual FL form only at energies ω < ω∗. In order to identify

ω∗ we probe the imaginary part of the disorder-averaged
electronic self-energy, �ave(K, ω), obtained from Dyson’s
equation involving the arithmetic average of Gc(K, ω) (the
average being denoted as 〈Gc(K, ω)〉ave), that in turn is
obtained from the Hilbert transform of 〈ρc(K, ω, V )〉, where
ρc(K, ω, V ) = − 1

π
Im Gc(K, ω, V ). The disorder-averaged

self-energy �ave(K, ω) is then obtained as follows:

�ave(K, ω) = G−1(K, ω) − 〈Gc(K, ω)〉−1
ave, (2)

with the local self-energy being �ave(R = 0, ω) =∑
K �ave(K, ω).
In Fig. 3(a) we plot −Im�ave(R = 0; ω) as a function of

increasing W , with frequency plotted on a linear scale. The
nonzero, ω = 0, contribution (a0) in the self-energy represents
the static elastic impurity scattering, while the |ω| → 0 has
both inelastic and elastic contributions. Also, physically con-
sistent is the observation that at sufficiently weak disorder,
for example, W = 0.8, a0 is sufficiently small such that we
can expect a Drude-like expression and an arbitrarily large
dc conductivity. This picture, however, breaks down as one
increases W . Beyond a certain disorder strength W = 2.25,
even on a linear scale, the line shape develops a clear cusp in the
immediate vicinity of the Fermi energy. Thus, for W � 2.25,
we can identify a vanishingly small emergent low-energy
scale, ω∗, beyond which the FL behavior crosses over to nFL
dynamics. Thus, for ω∗ < |ω| < �, the scattering dynamics
can be represented by a power-law energy dependence, given
by −Im�ave(R = 0; ω) ∼ |ω|α(W ), where � is high-energy
cut-off frequency. This is further highlighted in Fig. 3(b)
where we plot the low-frequency regime of −Im�ave(ω) − a0

on a log-log scale. The ∼|ω|α(W ) functional dependence is
shown as the orange dashed-dotted lines in Fig. 3(b) and the
exponent, α, obtained with this fitting is found to be dependent
on W .

Furthermore, a closer look at the data reveals a region of
frequencies over which the Im �ave crosses over from ω2 to
|ω|α(W ) dynamics. Thus, for each disorder strength we should
not only estimate an approximate crossover point, ω∗, but also a
crossover region, δω∗. An example of such an analysis is shown
in Figs. 8(a) and 8(b) of Appendix B. In Fig. 4 we therefore
plot the extracted ω∗ as a function of W (represented as shaded
squares) and also mark the crossover region, δω∗, as vertical
bars. We observe that with increasing disorder, both ω∗ and δω∗
decrease sharply providing evidence for an ensuing QCP. The
crossover frequency, ω∗, thus emerges as a unique vanishing
energy scale indicating the emergence of a disorder-induced
non-Fermi liquid at a critical W = Wc. In other words, the
emergence of an arbitrarily small FL to nFL crossover energy
scale, ω∗, with increasing disorder, should lead to a qualitative
change in the ground state at W = Wc. As summarized in the
schematic represented by Fig. 1, our calculations thus bring out
the (low-) energy boundary that separates the non-Fermi liquid
physics of the disorder-driven QCP from the conventional FL.

Finally, we note that the ω∗ in Fig. 4 appears to deviate
and even slightly approach saturation. We speculate that this
is due to numerical intractability of the system close to the
localization transition, and that the crossover scale should in
fact vanish eventually at a finite critical disorder, Wc. The
main reasons for such a numerical bottleneck are that (i) the
regime of vanishing ω∗ entails impurity sites with vanishing
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FIG. 3. Disorder-averaged electronic self-energy: (a) The low-energy part of the average self-energy, −Im�ave(R = 0; ω), is shown for
U = 1.6, Nc = 38, and various W ’s as indicated. A clear crossover from a Fermi liquid, ∼ω2 to non-Fermi liquid ∼|ω|α is observed. On a
linear scale this features as the formation of a cusp at low energies. (b) Main panel: Some representative data (W = 2.25, 2.5, 2.7, 3.1) of (a) are
plotted on a log-log scale to deduce the power, α, as a function of W and also deduce the crossover frequency, ω∗ (using a procedure demonstrated
in Fig. 8 of Appendix B), beyond which −Im�ave(R = 0; ω) evolves from ∼ω2 (black dashed line) to |ω|α(W ) (orange dashed-dotted line),
where α(W ) ≈ 1.7, 1.3, 1.1, 0.7 for W = 2.25, 2.5, 2.7, 3.1, respectively, as shown in main panel. Note that a value approximately equal to
−Im�ave(R = 0; ω = 0)(= a0) has been subtracted. (b) Inset: A similar analysis as in (b) (main panel) is illustrated for a relatively lower
W , namely, W = 1.6. Here, the crossover occurs at a sufficiently higher energy identified as the peak of the respective distribution (shown in
Fig. 11) of Appendix D.

Kondo scales, which is very hard to capture, and (ii) the
Anderson-Mott insulating regime exhibits a spectral function
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FIG. 4. FL to nFL crossover energy scale (ω∗) and energy range
(δω∗): The ω∗ (shaded squares) and δω∗ (vertical bars) are estimated
using the method described in the caption of Fig. 8 and are plotted as
a function of W . Both ω∗ and δω∗ decrease rapidly as W increases
providing evidence of the approach toward a disorder-driven quantum
critical point that separates a Fermi liquid phase from a non-Fermi
liquid phase at higher disorder. This quantifies the boundary marked
as “crossover scale” in Fig. 1.

with singularities that appear as a line of poles, which is again
very difficult to capture numerically. The apparent saturation is
thus a result of this numerical drawback. The physical reasons
behind this numerical difficulty also indicate that one needs to
go beyond the current formalism to be able to simultaneously
handle the local moments that would form in presence of the
remaining Kondo screened moments.

Furthermore, the existence of a finite critical disorder has
been found in three works, which have considered either a
closely related system or the same system as in the present
paper. (a) The two-loop RG work of Punnoose and Finkel’stein
[31] established the existence of a QCP at a finite Wc in an
interacting, disordered two-dimensional electron gas with an
anomalous enhancement in the magnetic susceptibility near the
QCP. (b) Typical medium theory calculations (Nc = 1 limit of
TMDCA) using NRG as the impurity solver [43], and using
LMA by the present authors [64], have established that the
critical disorder is finite in the disordered Hubbard model.
(c) Recent exact TMDCA calculations (by two of our current
authors) [35] indicate a finite critical disorder for Anderson
localization, WAL

c , in the weak-coupling regime of the three-
dimensional Hubbard model. The realization of a vanishingly
small ω∗ indicates emergent local-moment formation that is
naturally influenced by the states at the band center because of
Kondo effect. Furthermore, these states have a natural tendency
to Anderson localize at WAL

c . Thus, although Wc, at which
ω∗ vanishes, may not coincide with WAL

c , it can definitely be
considered as a lower bound for Anderson localization of the
system, i.e., Wc � WAL

c . Thus, if the latter is finite, the former
must also be finite.
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FIG. 5. Comparison of the low-energy dynamics of the imag-
inary part of the average self-energy for different cluster sizes:
−Im�ave(R = 0, ω) is shown for U = 1.6 and W = 2.7 with a0 =
−Im�ave(R = 0, ω = 0) subtracted. The dotted lines represent fits
to the Fermi liquid form, given by ∼aω2. While small cluster
sizes of Nc = 1, 12 fit well to this form, the systematic deviation
is clearly noticeable for Nc = 28, 38 evident from the development
of a low-energy cusp. Moreover, for both Nc = 28 and Nc = 38, the
Im�ave(R = 0, ω) demonstrate very similar frequency dependence,
with estimated α(W ) ≈ 1.2, 1.1 for Nc = 28, 38, respectively, indi-
cating a rapid saturation of α(W ) with increasing Nc.

The systematic incorporation of the short-range spatial
fluctuations due to disorder is of paramount importance in order
to observe such nFL scattering. We corroborate this through
Fig. 5 where we plot the imaginary part of the average local
self-energy, �ave(R = 0; ω), with a0 subtracted, for different
cluster sizes, namely, Nc = 1, 12, 28, 38. We emphasize that,
the analysis of the low-energy frequency dependence of the
scattering dynamics is better understood with the subtraction
of a0. (For a comparison of a0 we urge the reader to refer
to Fig. 7 in Appendix A.) This comparison illustrated in
Fig. 5 highlights that the systematic inclusion of short-range
correlations due to disorder with increasing Nc is absolutely
crucial for the non-Fermi liquid dynamics manifested through
the vanishingly small, emergent energy scale ω∗. Clearly,
the low-energy frequency dependence of −Im�ave(R = 0, ω)
for Nc = 28 and Nc = 38 are hard to distinguish, with α ≈
1.2, 1.1 for Nc = 28, 38, respectively. (A similar tendency is
noted for a0 as the Nc is systematically increased as illustrated
in Fig. 7 in Appendix A.) The respective ω∗ ≈ 10−4, 4 × 10−5

for Nc = 28, 38, respectively. This would thereby imply a
strong tendency for α(W ) to saturate with increasing Nc and
additionally suggests that Nc = 38 is indeed close to the true
thermodynamic limit.

While a precise statement about the absolute value of α(W )
should involve analysis for Nc > 38, the evidence of an α(W )
considerably less than the Fermi liquid value of 2 is already
guaranteed by Nc = 28 and Nc = 38. The rapid approach to
the thermodynamic limit within the TMDCA is encouraging
and is also in agreement with recent calculations on the 3D
Anderson disorder model for noninteracting [34] and weakly
interacting systems [35] with the TMDCA framework, that
have also shown rapid convergence as a function of increasing
cluster size.

Additionally, as a manifestation of the nFL scattering
dynamics, the spectral line shape, shown in Appendix C, also
develops a cusp, in the vicinity of the Fermi energy that
becomes more pronounced as ω∗ → 0 and one approaches
QCP. The evolution of the low-energy spectral line shape is
depicted in Fig. 10 of Appendix C. In Fig. 9 of Appendix C we
also report the behavior of the typical density of states, ρtyp(ω),
and the arithmetically averaged density of states,ρarith (ω), over
all energy scales for different W ’s and two different interaction
strengths, namely, U = 1.6, 2.0.

Finally, how would this observation manifest in the temper-
ature dependence of the resistivity? Let us assume that there
are no vertex corrections just like in infinite dimensions. Then
the dc resistivity is given by σdc = ∫ ∞

−∞ dω(− ∂nF

∂ω
) 1

2|Im�ave (ω)| .
At zero temperature, T = 0, this corresponds to a finite
resistivity determined by the elastic scattering off the random
potential. It can be readily seen that at T �= 0, in a clean
FL, where Im�ave(ω) ∼ ω2 this corresponds to ∼T 2 behavior
of the resistivity at low temperatures, when T  T ∗ where
T ∗ is the FL coherence scale represented by the Kondo
scale in infinite dimensions. Let us now apply this naive
picture to the present calculations, where we may express
Im�ave(ω → 0) as −Im�ave(ω → 0) ∼ a0 + ω2�(|ω∗| −
|ω|) + |ω|α�(|ω∗∗| − |ω|)�(|ω| − |ω∗|). Clearly, now ρ(T )
crosses over from a T 2 behavior to a T α(W ) behavior thus
bearing signatures of a nFL beyond a temperature T ∗ asso-
ciated with ω∗. While such an Im� has indeed been observed
in this work, the above expression should be used with care.
This is because the vertex corrections have been completely
ignored even though we are treating short-range fluctuations
due to the random potential. Nevertheless, it paves the way for
a manifestation of the nFL scattering dynamics on the transport
quantities in such systems, and the complete analysis including
vertex corrections is left as a future challenge.

B. Distribution of Kondo scales

We measure the distribution of Kondo scales P (TK ) on
the cluster following the method we employed previously for
Nc = 1 [64]. In our previous study for Nc = 1 [64], we found
that P (TK ) was dominated by a single sharp peak defining a
typical value at the bottom of the distribution. As a result, the
calculations reveal a FL characterized by this typical value.
In the current calculations we find that as we increase the
cluster size Nc the distribution of impurity environments also
increases yielding a broader distribution P (TK ). (In Fig. 5 of
Appendix A we also plot the self-energy for different Nc’s and
see that the nFL character emerges with increasing Nc.) We
now look into the evolution of P (TK ) by gradually increasing
W at a fixed U = 1.6 and cluster size Nc = 38. The main
panel of Fig. 6 illustrates P (TK ) on a linear scale. At lower
W ’s, P (TK ) demonstrates a prominent peak, T

peak
K , leading to

largely Kondo Fermi liquid formation at roughly this energy
scale. As we increase W , the lower TK tails grow, further
spanning even lower energies, such that at W = 2.9 the tail
merges with the T

peak
K resulting in a broad distribution. At such

W ’s, extremely low Kondo scales, i.e., TK � 10−5, emerge to
be highly probable. For higher W ’s (e.g., W = 3.1), as ω∗ →
0, the P (TK ) tends to acquire a finite intercept [P (TK = 0]
as TK → 0. This behavior is even more evident in the inset
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FIG. 6. Distribution of Kondo scales: In the presence of disorder,
one obtains a distribution of Kondo scales as shown in the main
panel on a linear scale for U = 1.6, Nc = 38 and increasing W =
1.6, 2.5, 2.9, 3.1. For low enough disorder, W = 1.6, the distribution
is marked by the presence of prominent maximum and a lower TK tail
bounded from below. At intermediate W (W = 2.5), even lower scales
emerge indicated by a broader lower TK tail and a broader maximum
of the distribution that gradually merges with the tail. At sufficiently
large W (W = 3.1), as ω∗ → 0 (in Fig. 4), the distribution tends
to acquire a finite intercept [P (TK = 0] as TK → 0. This becomes
evident in the inset. Inset: P (TK ) is plotted on a log-log scale to
highlight the evolution of the lower TK tail.

of Fig. 6 where the respective P (TK ) is plotted on a log-log
scale. Figure 6 is, in fact, reminiscent of the P (TK ) ∼ T

β−1
K

form obtained in earlier calculations in the strong-coupling
limit ([20,42,65]) that related the W ’s with β < 1 to electronic
Griffiths phases and an associated nFL behavior of the response
functions.

Strongly correlated systems with prevalent Kondo screen-
ing currently offer two kinds of QCP [3,4]; one represents
the conventional Hertz-Millis-Moriya scenario in which the
Kondo scale remains nonvanishing even after a magnetic
transition. In the other kind, dubbed the local quantum crit-
ical scenario, the magnetic transition is accompanied by the
breakdown of the Kondo singlet. Our calculations show that
the vanishing low-energy scale, ω∗, identifying the QCP is
concomitant with P (TK = 0) being nonzero. Thus we may
infer a Kondo destruction scenario of the associated QCP,
driving the system toward formation of local moments, an
essential aspect of strongly correlated disordered systems [66–
69]. However, the simultaneous occurrence of a broad P (TK ),
spanning several orders of energy scales, also emphasizes a
mechanism different from that of the local QCP picture [3].
The spatial inhomogeneity due to disorder plays an essential
role in causing Kondo destruction at a finite fraction of sites,

while the remaining sites continue to retain local FL character
across the ω∗ → 0 transition. Our results thus demonstrate a
different kind of QCP. It differs from the local QCP in the
exponents in the QC regime, e.g., α changes continuously as
the QCP is approached. With increasing disorder, presumably,
there would be a “Phase 2,” as illustrated in Fig. 1, identifying
the nature of which is beyond the scope of the current work. It
is, however, worth mentioning that self-consistent unrestricted
Hartree-Fock studies [22,44,70,71] predict distinct mean-field
magnetic ground states owing to the formation of local mo-
ments including a spin- glass phase [22,44,72,73].

IV. CONCLUSIONS

We present a study investigating the influence of short-
ranged, dynamical fluctuations due to disorder on the ef-
fective Kondo screening in a disordered, strongly correlated
system, within the TMDCA framework. We focus on the
disorder-averaged scattering dynamics. Our findings reveal the
existence of an intrinsic energy scale, ω∗, that behaves like a
critical boundary separating the disorder-induced nFL dynam-
ics from the conventional FL scattering in strongly correlated
disordered systems. In other words, as the local moments
emerge, exemplified by the conventional phenomenology of
a broad distribution of Kondo scales, an intrinsic energy scale
of the global system, namely, ω∗, also tends to continuously
vanish such that the system remains a FL only at energies |ω| <

ω∗. This suggests that the rare regions of “emerging” local
moments, dubbed as Griffiths singularities, act as precursors
to a disorder-driven QCP that was heretofore unidentified. The
systematic feedback of the instabilities induced by these local
moments, into the underlying FL from which they emerge,
give rise to this intrinsic energy scale which would manifest as
disorder-induced nFL excitations in proximity to the QCP. We
speculate that the ω∗ → 0 signals the onset of a Griffiths phase,
since the fraction of sites with TK → 0 might act as nucleation
centers for clusters of local moments in an otherwise Fermi
liquid system, albeit with a distribution of Kondo scales.

The results presented here provide a first step in understand-
ing the role of spatial fluctuations due to disorder on electron
correlations within an efficient computational framework. An
essential ingredient missing in these results is the absence of the
physics due to the intersite Ruderman-Kittel-Kasuya-Yosida
interaction between the emerging local moments. The frame-
work presented here opens an interesting avenue to incorporate
spatially nonlocal intersite correlations into single-particle
quantities in either the charge channel (nearest-neighbor) or the
spin channel (exchange) in a single theory, including nonlocal
fluctuations due to disorder beyond stat-DMFT. This direction
is left as a future challenge.
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FIG. 7. Comparison of the low-energy dynamics of the imaginary
part of the average self-energy for different cluster sizes: the imaginary
part of the average self-energy, given by −Im�ave(R = 0, ω) is shown
for U = 1.6 and W = 2.7 on a wider energy range compared to Fig. 5.
The dotted lines represent fits to the Fermi liquid form, given by
∼aω2. While small cluster sizes of Nc = 1, 12 fit well to this form,
the systematic deviation is clearly noticeable for Nc = 28, 38.

APPENDIX A: SCATTERING DYNAMICS FOR
DIFFERENT CLUSTER SIZE

In all our calculations presented in the main text we consid-
ered a specific cluster size of Nc = 38. In Fig. 5 of the main text
we demonstrated that the low-energy frequency dependence
of the disorder-averaged self-energy indeed tends to converge
to a particular functional form with increasing Nc. In order
to justify this statement we had compared −Im�ave(R =
0; ω) − a0 for different Nc at a fixed W = 2.7. In Fig. 7 we
show the same, but without subtracting the zero-frequency
component, a0. Similar to the observation for the low-energy
frequency dependence, the a0 values for Nc = 28 and Nc = 38
also appear close enough quantitatively.

APPENDIX B: ESTIMATION OF THE CROSSOVER
ENERGY SCALE AND RANGE

In this section we demonstrate the procedure by which
we estimate the ω∗ and the δω∗ plotted in Fig. 4 using two
representative examples. The δω∗ obtained from this analysis
may be interpreted as a range of frequencies over which the
estimated ω∗ may exist. In Figs. 8(a) and 8(b) we plot the
disorder-averaged electron self-energy, −Im�ave(R = 0, ω)
[with −Im�ave(R = 0, ω = 0 = a0) subtracted] as a func-
tion of energy for disorder strength (a) W = 2.7 eV and (b)
W = 3.1 eV. We identify a range of frequencies δω∗ that
is bounded by two frequencies ω1 and ω2 over which the
scattering dynamics crosses over from Fermi liquid (ω2) -like
to non-Fermi liquid (|ω|α) behavior, such that ω1 < ω∗ < ω2.
The crossover frequency for each disorder strength is thereby
estimated as ω∗ = ω1+ω2

2 .

APPENDIX C: DENSITY OF STATES

In this section we analyze the density of states for dis-
order strengths considering Nc = 38. In Fig. 9 we compare
the average (ρarith) and the typical (ρtyp) DOS for different
disorder strengths and two representative parameters for U . In
agreement with conventional observation for noninteracting
disordered systems, ρtyp and ρarith look similar at low W ,

FIG. 8. Procedure for obtaining the crossover frequency ω∗ and
the crossover region: The disorder-averaged electron self-energy
−Im�ave(R = 0, ω) is plotted as a function of energy, for disorder
strength (a) W = 2.7 eV and (b) W = 3.1 eV. We notice that there
exists a range of frequencies over which the low-energy scattering
dynamics crosses over from Fermi liquid (ω2) -like to non-Fermi
liquid (|ω|α) behavior. This crossover range, symbolized by δω∗, is
bounded by two such frequencies as shown by the red (open) squares
in (a) and (b). The respective crossover frequency ω∗ is thereby
estimated as the midpoint of this region. For (a) W = 2.7 eV we
obtain ω∗ ≈ 4 × 10−5 eV with a crossover range lying approximately
between 3 × 10−5 eV and 5 × 10−5 eV over which the FL excitations
cross over to approximately |ω|-like behavior. (b) For W = 3.1 eV
we obtain ω∗ ≈ 8 × 10−6 eV with a crossover range lying between
4 × 10−6 eV and 1.3 × 10−5 eV over which the FL excitations cross
over to an approximately |ω|0.7-like behavior.

showing appreciable differences at higher W ’s. It is worth
noting that for W = 2.0, the Hubbard bands broaden for
U = 2.0 as compared to U = 1.6, indicating the system at
U = 1.6(U/W < 1) feels an effectively higher interaction
strength compared to U = 2.0(U/W = 1). In the main panel
of Fig. 10 we demonstrate the evolution of the low-energy
features of ρarith(R = 0, ω) for different W ’s at U = 1.6 and
Nc = 38.

The average DOS (ADOS) also follow similar features as
the average self-energy �ave(R = 0; ω) in the sense that with
increasing disorder, the ADOS also starts developing a singular
(cusplike) feature on the low-energy scales. A clear deviation
from the Fermi liquid line shape can be observed for W =

0

0.2

0.4

0.6 ρarith
ρtyp

-2 0 20

0.2

0.4
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-2 0 2
ω

-2 0 2

U=1.6U=1.6 U=1.6

W=0.8 W=2.0 W=2.9

U=2.0 U=2.0 U=2.0

FIG. 9. Density of states: The arithmetically averaged density of
states ρarith (R = 0, ω) (ADOS) is compared with the geometrically
averaged density of states ρtyp(R = 0, ω) (TDOS) at two representa-
tive U = 1.6, 2.0 and Nc = 38, for different W ’s.
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FIG. 10. Density of states at low energy scales: [Main panel]:
The low energy form of the arithmetically averaged density of states
(DoS), ρarith (ω) at U = 1.6 and cluster size, Nc = 38 is plotted for
different disorder strengths, W . The development of cusp in the
low energy spectral lineshape is evident. [Inset]: Two representative
data for W = 2.0 and W = 2.7 are plotted with the ρarith (R = 0; 0)
subtracted. The low energy form ofρarith (R = 0; 0) − ρarith (R = 0; ω)
for W = 2.0 fits well to a form ∼ ω2 as dictated by the Fermi
liquid (FL) theory where as for W = 2.7 clear deviation from the
conventional lineshape is evident. However, note that at the lowest
energy scales a FL form should still hold because the self-energy is
still a FL at the lowest energy scales.

2.7 from the inset of Fig. 10 where the quantity ρarith(R; 0) −
ρarith(R; ω) is plotted for W = 2.0 and W = 2.7.

APPENDIX D: DISTRIBUTION OF KONDO SCALES FOR
LOWER DISORDER STRENGTHS

In Sec. III B we only discussed the distribution of Kondo
scales for moderate to high disorder values. In the following
we briefly discuss the respective P (TK ) obtained for lower
disorder strengths and also compare them with the Nc = 1
or DMFT limit. In Fig. 11, we plot P (TK ) for several W ’s
ranging from W = 0.8 to W = 2.0. A well-defined peak at an
energy scaleT

peak
K can be identified for these disorder strengths.

Such T
peak
K ’s were also identified within our TMT-DMFT cal-

culations, and were identified as universal low-energy scales,
within a local theory (see [64] for details). In concurrence with
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FIG. 11. Distribution of Kondo scales for lower disorder
strengths: The evolution of the distribution of Kondo scales, P (TK ), is
demonstrated as a function of increasing the disorder strength, shown
for W = 0.8, 1.2, 1.6, 2.0 at a fixed interaction strength, U = 1.6. A
well formed peak at an energy T

peak
K can be identified that initially

shifts toward higher energy scales and only beyond a certain disorder
strength shifts toward lower energy scales. At W = 0.8, a relatively
narrow distribution is obtained in contrast to higher W ’s where P (TK )
starts developing broad tails on the higher TK side and also tails
reaching lower and lower TK ’s as W is increased. The Nc = 1 limit
is also shown as a blue dashed curve.

the local theory, T
peak
K initially increases and only beyond a

certain W does it start decreasing, reflecting upon an initial
disorder screening of U followed by a subsequent cooperative
effect where both W and U tend to suppress the effective
hybridization resulting in reduced charge fluctuations and thus
manifesting as a reduced Kondo scale [64]. However, unlike
a local theory, inclusion of short-range correlation effects of
disorder leads to the emergence of a low-TK tail [65] that was
completely absent in the TMT-DMFT calculations. In Fig. 11
this fact is illustrated as a blue dashed line for Nc = 1 and
as a blue solid line with open circles for Nc = 38 and for
a particular disorder strength of W = 2.0. For a relatively
low disorder, W = 0.8, the distribution is narrower, while
long tails spanning a wider range of TK ’s develop as W is
gradually increased. More importantly, systematic inclusion
of short-range correlation effects makes the system explore
low-energy scales that were left untrod within a local theory.
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