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Magnetic states and Kondo screening in Weyl semimetals with chiral anomaly
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We theoretically study the localized magnetic states and the Kondo screening of a magnetic impurity in the
bulk of Weyl semimetals (SMs). The linear dispersion near the Weyl nodes and the anomalous broadening of the
impurity level lead to a nonvanishing magnetic moment in a wide region of parameters. The magnetic susceptibility
is significantly enhanced by increasing the chirality imbalance for the chemical potential fixed at the Weyl nodes.
The Kondo effect takes place whenever the chemical potential is tuned away from the nodes. The low-temperature
susceptibility is determined by both the Kondo screening and the broadening of the magnetic impurity level. In the
presence of chiral anomaly, the Kondo screening displays opposite behaviors for the chemical potential situated
below and above the Weyl nodes. The magnetic susceptibility can be tuned by the charge imbalance of the nodes,
which provides a scheme to study the chiral anomaly in Weyl SMs.
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I. INTRODUCTION

The discovery of the three-dimensional (3D) topological
materials has attracted extensive attention in the last decade
[1–5]. For example, the topological insulators characterized
by metallic spin-polarized surface states connecting the bulk
valence and conduction bands, have great potentials in spin-
tronics [6–8]. More recently the three-dimensional Dirac SMs
with topologically nontrivial bulk states are experimentally
observed in Na3Bi [9] and Cd3As2 [10–12]. The Dirac SMs are
3D counterparts of graphene that the conduction and valence
energy bands with linear dispersions touch at Dirac nodes [13].
Breaking either time-reversal symmetry or inversion symmetry
splits a Driac node into a pair of Weyl nodes with opposite
chirality [14]. Topological Weyl states have been observed
in TaAs [15–17] and NbAs [18], which possess interesting
physics, such as the chiral anomaly generated large negative
magnetoresistance under the parallel magnetic and electric
fields [19,20]. This chiral magnetic effect (CME) is a solid
evidence for the charge imbalance between the Weyl nodes
[21–25]. Recently, other schemes are theoretically proposed
to detect the chiral anomaly, such as the nonlocal transport
[26], optical conductivity [27–30], and the plasmon modes in
Weyl SMs [31].

The Kondo effect originating from the screening of a
magnetic impurity by the itinerant conduction electrons has
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been well understood in the community of condensed matter
physics [32,33]. At the temperature T < TK , the formation
of localized Kondo singlet state reflects the characteristics of
conduction band structures [34–39], where TK is the Kondo
temperature. Therefore, one may suppose that the chirality
imbalance near the Weyl nodes can be investigated through
the Kondo effect. For a magnetic impurity in the bulk of Dirac
and Weyl SMs, the Kondo screening depends on the chemical
potential due to the particular band structure near the nodes.
When the chemical potential is tuned near the Weyl nodes, the
Kondo screening is very weak due to the lower density of states
[40]. The variation of Kondo temperature with the chemical
potential is determined by the symmetry breaking of the hosts
[41]. In the presence of long-range scalar disorder, the Kondo
effect is characterized by a distribution of Kondo temperature,
which generates a strong non-Fermi-liquid behavior around
the nodes [42]. Recently, the Kondo screening of a magnetic
impurity by the tilted Dirac surface states and the Weyl SMs
Fermi arcs has been investigated by a variational method
[43,44]. The spin correlation function between the magnetic
impurity and Dirac surface states shows power-law decay with
respect to the spatial displacements, and displays strongly
spatial anisotropy due to the spin-orbit coupling [43,45]. The
spatial spin-spin correlations in Fermi arcs exhibit high spatial
anisotropy, which can be tuned by chemical potential [44].

In the present work we focus on the impacts of chiral
anomaly on the localized magnetic states of a magnetic
impurity and its Kondo screening in Weyl SMs. As shown
schematically in Fig. 1, the magnetic impurity is coupled with
the Weyl nodes with chirality dependent chemical potentials
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FIG. 1. The Kondo screening of a magnetic impurity in the bulk
of Weyl SMs, where a spin-down (-up) electron on the impurity level
εd is replaced by a spin-up (-down) electron through the empty or
double occupation virtual states. The chiral anomaly introduces the
charge imbalance between the Weyl nodes with opposite chirality
(h = ±), and the chemical potentials μ± = μ0 ± δμ/2. μ0 is the
chemical potential in the absence of chiral anomaly, and δμ denotes
the charge imbalance.

μ± = μ0 ± δμ/2, where the chirality imbalance δμ can be
introduced and tuned by parallel magnetic and electric fields
[21,29,31]. In such a system, the phase boundary between
the magnetic and nonmagnetic regions shows particle-hole
asymmetry due to the linear dispersion near the Weyl nodes.
The anomalous broadening of the magnetic impurity level
leads to the local moment existing in a wide region of
parameters, even extending to some empty or double occupied
regions. In the presence of chiral anomaly, the range of
magnetic state is reduced in conventional single occupied
regions, while the range of magnetic moment is enlarged in
double occupied and empty regions. These characteristics in
the formation of localized magnetic moment suggest that some
interesting features would be observed in the Kondo screening
of the local moment. It is found that the Kondo effect is
absent for the chemical potential lies at the nodes (μ0 = 0).
By increasing the coupling or the chirality imbalance, the
susceptibility is significantly enhanced due to the anomalous
broadening of the impurity level. The Kondo screening takes
place whenever μ0 �= 0, and the susceptibility is determined by
both the Kondo screening and the broadening of the magnetic
impurity level. In the presence of chiral anomaly, the Kondo
screening is suppressed when the chemical potential is tuned
above the Weyl nodes μ0 > 0. On the contrary, the Kondo
screening is significantly enhanced by the chirality imbalance
for μ0 < 0. The magnetic susceptibility can be conveniently
controlled by the chirality imbalance. Thus, the chiral anomaly
in Weyl SMs can be detected by measuring the low-temperature
susceptibility.

The paper is organized as follows. In Sec. II we present the
model of a magnetic impurity coupled with the Weyl nodes
with opposite chirality. In Sec. III we discuss the localized
magnetic states of a magnetic impurity in Weyl SMs. In Sec. IV
the Kondo screening of the local moment and the behaviors
of magnetic susceptibility are discussed in the presence of
chiral anomaly. The influence of the time-reversal symmetry
breaking and the Zeeman splitting induced internode spin-

flipping scattering (SFS) processes are also discussed. A brief
conclusion is devoted to Sec. V.

II. HAMILTONIAN

The Hamiltonian of a magnetic impurity in Weyl SMs can
be read

H = H0 + HV + Hd, (1)

where

H0 =
∑

k

�
†
k[τ z(υF k − Q) · σ − μ]�k (2)

describes the bulk electrons near the Weyl nodes Q =
(0, 0,±Qz), and the vector k =(kx, ky, kz). σ and τ are the
Pauli matrices acting on spin and chirality space, respectively.
The basis vector reads �k = (c+k↑ c+k↓ c−k↑ c−k↓)T ,

where the operators c
†
hks (chks) stands for the creation (annihila-

tion) of a conduction electron in the Weyl nodes with opposite
chirality h = ±, and s(=↑,↓) is the spin index, υF denotes
the Fermi velocity. The notation μ = diag(μ+, μ+, μ−, μ−)
represents the chemical potentials of the nodes. The impurity
is described by

Hd =
∑

s

εdsd
†
s ds + Undsnds̄ , (3)

where εds is impurity level, U represents the Coulomb repul-
sion, d

†
s (ds ) denotes the creation (annihilation) operator of d

electrons, and nds = d
†
s ds . In Weyl SMs, the spin degeneracy

of impurity level would be removed due to the time-reversal
symmetry breaking. Then, one can denote εds = εd + szEZ

with sz = ±1/2, and EZ is the Zeeman interaction of the
impurity level. In general, the electric field plays a role to shift
the level εd slightly.

The hybridization between the conduction electrons and the
magnetic impurity is

HV =
∑
hks

(Vkc
†
hksds + H.c.). (4)

By diagonalizing the noninteracting Hamiltonian H0, we
obtain the single-particle energy ε1hk(2hk) = −μh ± υF λhk

with λhk = h

√
(kz − hQz)2 + k2

x + k2
y . The corresponding

four eigenstates are α
†
1hk(2hk) = c

†
hk↓ + η1hk(2hk)c

†
hk↑ with

η1hk(2hk) = kz±|λhk |
k+

and k+ = kx + iky . Then the noninteract-
ing Hamiltonian can be written as

H0 =
∑
ihk

εihkα
†
ihkαihk, (5)

and the hybridization term becomes

HV =
∑
ihk

(−1)i−1V0(ξhkα
†
ihkd↑ − ζhkα

†
ihkd↓), (6)

where i = 1, 2, ξhk = k+
2λhk

, ζhk = kz+|λhk |
2λhk

, and the coupling
amplitude is taken Vk = V0 for simplification. In Wely SMs,
the spin-orbit coupling couples the spin and orbital degrees
of freedom, then creates an indirect coupling between the
impurity and the conduction electrons with opposite spin as
shown Eq. (6).
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III. LOCALIZED MAGNETIC STATES

One of the conspicuous characteristics of Weyl SMs is
the linear dispersion along three-momentum directions near
the Weyl nodes. It is found that a magnetic impurity would
introduce interesting physics due to the linear dispersion
of conduction electrons, such as the anomalous localized
magnetic states [46–48] and the pseudogap Kondo effect in
graphene [49–52]. In this section we discuss the formation of
magnetic moment for an impurity coupled with the bulk states
of Weyl SMs. The localized magnetic states can be studied in
the frame of Hartree-Fock approximation (HFA) [46,53]. The
Hamiltonian Eq. (1) can be treated by the equation of motion
approach (EOM) [54]

ω〈〈A; B〉〉 = 〈[A,B]+〉 + 〈〈[A,H ]−; B〉〉, (7)

where the subscript ± stands for the anticommutation (commu-
tation) relationship, and 〈〈A; B〉〉 denotes the retarded Green’s
function (GF) composed by the operators A and B. The
impurity GF can thus be written as

ω〈〈ds ; d
†
s 〉〉 = 1 + εds〈〈ds ; d

†
s 〉〉 + U 〈〈dsnds̄ ; d

†
s 〉〉

+
∑
ihk

V ∗
ihks〈〈αihk; d†

s 〉〉, (8)

with Vihk↑ = −V0(−1)iξhk and Vihk↓ = V0(−1)iζhk . The HFA
can be reached by taking the approximation 〈〈dsnds̄ ; d

†
s 〉〉 ≈

〈nds̄〉〈〈ds ; d
†
s 〉〉, then we obtain

〈〈ds ; d
†
s 〉〉 = 1

ω − εds − �0
s (ω)ηs (ω) − U 〈nds̄〉 , (9)

where the notations are �0
s (ω) = �0�F

∑
h[(−iπ − 2D

ω+μh
+

ln |D−ω−μh|
|−D−ω−μh| )(ω + μh)2], ηs (ω) = 1 + �0

s (ω)
ω−εds̄−�0

s (ω)−U〈nds 〉 ,

�0 = π |V0|2/D, and �F = D/2π2υ3
F . In the present work,

the half-band width D = 1 is taken as the unit of energy. The
occupation is 〈nds〉 = − 1

π

∫
f (ω)Im〈〈ds ; d

†
s 〉〉dω, and the

Fermi distribution function is defined in a pseudoequilibrium
form f (ω) = ∑

h[fh(ω)(ω + μh)2]/
∑

h(ω + μh)2 [55,56],
fh(ω) is the Fermi function of the conduction electrons on the
Weyl nodes. Then, the GF and the occupation on impurity level
can be numerically obtained by self-consistently calculations.
By tuning the parameters, such as μ0, εd , and �0, one can
always obtain a nonmagnetic solution (nd↑ = nd↓) based
on the GF given by Eq. (9), while the magnetic solutions
(nd↑ �= nd↓) are merely obtained in the magnetic regions
[53]. The localized states are mainly determined by exchange
coupling between the magnetic impurity and the conduction
bands. The Zeeman splitting is believed to have no qualitative
influence on the local moment of the magnetic impurity, and
we take EZ = 0 in the calculations for simplification.

In Fig. 2 we show the localized magnetic state region
as a function of (μ0 − εd )/U and π�0/U in the absence
of chirality imbalance (δμ = 0). Differing from that for a
magnetic impurity in normal metal [53], the phase boundary
between the magnetic and nonmagnetic state is not symmetric
with respect to (μ0 − εd )/U = 0.5. In the case of μ0 > 0,
the magnetic impurity possesses local moment even when
the impurity level is above the Fermi level (μ0 − εd < 0),
as shown in Fig. 2(a). The magnetic regions, corresponding

FIG. 2. The phase boundary between the magnetic and nonmag-
netic regions of a magnetic impurity coupled with two Weyl nodes.
The chemical potential μ0 is tuned above (a) and below (b) the nodes
with μ0 = ±0.05, ±0.1, ±0.2, and other parameters are Ez = 0,
Qz = 0.1, U = 2, and the temperature T = 0.

to the chemical potentials μ0(= 0.05, 0.1, 0.2), are attributed
to anomalous broadening of impurity level around the Fermi
level. As shown in the inset of Fig. 4(a), the impurity level
gets close to the Weyl nodes (μ0 = 0) by increasing the
coupling �0, and the half-width of the level becomes narrower
due to the vanishing of DOS. In fact, the formation of local
moment in empty-occupied regions (μ0 − εd < 0) has been
obtained for a magnetic adatom on graphene [46]. In that
case, the linear dispersion around the Dirac point leads to
the anomalous broadening of impurity level near the Fermi
level for εd > μ0. Oppositely, in the case of μ0 < 0, the
magnetic moment exists even when the impurity is in double
occupied states [(μ0 − εd )/U > 0], see the magnetic regions
with μ0 = −0.1,−0.2. The phase boundary between magnetic
and nonmagnetic regions shows particle-hole asymmetry for
the chemical potential μ0 posited above and below the Weyl
nodes. In the presence of chiral anomaly, the chemical potential
differences δμ are introduced near the Weyl nodes. Corre-
spondingly, the localized magnetic states are influenced by the
chiral anomaly. In Figs. 3(a) and 3(b) we show the range of
the magnetic states is reduced by the chirality imbalance δμ in
a conventional single occupied region 0 < (μ0 − εd )/U < 1.
However, the range of the magnetic states are enlarged in the
empty regions (μ0 − εd )/U < 0 as shown Fig. 3(a), where the
magnetic impurity situates above the Fermi level. Oppositely,
the magnetic regions are expanded in double occupied state
when the chemical potential is tuned below the Weyl nodes,
see Fig. 3(b). In addition, the magnetic states extends to
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FIG. 3. The influence of the chiral anomaly on the phase boundary
between the magnetic and nonmagnetic states of a magnetic impurity
in Weyl SMs. (a) and (b) The chemical potential situates above and
below the Weyl nodes with μ0 = ±0.1 and δμ = 0.0, 0.02, 0.04.
Other parameters are the same with that in Fig. 2.

(μ0 − εd )/U < 0(> 1) for μ0 = ±0.1 around the atomic limit
(�0 → 0). This is attributed to the chirality imbalance near the
Weyl nodes. These characteristics of the localized magnetic
states in Weyl SMs inspire us to study the Kondo screening of
the local moment [41,49,57].

IV. KONDO EFFECT IN WEYL SMS
WITH CHIRAL ANOMALY

To capture the Kondo effect one must take some approx-
imations beyond the frame of HFA. In the present work we
treat the higher-order GF 〈〈dsnds̄ ; d

†
s 〉〉 in Eq. (8) by using the

Lacroix’s approximation scheme, see the Appendix, which can
qualitatively describe the Kondo physics at low temperature
[58,59]. After some straightforward calculations, the GF can
be obtained as

〈〈ds ; d
†
s 〉〉 =

1+U
〈nds̄ 〉+Qs (ω)

ω−εds−U−�s (ω)

ω − εds − �0
s (ω)ηs (ω)+U

�s (ω)+Qs (ω)�0
s (ω)ηs (ω)

ω−εds−U−�s (ω)

,

(10)

with �s (ω) = �0
s (ω) + �1

s (ω) + �2
s (ω), �l

s (ω) =
�0
π

∑
ihk

ζ 2
hk+ξ 2

hk

ω−εlihks
, l = (1, 2), ε1ihks = −εihk + εds̄ + εds + U ,

and ε2ihks = εihk − εds̄ + εds . Other notations are
�s (ω) = A1s (ω) + A2s (ω) and Qs (ω) = B1s (ω) − B2s (ω),

FIG. 4. The susceptibility of a magnetic impurity in Weyl SMs
with the chemical potential μ0 = 0. (a) The enhancement of mag-
netic susceptibility by increasing the coupling amplitudes �0 =
1.0, 1.5, 1.75 in the absence of chirality imbalance δμ = 0. The inset
is the local density of states (LDOS) of the magnetic impurity. (b) The
variation of magnetic susceptibility in the presence of chiral anomaly
with μ± = ±δμ/2, and the coupling amplitude �0 = 1.5. The inset is
the temperature dependent LDOS for the chiral imbalance δμ = 0.08.
Other parameters are the impurity level εd = −0.3, Qz = 0.1, and the
Coulomb repulsion U = 2.0.

with

Als (ω) = �0

π

∑
ihk

(
ζ 2
hk + ξ 2

hk

)
f (εihk )

ω − εlihks

(11)

and

Bls (ω) = �0

π

∑
ihk

(
ζ 2
hk + ξ 2

hk

)
f (εihk )Re[ηs (εihk )〈〈ds̄ ; d

†
s̄ 〉〉]

ω − εlihks

.

(12)

The impurity GF can be self-consistently calculated with the
above formulism.

At low temperature, the magnetic susceptibility directly re-
flects the Kondo screening of a magnetic impurity in the hosts.
The susceptibility is defined as χd = gμB |nd↑−nd↓|

H |H→0, where
μB denotes the Bohr magneton, g is the Landé factor, and H
represents a weak magnetic field. And we take μB = g = 1 in
the present work. When the chemical potential lies at the Weyl
nodes (μ = 0), the magnetic susceptibility shows significant
enhancement with the increase of coupling �0 as shown in
Fig. 4(a). This is attributed to the fact that the linear dispersion
near the Weyl nodes leads to the anomalous broadening of
the impurity level, see the inset of Fig. 4(a). The impurity level
becomes more close to Weyl nodes after being renormalized by
increasing the coupling �0. The half-width of the broadened
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impurity level narrows as the DOS of carriers decreases. In
this case, the Kondo screening of the magnetic impurity is so
weak that can be neglected due to the lack of DOSs around the
Weyl nodes. By increasing the temperature, the suppression
of susceptibility can be described by the Curie-Weiss law
χd = c/(T + T0), where c is a constant, and T0 characterizes
the localized magnetic states. By fitting the curves in Fig. 4(a),
the coupling amplitude�0(= 1.0, 1.5, 1.75) corresponds to the
parameters c(= 0.45, 0.55, 0.66) and T0(= 0.1, 0.04, 0.025),
respectively. It is noted that the Kondo screening is absent
due to the pseudogapped DOSs at the nodes [41,49]. The
magnetic susceptibility is enhanced by increasing the chirality
imbalance δμ at low temperature, see Fig. 4(b). Here the chiral
anomaly enhances the coupling between the magnetic impurity
and conduction electrons, and hence the localized magnetic
moment due to the anomalous broadening of the impurity level.
In the inset of Fig. 4(b), we plot the temperature dependent local
density of states (LDOS) of the magnetic impurity with δμ =
0.08. The peak in the LDOS is enhanced by increasing the tem-
perature T . This is the reason that the susceptibility is enhanced
at the temperature T < 0.01, and then it is suppressed due to
the thermal fluctuations for T > 0.01 as shown in Fig. 4(b).

The Kondo effect of magnetic impurity takes place by
tuning the chemical potential away from the Weyl nodes. In this
case, the magnetic susceptibility is determined by two factors:
the enhancement of magnetic susceptibility due to anomalous
broadening of impurity level near the Weyl nodes, see the inset
of Fig. 4(a), and the suppression of the local moments by the
Kondo screening. In Figs. 5(a) and 5(b) the low-temperature
susceptibility displays typical Kondo screening behavior of the
magnetic impurity in the absence of chiral anomaly as shown
by the black lines δμ = 0 [60,61]. The magnetic susceptibility
is suppressed with the increasing of chirality imbalance δμ.
This is attributed to the chirality imbalance induced Kondo
splitting in the LDOS of the impurity. As shown in the insets
of Figs. 5(a) and 5(b), the subpeak of Kondo resonance at
μ− gets close to the impurity level, which enhances the
broadening of the impurity levels. While the Kondo resonance
peak at μ+ is suppressed due to the increasing of |μ+ − εd |.
Although the Kondo effect is taking place at low temperatures,
the susceptibility is different from the conventional Kondo
screening behaviors due to the chiral anomaly. The magnetic
susceptibility is monotonously suppressed with T for the
chemical potential above the nodes with μ0 = 0.3, as shown in
Fig. 5(a). In this case, the Kondo screening has been suppressed
due to the lack of DOS near the Weyl nodes even with the
decreasing of |εd − μ−|. However, the Kondo screening is
significantly enhanced for the chemical potential below the
Weyl nodes (μ0 = −0.2), as shown in Fig. 5(b). This is due
to the increasing of DOS of conduction electrons when μ−
gets close to the impurity level εd . In the presence of chiral
anomaly, the opposite behaviors of the magnetic susceptibly
for the chemical potential μ0 > 0 and μ0 < 0 originate from
the particular band structure near the Weyl nodes.

The Kondo screening of a magnetic impurity originates
from the coherent spin-flipping scattering (SFS) processes.
Where an electron on the impurity level is replaced by a
conduction electron with opposite spin through the empty or
double occupied virtual states. In the bulk of Weyl SMs, the
Kondo screening may contribute from both the internode and

FIG. 5. The magnetic susceptibility of an impurity in Weyl SMs
with finite DOSs at the Fermi level. (a) The chirality imbalance
δμ dependent susceptibility for the chemical potential above the
Weyl nodes with μ0 = 0.3, the coupling amplitude �0 = 0.5, the
impurity level εd = 0.2, and the Coulomb repulsion U = 2.0. (b)
The susceptibility varying with the chirality imbalance δμ for the
chemical potential posited below the Weyl nodes, and the parameters
are μ0 = −0.2, �0 = 0.4, εd = −0.3, Qz = 0.1, and U = 2.0. The
insets in (a) and (b) are the LDOS of the magnetic impurity with
δμ = 0.0, 0.04, 0.08.

the intranode spin-flipping scattering processes. In the absence
of chirality anomaly (μ+ = μ−), the magnetic impurity is
equally coupled with the Weyl nodes in the momentum space.
There is no difference between the internode and intranode
scattering processes because the Kondo screening is mainly
determined by the conduction electrons near the Fermi levels.
In the presence of chiral anomaly, however, the internode
scattering would be suppressed due to the energy difference
between Fermi levels of the nodes. In this case, the intranode
SFS still contributes to the Kondo screening. There are two
Kondo resonance peaks or antiresonance dip structures which
appear at the chemical potentials ω = μ±, as shown in the
insets of Figs. 5(a) and 5(b). The antiresonance dips originate
from the Fano interference between the Kondo resonance and
the significant broadened impurity level [62].

In the experiment, the chiral anomaly in Weyl SMs has
been introduced by the parallel magnetic and electric fields
[19,20]. The Kondo resonance peaks at the chemical potentials
μ± = μ0 ± δμ would be split with four subpeaks or dips by the
Zeeman interaction, as shown in Figs. 6(b) and 6(c). When the
Zeeman interaction compensates the chirality imbalance Ez =
δμ, the magnetic impurity can be screened by the internode
SFS processes as shown schematically in Fig. 6(a). The spin-
down electron on the impurity level is replaced by a spin-up
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FIG. 6. (a) The schematic diagram of the Zeeman splitting in-
duced coherent internode spin-flipping scattering (SFS) processes in
the Weyl SMs with chiral anomaly. (b) The Zeeman splitting of the
Kondo resonance in the local DOS with the parameters μ0 = 0.3,
εd = 0.2, �0 = 0.5, Qz = 0.1, U = 2, T = 0, and δμ = 0.02. The
Zeeman interaction is arranged from Ez = 0 to Ez = 0.01. (c) The
Zeeman splitting of Kondo resonance for the chemical potentials
situated below the Weyl nodes with μ0 = −0.2, the impurity level
εd = −0.3, and the coupling amplitude �0 = 0.4. Other parameters
are the same with that in (b). (e) and (f) The temperature dependent
susceptibilities correspond to the chemical potential situated above
and below the Weyl nodes in (b) and (c), respectively.

electron from the node with the chirality h = −, and the
spin-down electron hops into the node with opposite chirality.
Sequently the spin-up electron on the impurity is replaced
by a spin-down electron on the node h = +. These coherent
internode SFS processes lead to the Kondo resonance peaks
reoccurring at the chemical potentials ω = μ± as shown in the
blue solid lines in Figs. 6(b) and 6(c). In order to discuss the in-
fluence of Zeeman interaction on the localized magnetic states,
we redefine the magnetic susceptibility χ

′
d = gμB |nd↑−nd↓|

H0+H |H→0

with H0 = Ez/(gμB ). For the chemical potential situated
above the Weyl nodes (μ0 = 0.3), the Kondo screening has
been suppressed by the chiral anomaly, see Fig. 5(a). In this
case, the low-temperature susceptibility is suppressed due to
the Zeeman interaction, as shown in Fig. 6(d). When the
chemical potential is tuned below the Weyl nodes (μ0 = −0.2),
the Kondo screening is significantly enhanced due to chiral
anomaly. At low temperatures, the magnetic susceptibility is
enhanced by the Zeeman interaction, as shown in Fig. 6(e). The
is due to the Kondo screening of magnetic impurity suppressed
by the Zeeman splitting. The signature of Kondo screening
even extends to Ez = 0.02, see the blue solid line in Fig. 6(e).

Therefore, the chiral anomaly enhanced Kondo screening can
be observed when the Zeeman splitting is not large enough.

V. CONCLUSION

In this work we have studied the localized magnetic states
and the Kondo screening of a magnetic impurity in the bulk
of Weyl SMs. The anomalous broadening of the impurity
level leads to a nonvanishing magnetic moment in wide range
of parameters. The phase boundary between the magnetic
and nonmagnetic regions exhibits a particle-hole asymmetric
due to the linear dispersion near the Weyl nodes. When the
chemical potential lies at the nodes μ0 = 0, the Kondo effect
is absent due to the vanishing of DOSs. The susceptibility is
significantly enhanced at low temperatures due the chirality
imbalance. The Kondo screening takes place at finite chemical
potential μ0 �= 0. The magnetic susceptibility is determined by
both the Kondo screening and the broadening of the impurity
level near the Weyl nodes. When the chemical potential is
tuned above the Weyl nodes μ0 > 0, the Kondo screening
is suppressed by the chiral anomaly. Oppositely, the Kondo
screening is significantly enhanced by the chirality imbalance
for μ0 < 0. Due to the Kondo screening of the magnetic
impurity, the chiral anomaly in Weyl SMs can be detected
through the measurement of low-temperature susceptibility.
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APPENDIX

In the Appendix we outline the treatment of the Green’s
function 〈〈dsnds̄ ; d

†
s 〉〉 with the Lacroix’s approximation

scheme. The EOM of the higher-order GF reads

(ω − εds − U )〈〈dsnds̄ ; d
†
s 〉〉

= 〈nds̄〉 +
∑
ihk

V ∗
ihks〈〈αihknds̄ ; d

†
s 〉〉

+
∑
ihk

Vihks〈〈α†
ihkds̄ds ; d

†
s 〉〉

−
∑
ihk

V ∗
ihks〈〈d†

s̄ αihkds ; d
†
s 〉〉, (A1)

which generates some high-order GFs, such as 〈〈αihknds̄ ; d
†
s 〉〉,

〈〈α†
ihkds̄ds ; d

†
s 〉〉, and 〈〈d†

s̄ αihkds ; d
†
s 〉〉. From Eq. (7), One can

gain the EOM of these GFs as follows:

(ω − εihk )〈〈αihknds̄ ; d
†
s 〉〉

≈ Vihks〈〈dsnds̄ ; d
†
s 〉〉
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+
∑
i ′h′k′

Vi ′h′k′s〈〈α†
i ′h′k′ds̄αihk; d†

s 〉〉

−
∑
i ′h′k′

V ∗
i ′h′k′s〈〈d†

s̄ αi ′h′k′αihk; d†
s 〉〉, (A2)

(ω + εihk − εds − εds̄ − U )〈〈α†
ihkds̄ds ; d

†
s 〉〉

≈ 〈α†
ihkds̄〉 + V ∗

ihks〈〈dsns̄ ; d
†
s 〉〉

−
∑
i ′h′k′

Vi ′h′k′s〈〈α†
ihkαi ′h′k′ds ; d

†
s 〉〉

+
∑
i ′h′k′

V ∗
i ′h′k′s〈〈α†

ihkds̄αi ′h′k′ ; d†
s 〉〉, (A3)

and

(ω − εihk + εds̄ − εds )〈〈d†
s̄ αihkds ; d

†
s 〉〉

≈ 〈d†
s̄ αihk〉 − Vihks〈〈dsns̄ ; d

†
s 〉〉

+
∑
i ′h′k′

Vi ′h′k′s〈〈α†
i ′h′k′αihkds ; d

†
s 〉〉

+
∑
i ′h′k′

V ∗
i ′h′k′s〈〈d†

s̄ αihkαi ′h′k′ ; d†
s 〉〉. (A4)

In these equations, the Lacroix’s treatment can be reached
by taking the approximation, such as 〈〈α†

i ′h′k′ds̄αihk; d†
s 〉〉 ≈

〈α†
i ′h′k′ds̄〉〈〈αihk; d†

s 〉〉 and 〈〈α†
ihkαi ′h′k′ds ; d

†
s 〉〉 ≈ 〈α†

ihkαi ′h′k′ 〉
〈〈ds ; d

†
s 〉〉. By substituting Eqs. (A2)–(A4) into Eq. (A1), one

can obtain

〈〈dsnds̄ ; d
†
s 〉〉 = 〈nds̄〉 + Qs (ω) − �s (ω)〈〈ds ; d

†
s 〉〉

ω − εds − U − �0
s (ω) − �1

s (ω) − �2
s (ω)

,

(A5)

where ηs (ω) = 1 + �0
s (ω)

ω−εds̄−�0
s (ω) , �1(2)

s (ω) = ∑
ihk

|Vsihk |2
ω−ε1(2)ihks

,
ε1ihks = −εihk + εds̄ + εds + U , and ε2ihks = εihk − εds̄ + εds .

Other notations are �s (ω) = �s (ω) + Qs (ω)�0
s (ω)ηs (ω),

�s (ω) = A1s (ω) + A2s (ω) and Qs (ω) = B1s (ω) − B2s (ω)
with

A1s (ω) =
∑
ihk

∑
i ′h′k′

V ∗
sihkVsi ′h′k′ 〈α†

i ′h′k′αihk〉
ω − ε1ihks

, (A6)

A2s (ω) =
∑
ihk

∑
i ′h′k′

VsihkV
∗
si ′h′k′ 〈α†

ihkαi ′h′k′ 〉
ω − ε2ihks

, (A7)

B1s =
∑
ihk

V ∗
sihk〈d†

s̄ αihk〉
ω − ε1ihks

, (A8)

B2s =
∑
ihk

Vsihk〈α†
ihkds̄〉

ω − ε2ihks

. (A9)

From the spectral theorem, one can obtain

�1(2)
s (ω) = �0

π

∑
k

ζ 2
hk + ξ 2

hk

ω − ε1(2)ihks

, (A10)

A1(2)s (ω) ≈ �0

π

∑
ihk

(
ζ 2
hk + ξ 2

hk

)
f (εihk )

ω − ε1(2)ihks

, (A11)

and

B1(2)s (ω) ≈ �0

π

∑
ihk

(
ζ 2
hk + ξ 2

hk

)
f (εihk )Re[ηs (εihk )〈〈ds̄ ; d

†
s̄ 〉〉]

ω − ε1(2)ihks

.

(A12)

By substituting Eq. (A5) into Eq. (8) in the main text, one can
gain the impurity GF

〈〈ds ; d
†
s 〉〉 =

1 + U
〈nds̄ 〉+Qs (ω)

ω−εds−U−�s (ω)

ω−εds − �0
s (ω)ηs (ω) + U

�s (ω)+Qs (ω)�0
s (ω)ηs (ω)

ω−εds−U−�s (ω)

,

(A13)

with �s (ω) = �0
s (ω) + �1

s (ω) + �2
s (ω).
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