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Constrained density functional theory calculation with iterative optimization
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An iterative optimization approach that simultaneously minimizes the energy and optimizes the Lagrange
multipliers enforcing desired constraints is presented. The method is tested on previously established benchmark
systems and it is proved to be efficient and accurate. The approach can also be efficiently used when the constraint
is not a scalar quantity but a spatially varying function such as the charge density distribution.
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I. INTRODUCTION

Density functional theory (DFT) [1] is one of the most
important approaches to calculating ground-state properties in
molecules and solids. The extension of DFT for ground-state
calculations in constrained systems (cDFT) [2–6] opened a new
venue for the description of charge excitations [7], magnetic
transitions [8], spin dynamics [9], and electron transfer [10].
This technique became a more powerful tool with a greatly
enhanced range of applicability through the introduction of a
self-consistent formulation by Wu and Van Voorhis [11]. It is
now implemented in many computer codes using localized ba-
sis sets (NWCHEM [11], QCHEM [12,13], SIESTA [14], DEMON2K

[15], ADF [16]), plane waves (CPMD [17], QUANTUMESPRESSO

[18], VASP [19]), density matrices (CONQUEST [20]), wavelets
(BIGDFT [21]), and projector augmented wave (PAW) methods
[22].

Armed with these powerful computational tools, the cDFT
has been intensively used (see a recent review in Ref. [23])
in a wide variety of problems including electron transfer
reactions [24–28], excitation energy transfers [29], calculation
of coupling parameters [30], and noncollinear magnetism
[19]. Computational approaches using local constraints [31],
orthogonality conditions [32], and constrained orbitals [33]
have also been developed.

In the direct optimization approach of Wu and Van Voorhis
[11], a constraint is added to the energy functional using
the Lagrange multiplier method. The Lagrange multiplier
determines the constraining potential, but it is not explicitly
known. Wu and Van Voorhis have shown that the functional
is a strictly concave function of the Lagrange multiplier and
there is a unique stationary point which is a maximum. They
proposed a nested-loop approach with an outer self-consistent
loop (a normal DFT loop) and an inner constraint loop. The
constraint loop determines the Lagrange multiplier aided by the
first and the second derivatives of the functional. The constraint
iterations are relatively cheap using localized orbitals (the cost
is a diagonalization of the Hamiltonian), but in the case of
plane-wave or real-space grid codes describing larger systems,
this step can be a bottleneck.
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In this paper, we implement an approach that simulta-
neously minimizes the energy and optimizes the Lagrange
multipliers to satisfy the constraints. The method uses steepest-
descent iteration for the orbitals and the Lagrange multiplier
is iteratively updated in each step. The Lagrange multiplier is
adjusted in each iteration in order to enforce the constraining
condition [34,35] on the desired expectation value. The ad-
vantage of the approach is that it can be easily implemented
alongside steepest descent or conjugate gradient minimization,
allowing efficient cDFT calculations using real-space grids.
A distinctive merit of the method is that it can also be used
to enforce spatially varying constraints. One can constrain
not only a prescribed total charge in a region, but a desired
density distribution can also be enforced, opening new possible
applications for cDFT.

In Sec. II, we outline the main points of the formalism,
leaving the details collected in the Appendices. In Sec. III,
numerical tests are presented. The last section is a short
summary. Two appendices are added that describe the iterative
diagonalization formalism, give an overview of the Lagrange
multiplier approach, and motivate the iterative optimization.

II. FORMALISM

A. Constrained density functional theory

In DFT, the total energy in atomic units (a.u.) is given by

E[ρ] = T +
∫

dr vn(r)ρ(r) + J[ρ] + Exc[ρα, ρβ ], (1)

where

T =
α,β∑
σ

Nσ∑
i

〈ψiσ | − 1

2
∇2|ψiσ 〉 (2)

is the kinetic energy, J is the Coulomb energy, Exc is the
exchange-correlation energy, vn(r) is the external potential,
and

ρσ (r) =
Nσ∑
i

|ψiσ (r)|2 (3)
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is the electronic density for spin σ =↑,↓ of Nσ electrons (ρ =
ρ↑ + ρ↓). A generic constraint can be defined as

α,β∑
σ

Nσ∑
i

〈ψiσ |Q̂σ |ψiσ 〉 = Q0, (4)

where Q̂σ (r) is an operator and Q0 is a desired expectation
value. For example, it is very common to constrain the charge
density so that there is a specified number of electrons for each
spin, Nσ

c , within a certain region of space:∫
wσ

c (r)ρσ (r)dr = Nσ
c . (5)

Here, wσ
c (r) is a weighting function confining the electron

density into a specified spatial region [e.g., wσ
c (r) is equal to

1 within a certain volume and 0 elsewhere].
In order to minimize the total energy of Eq. (1) subject to

the constraint of Eq. (4), a functional is defined to be

L[ρ, λ] = E[ρ] + λ

(
α,β∑
σ

Nσ∑
i

〈ψiσ |Q̂σ |ψiσ 〉 − Q0

)
, (6)

where λ is the Lagrange multiplier.
Minimizing L with respect to λ forces the constraint to

be satisfied. By making this functional stationary under the
condition that the Kohn-Sham orbitals are orthonormalized
(see Appendix B and the discussion in Ref. [36]), one gets the
Kohn-Sham equations with an extra term, i.e., the constraining
potential λQσ (r),[

Ĥ σ
KS + λQσ (r)

]
ψσ

i (r) = εiψ
σ
i (r). (7)

Here,

Ĥ σ
KS = −1

2
∇2 + vn(r) + vσ

xc(r) +
∫

ρ(r′)
|r − r′|dr′, (8)

where vσ
xc is the exchange and correlation potential. Up until

now, the popular notation of the literature has been followed;
however, from now on, we drop the spin index for simplicity
and assume that each orbital is doubly occupied.

For a given λ, one can determine the orbitals and, with the
correct λ, the constraint is fulfilled. Wu and Van Voorhis [11]
have established a means of solving for a unique stationary
point. They have shown that L(ρ, λ) is a strictly concave
function of λ, with only one stationary point which is a
maximum. Both the first and second derivatives of L with
respect to λ can be derived, so the optimization can be done
efficiently. Finding λ requires the solution of Eq. (7) for a given
λ and updating λ, thus optimizing L (see Appendix B 2). The
desired constraining potential is found when the constraining
equation is satisfied with respect to a prescribed accuracy.
Further discussion on the optimization of constrained DFT can
be found in Ref. [36], in which efficient calculations involving
multiple constraints are described.

B. Iterative minimization

We will use a method that is based on iterative diagonal-
ization. This approach is often used in cases of large basis
dimension, such as for the three-dimensional real-space grid
representation, where direct diagonalization of the Hamilto-
nian matrix is infeasible and alternate methods must be used

to determine the lowest-energy eigensolutions. The simplest
approach is a steepest-descent iteration,

ψ
(n+1)
j (r) = O

{
ψ

(n)
j (r) − x0

(
ĤKS − ε

(n)
j

)
ψ

(n)
j (r)

}
. (9)

Here, x0 = �t/h̄,

ε
(n)
j = 〈

ψ
(n)
j

∣∣ĤKS

∣∣ψ (n)
j

〉
, (10)

and O indicates Gram-Schmidt orthonormalization, which is
required to preserve the orthonormality of the single-particle
states at each update step. The starting wave function ψ

(n)
j is

some initial guess, e.g., linear combination of atomic orbitals,
and x0 is chosen to be sufficiently small for convergence.
The steepest-descent step can be derived from imaginary-
time propagation and can be improved by using higher-order
approximations to the exponential operator (see Appendix A).

C. Iterative minimization with a constraint

The advantage of the iterative diagonalization is that it
can be combined with a step which is designed to enforce
the constraints. The motivation for the concrete form of
the iterative updates, the possible implementations, and the
highlights of earlier works are summarized in Appendix B.

In the case of constraint, the goal is to update each orbital
towards the minimum-energy configuration while maintaining
that an arbitrary expectation value, related to an associated
operator Q̂, does not change from one static iteration to the
next, i.e.,∑

j

〈
ψ

(n+1)
j

∣∣Q̂∣∣ψ (n+1)
j

〉 =
∑

j

〈
ψ

(n)
j

∣∣Q̂∣∣ψ (n)
j

〉
. (11)

Furthermore, the value of this expectation value is meant to
match a given input value,∑

j

〈
ψ

(n+1)
j

∣∣Q̂∣∣ψ (n+1)
j

〉 = Q0. (12)

These conditions may be incorporated into the above iterative
formalism by the inclusion of a Lagrange multiplier constraint
term such that the update scheme becomes

ψ
(n+1)
j (r) = O

{
ψ

(n)
j (r) − x0

(
ĤKS + λ(n)Q̂ − ε

(n)
j

)
ψ

(n)
j (r)

}
.

(13)

In this update scheme, one has to simultaneously iterate the
Lagrange multiplier λ(n). The simplest choice is to use a
steepest-descent iteration for λ as well (see Appendix B 3),
but one can work out a much better scheme by choosing λ(n)

in such a way that the constraint in Eq. (11) is satisfied.
To this end [34,35], one includes an intermediate step,

ψ
(n+1/2)
j (r) = O

{
ψ

(n)
j (r) − x0

(
ĤKS + λ(n)Q̂ − ε

(n)
j

)
ψ

(n)
j (r)

}
.

(14)

The difference of the relevant expectation value between the
original and half steps is calculated,

δQ =
∑

j

〈
ψ

(n+1/2)
j

∣∣Q̂∣∣ψ (n+1/2)
j

〉 − ∑
j

〈
ψ

(n)
j

∣∣Q̂∣∣ψ (n)
j

〉
, (15)
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so that the Lagrange multiplier may be updated as

λ(n+1) = λ(n) + c0
δQ

2x0
∑

j

〈
ψ

(n)
j

∣∣Q̂2
∣∣ψ (n)

j

〉 + d0

+
∑

j

〈
ψ

(n)
j

∣∣Q̂∣∣ψ (n)
j

〉 − Q0

2x0
∑

j

〈
ψ

(n)
j

∣∣Q̂2
∣∣ψ (n)

j

〉 + d0

. (16)

Here, c0 and d0 are numeric constants; their role is explained in
Appendix B 4. A good choice for c0 is a value between 0.9 and
1.0, and that for d0 is around 7 × 10−5. In the above equation,
λ is corrected with two terms. The first correction seeks to
preserve the expectation value of Q̂ by reducing the change
in δQ [see Eq. (B30)]. The second correction term adjusts the
expectation value toward the desired value [see Eq. (B29)].

With these readjustments, the (n + 1)th step is given as

ψ
(n+1)
j (r)

= O
{
ψ

(n+1/2)
j (r) − x0(λ(n+1) − λ(n) + δλ

)
Q̂ψ

(n+1/2)
j (r)

}
.

(17)

This update step can be considered as a simultaneous correction
meant to preserve the expectation value as well as force
the expectation value to be equal to a desired quantity. The
numerical constants appearing in the iteration play a similar
role to the density mixing parameters in the self-consistent
solution of the Kohn-Sham equations by helping the speed of
convergence. The motivation and details of the above steps for
the simultaneous diagonalization of the Hamiltonian and the
optimization of λ are given in Appendix B 4.

This update scheme settles the Kohn-Sham system into
the minimum-energy state while maintaining a constraint on
an arbitrary state expectation value. Effectively, what occurs
is the convergence of the Kohn-Sham system towards the
global ground state for a total effective potential which is
iteratively updated simultaneous to the orbitals. Thus, the final
state may be fully constructed by real-valued orbitals, and
the converged Lagrange multiplier term λfinalQ represents a
fictitious, additional external potential which corresponds to a
Kohn-Sham state exhibiting the desired expectation value.

III. RESULTS

In this section, we present results of the iterative constraint
update scheme. In each case, a real-space grid representation
was used alongside a finite-difference representation of the ki-
netic energy. The ion cores were treated using norm-conserving
Troullier and Martins pseudopotentials [37].

A. Simple model system

As a simple numerical test, we consider a three-dimensional
harmonic oscillator V (r) = 1

2ω2r2 (a.u.) with N = 5 orbitals,
subject to the constraint

Q − Q0 = 0, (18)

where

Q =
N∑

j=1

〈
ψ

(n)
j

∣∣r2
∣∣ψ (n)

j

〉
. (19)
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FIG. 1. Convergence of energy (top), Lagrange multiplier λ

(middle), and Q (bottom) as a function of time (in a.u.) for a simple
steepest-decent update (dashed line, x0 = 0.0005 a.u.) and the λ

optimization (solid line, x0 = 0.005 a.u.).

In the test calculation, the parameters ω and Q0 are chosen to be
1 and 25 a.u., respectively. The model is analytically solvable.
Adding the λQ term to the Hamiltonian is equivalent to a
modified harmonic-oscillator potential with ω′ = √

ω2 + λ.
The square radius of a harmonic-oscillator wave function
with quantum numbers (nx, ny, nz) is equal to 1

2ω
(2nx +

2ny + 2nz + 3), so the condition Q0 = 25 determines the
analytical value of λ and the energy. The numerical solution
for a simple steepest-descent update and the λ optimization
approach presented in the previous section are compared in
Fig. 1. The figure shows that theλoptimization is very accurate,
both in energy and in constraining Q, and the λ convergence is
very fast. The steepest-descent approach, based on Eqs. (B22)
and (B23), also works but the accuracy is orders of magnitude
worse. This simple, but clean example (no self-consistency)
shows that the λ optimization approach is accurate and fast.

B. Charge constraint

Now we apply the iterative optimization scheme to charge
transfer systems studied by Wu and Van Voorhis [11,25]. They
used a weight function w(r), which designates coordinate
space belonging to the donor with a value of 1 and that of
the acceptor with a value of −1. In this way, a Lagrange
multiplier term is added to the Kohn-Sham equation as λQ =
λw(r), effectively representing a step potential which may be
tuned during optimization until the desired charge imbalance
between the two partitions,

Nc = Q0 =
N∑

j=1

〈
ψ

(n)
j

∣∣w(r)
∣∣ψ (n)

j

〉 =
∫

w(r)ρ(r)dr, (20)

is reached. The weight function may be defined using a scheme
such as Hirshfeld partitioning [38,39] such that

w(r) =
∑

i∈D ρi (r − Ri ) − ∑
i∈A ρi (r − Ri )∑

i ρi (r − Ri )
, (21)

where ρi (r) represents the unperturbed electron density of ion
i and Ri is its location.
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FIG. 2. Convergence of charge difference (top) and Lagrange
multiplier (bottom) for a N2 molecule. The input desired charge
difference was Nc = 2 electrons.

In our formalism, we choose the weight function of Eq. (21)
to be the operator whose associated expectation value Nc is
being constrained to a given value. In this way, we are able
to perform charge constraint optimization in DFT using a
real-space grid approach which, unlike the atomic orbitals
basis, does not allow for a practical means of storing the
full Hamiltonian matrix and, instead, relies on algorithms
which describe the action of the Hamiltonian matrix on a
wave-function vector. Furthermore, in this update scheme, one
is not required to use a nested-loop form in which either the
energy minimization or the constraint condition is satisfied via
an inner loop, while the other is satisfied using the outer loop.
In the iterative constraint method, one progresses towards the
stationary point by simultaneously updating each. This may
lead to significantly faster run times or enhanced stability.

One of the simplest cases to consider is the diatomic N2

molecule. Here, one atom is designated as the donor and
the other is the acceptor. The above-described procedure was
carried out for a desired charge difference between the two
atoms of Nc → 2 electrons. The width of the computational
box was 6 Angstroms on each side with 25 grid points along
each axis. A plot of the convergence of Nc and of the Lagrange
multiplier λ is presented in Fig. 2. We find that only a small
number of iterations is needed for satisfactory convergence
in this case. The resulting value for λ, indicating the depth
of the step potential enforcing the charge difference, was
−27.01 eV. The electron density for the N2 molecule using
conventional DFT is shown in Fig. 3(a) and that of the charge
constrained N2 molecule is shown in Fig. 3(b). By including
an additional potential of −27.01 eV × w(r) in a conventional
DFT calculation of the N2 molecule, the charge difference of
Nc = 2 electrons naturally arises and the density, shown in
Fig 3(c), nearly exactly matches that of the constrained DFT
case.

We next consider the small systems tested by Wu and Van
Voorhis in Table 1 of Ref. [25]. For long separation distances
between the donor and acceptor molecules, R, one would
expect that the energy varies as 1/R. A good test of the energies
calculated by a charge constraint DFT program would be to

FIG. 3. Converged electron density of a N2 molecule calculated
using (a) conventional DFT, (b) constrained DFT with an imposed
charge difference of two electrons, and (c) conventional DFT with an
additional external potential of −27.01 eV × w(r). Three isosurfaces

corresponding to the density of 0.33, 0.67, and 1.0 Å
−3

are shown.

plot the total energy vs 1/R and show the expected linear
dependence. Furthermore, one may use the slope of this curve
in order to determine the total energy of the charge-separated
(CS) system, i.e., R → ∞. Since at an infinite separation
distance the two molecules should be independent of one
another, this total energy should equal the sum of separate
calculations for the appropriately ionized donor and acceptor
molecules, that is D− and A+ in the case of Nc = 2.

An example trend of the total energy vs 1/R is presented
in Fig. 4 for the system N−

2 –N+
2 and a charge difference of

Nc = 2. The data is well fit by a linear trend line. The slope
indicates an expected CS total energy of −1069.735 eV. This
value is in good agreement with the total energy of separate
calculations for the N+

2 and N−
2 molecules, which is −1070.970

eV. These values, as well as those for the cases of H2O−–F+
2 and

C2F−
4 –C2H+

4 , are presented in Table I. We note that each value
for (ED− + EA+ ) is higher than its ECS counterpart by about
1.15 eV. Apart from this small systematic shift, all values agree
well, indicating that these long-range charge transfer states are
being well represented by the present scheme. We note that
the reported values in Table I do not represent total energies
of these systems. This is due to the fact that pseudopoten-
tials have been employed and the frozen-core approximation
energies, corresponding to the pseudopotential contributions,
have been neglected. In principle, because the difference in
total energy is nearly always the desired calculated quantity,
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0.100 0.105 0.110 0.115 0.120 0.125

E
  [

eV
]

1/R  [Å−1]

FIG. 4. Total-energy calculations using charge difference
constrained DFT to describe the system N+

2 –N−
2 for five separation

distances R chosen within a range of 8 to 10 Å.
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TABLE I. The charge-separated state energy ECS for three small
molecule cases, determined using a linear fit of five data points repre-
senting the total energy found using a charge difference constraint of
Nc = 2 for separation distances ranging between 8 and 10 Angstroms.
These values are compared to the sum of individual calculations for
each constituent ionized molecule.

D A ECS (ED− + EA+ ) % diff.

N−
2 N+

2 −1069.735 −1070.970 0.115
H2O− F+

2 −1767.172 −1768.204 0.058
C2F−

4 C2H+
4 −3323.066 −3324.250 0.036

one may compare such valence energies among like systems,
represented using the same pseudopotentials, as if they were
the true total energies.

Finally, we investigate the popular charge transfer excita-
tion in zincbacteriochlorin-bacteriochlorin (ZnBC-BC). This
system is a common component of suggested light-harvesting
devices, appearing with a phenylene link. However, it has been
demonstrated that ignoring the link introduces negligible error
[40]; therefore, the pair of isolated molecules separated by
5.84 Å is commonly studied. The charge transfer excited state
of this complex was of the earliest shown to be misrepresented
by time-dependent density functional theory (TDDFT) [40],
due to an incorrect treatment of the long-range exchange po-
tential. Thus, there are many studies devoted to the correction
of this shortcoming. Such calculations include TDDFT using
various local [40–42] and hybrid [42] functionals, methods
combining a configuration-interaction singles (CIS) approach
[40,43], and also use of the Bethe-Salpeter formalism [44].
The cDFT formalism of Wu and Voorhis was also initially
applied to this system [11,25], using an atomic orbitals basis,
specifically the 6–31 G∗ basis set, and the Becke-Lee-Yang-
Par (BLYP) functional [45,46]. This approach has also been
recently tested on the ZnBC-BC complex using a flexible
Daubechies wavelet basis and the local density approximation
(LDA) functional [47].

The difference of the DFT-calculated ground-state density
for ZnBC-BC and the charge constrained DFT density is shown
in Figs. 5(a) and 5(b) for the cases of ZnBC+–BC− and
ZnBC−–BC+, respectively. The LDA relaxed coordinates were
provided by Ratcliff et al. of Ref. [47]. The energy values for
this large system maintain a linear dependence with regards
to 1/R, as shown in Fig. 6. The energies of the two excited
states relative to the neutral ground state, using a separation
distance of R = 5.84 Å, were determined to be 3.54 eV for
ZnBC+–BC− and 3.95 eV for ZnBC−–BC+. The latter value
agrees well with previously calculated values (3.91 eV [40],
3.94 eV [11], and 3.98 eV [47]), while the former is lower
than similar studies (3.71 eV [40], 3.75 eV [47], and 3.79 eV
[11]). The difference between the results comes from several
sources. The present code uses pseudopotentials and LDA
with real-space grid representation, while the calculations in
Refs. [11,40] are based on all-electron codes with the BLYP
functional. The computation in Ref. [47] is also based on LDA
but uses Daubechies wavelets, significantly reducing the effect
of the coarseness of the real-space grid (e.g., eggbox effect).
The most important source of the difference is that in our

FIG. 5. Density difference between a ground-state DFT calcu-
lation of ZnBC-BC and charge constrained DFT representing (a)
ZnBC+–BC− and (b) ZnBC−–BC+. One isosurface corresponding

to densities of 0.006 Å
−3

is shown. Red (blue) indicates positive
(negative) values.

real-space grid approach, the weight function is not represented
in the same way as in the other approaches using the Voronoi
grid [48] or wavelets.

C. Density constraint

The approach can be extended to more general constraints
as well. In this section, we demonstrate the ability of the present
approach to constrain the spatial density, requiring that ρ(r) is
equal to a given value, Q0(r) = ρ0(r). In this case, the operator

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 0.11  0.12  0.13  0.14  0.15  0.16  0.17  0.18

ΔE
  [

eV
]

1/R  [Å−1]

ZnBC+−BC−

ZnBC−−BC+

FIG. 6. Total-energy calculations using charge difference con-
strained DFT to describe the systems ZnBC+–BC− and ZnBC−–BC+

for seven separation distances R chosen at equal increments within a
range of 5.84 to 8.84 Å.
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FIG. 7. Top: Exact (solid red line) and DFT (dashed black line)
average density d (x ) along the x axis connecting the protons. Bottom:
cDFT (solid red line) and DFT (dashed black line) average potential
V (x ) along the x axis. Atomic units are used.

Q̂ becomes the density operator such that〈
ψ

(n)
j

∣∣Q̂∣∣ψ (n)
j

〉 = ∣∣ψ (n)
j (r)

∣∣2
(22)

and

λQ̂ψ
(n)
j = λ(r)ψ (n)

j (r). (23)

Given a desired initial density distribution ρ0(r) and using the
steps defined in Eqs. (14), (16), and (17), one looks for the
potential λ(r), which generates the Kohn-Sham orbitals, ψ (n)

j ,
so that ∑

j

∣∣ψ (n)
j (r)

∣∣2 = ρ0(r). (24)

As a first example, we use a simple system, i.e., the H2

molecule. Fixing the protons at 0.74 Å apart, the two-electron
Coulomb problem can be solved very accurately using the
variational method with explicitly correlated Gaussian basis
functions [49]. The calculated “exact” electron density, shown
in Fig. 7, will be the target density ρ0(r). Figure 7 compares
ρ0 to the density obtained by a conventional DFT calculation.
The two densities differ mostly in the middle region between
the two protons where the DFT density is higher. Using the
density constraint, we then instruct the DFT density to be equal
to ρ0(r). The asymptotic fall of the density is also different, but
that is not so important for this test case. The cDFT calculation
constrains the density to satisfy max|ρ0(r) − ρ(r)| < 10−5,
and the constrained and exact densities are indistinguishable in
Fig. 7. The cDFT potential [the Kohn-Sham potential plusλ(r)]
and the DFT potential are compared in Fig. 7. The main differ-
ence is that the cDFT potential is higher in the middle region,
pushing out the charge and correcting the difference between
the exact and DFT result. In principle, calculations like this can
be used to improve exchange-correlation potentials if accurate
densities are available. To check the calculation, one can use
the resulting λ(r) and add it to the Kohn-Sham Hamiltonian
as an external potential. The self-consistent solution produces
the desired density distribution ρ0(r).

FIG. 8. Graphene supercell, target density distribution, and λ(r)
resulting from cDFT. The target density distribution is shown using
the graphene fragment molecular geometry used during the cDFT cal-
culation. In depicting λ(r), positive (negative) values are represented
using orange (blue) isosurfaces.

The next example demonstrates that the approach works
for larger systems as well. In this case, we calculate the
electron density of a graphene sheet in a periodic supercell
calculation, shown in Fig. 8(a). We wish to use this supercell
in a finite-box, real-space grid calculation, which requires the
density to be zero at the boundary of the grid. To this end,
we use a masking function in order to gradually decrease the
density to zero at the boundaries and use this distribution as ρ0.
Furthermore, in order to avoid complications arising from atom
sites being too close to the boundaries, we prepare a molecular
geometry which is exactly the same as the supercell, but
with the outer perimeter of atoms removed. This geometry is,
then, the atomic coordinates used in the finite-box calculation.
The ρ0 distribution and the modified molecular geometry
are presented in Fig. 8(b). Upon initialization, extra Kohn-
Sham orbitals are added, beyond those corresponding to the
input carbon atoms, in order to ensure that the number of
electrons of the initial nonconverged density matches that of
ρ0. We note that because ρ0 does not necessarily represent
an integer number of electrons, there will be one orbital of
noninteger occupation. The cDFT generates λ(r) [Fig. 8(c)]
so that HKS + λ(r) yields ρ0(r) as the ground-state density.
The calculation of a converged constraining potential needs
about two to three times more iterations than a conventional
DFT iteration. The calculated λ(r) can be checked by using it
as an external potential to produce ρ0(r).

075108-6



CONSTRAINED DENSITY FUNCTIONAL THEORY … PHYSICAL REVIEW B 98, 075108 (2018)

This example serves to show that the approach is applicable
and converges for larger systems as well. One can recognize
the formation of potential wells within the shape of λ(r) near
the perimeter of the graphene fragment which correspond to
the carbon atoms missing in the input molecular geometry. In
principle, this graphene fragment can be used to study defects
without the problem of periodic images, but still keeping the
proper density. One can also use the approach to embed a
smaller system into a larger system with density constraints
at the boundary. In Ref. [50], charge densities in a boundary
region between the two domains have been connected using
cDFT to facilitate multiscale calculations using a single scalar
λ Lagrange multiplier. The present approach offers a more
flexible embedding possibility.

IV. CONCLUSION

We have implemented an iterative optimization approach
for constrained density functional calculations. In this ap-
proach, the energy minimization and the optimization of the
Lagrange multipliers enforcing the constraint are simultane-
ously iterated. The ideal Lagrange multipliers are determined
by enforcing the constraint on the Kohn-Sham orbitals at each
self-consistent iteration steps.

The accuracy and efficiency of the present approach is
demonstrated on previously studied systems. Comparing the
computational cost to previous methods based on the direct
optimization of the Lagrange multiplier [11], the present
approach is expected to be competitive.

The method is not limited to charge constraints where only
a single (or a small set of) Lagrange multiplier is optimized.
We have shown that one can prescribe a general, spatially
varying density, and the external potential that generates this
density as a ground state can be calculated. The applicability of
this approach to calculate a spatially dependent λ(r) Lagrange
multiplier may open up possibilities of embedding smaller
systems into larger systems, prescribing boundary conditions
using density, or enforcing orthogonality to a given ground
state.
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APPENDIX A: IMAGINARY-TIME PROPAGATION

In this appendix, for completeness of the presentation,
we show how the popular steepest-descent iteration can be
derived from the imaginary-time step propagation [51]. The
important part of this step is that although we only used, to
lowest order, the simplest iteration, systematic improvement
is possible by including higher-order terms. The origin of the
imaginary-time propagation name comes from the similarity of
each optimization step and the solution to the time-dependent
Kohn-Sham equation,

ih̄
∂

∂t
ψk (r, t ) = ĤKSψk (r, t ), (A1)

for short time steps, �t :

ψk (r, t + �t ) = exp[−iĤKS�t/h̄]ψk (r, t ). (A2)

For imaginary-time step propagation, one makes the trans-
formation �t → −i�t and introduces the parameter x0 =
�t/h̄ such that the procedure takes the form

ψ
(n+1)
j (r) = exp[−x0ĤKS]ψ (n)

j (r). (A3)

Here, we have replaced the notation of our employed wave
functions so that they now represent arbitrary functions which
are iteratively being updated and approaching the ground-state
eigenfunctions of ψk . This is seen by noting that such an
arbitrary function at iteration n, ψ

(n)
k , may be expanded as a

linear combination of the eigenfunctions of ĤKS,

ψ
(n)
j =

∑
k

c
(n)
j,kφk. (A4)

By plugging this expansion into Eq. (A3), one obtains

ψ
(n+1)
j (r) =

∑
k

c
(n)
j,kexp

[−x0ε
(n)
j

]
φk (r), (A5)

and notes that repeated action by the exponential factor
will effectively screen out high-energy contributions. Thus,
if orthonormalization is enforced after each iteration via the
Gram-Schmidt procedure, the functions ψ

(n)
j will converge

to the ground-state Kohn-Sham orbitals. Equation (A3) is
often further modified by extracting an arbitrary phase factor
from each wave function which is related to their associated
Hamiltonian eigenvalue,

ψ
(n+1)
j (r) = exp

[−x0
(
ĤKS − ε

(n)
j

)]
ψ

(n)
j (r). (A6)

In practice, one may approximate the exponential by its
first-order Taylor expansion,

ψ
(n+1)
j (r) = O

{
ψ

(n)
j (r) − x0

(
ĤKS − ε

(n)
j

)
ψ

(n)
j (r)

}
. (A7)

Here,O indicates Gram-Schmidt orthonormalization, which is
required to preserve the orthonormality of the single-particle
states at each update step.

We note that in order to carry out this procedure, one only
requires the action of ĤKS upon a wave function, as opposed
to needing to store a large matrix. In practice, the damping
constant x0 may be replaced with a generalized damping
matrix, D(E0) [52]. Several choices of this operator have been
investigated [53]. That used in this work is of the form

D(E0) =
[

1 + T

E0

]−1

, (A8)

where T is the kinetic-energy matrix and E0 is a numeric
constant. A good choice for the latter is the depth of the
effective Kohn-Sham potential. In this work, determining the
action of the damping matrix at each update step, a problem
of the form y = Dx is approximately solved by applying
a small number of conjugate gradient steps to the equation
[1 + T

E0
]y = x.
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APPENDIX B: CONSTRAINED SYSTEM

1. Lagrange multiplier approach

We restrict the discussion for a single orbital—the extension
for many orbitals by requiring orthogonality is simple. We
assume that the wave function is expanded in terms of basis
functions,

ψ (r) =
K∑

j=1

cjφj (r). (B1)

If if one uses a real-space grid, with the basis

φi (rk ) = δik, (B2)

where rk is a grid point, then

ψ (rk ) = ck. (B3)

We define the matrix elements of the Hamiltonian,

Hij = 〈φi |Ĥ |φj 〉, (B4)

overlap,

Oij = 〈φi |φj 〉, (B5)

and constraining operator,

Qij = 〈φi |Q̂|φj 〉. (B6)

Using these matrix elements, the energy is

E =
K∑

i,j=1

cicjHij , (B7)

the norm of the wave function is

O =
K∑
i,j

cicjOij , (B8)

and the constraint is

Q =
K∑

i,j=1

cicjQij . (B9)

One can now define the functional

L(c, λ, ν) = E + λ(Q − Q0) + ν(O − 1), (B10)

where ν and λ are Lagrange multipliers which enforce the
normalization and the desired value of Q, respectively. Taking
the derivative of L with respect to c, ν, and λ we get the familiar
equations

∂L

∂cj

=
∑

k

Hjkck + ν
∑

k

Ojkck + λ
∑

k

Qjkck = 0, (B11)

∂L

∂ν
= O − 1 = 0, (B12)

∂L

∂λ
= Q − Q0 = 0. (B13)

These equations determine the extremal values of c and the
values of λ and ν. The actual calculation of these values,
however, is not simple. Without the constraint, given by
Eq. (B13), Eq. (B11) is a generalized eigenvalue problem and
by solving it one obtains the energy eigenvalues and orthogonal

orbitals. With the constraint, Eq. (B11) is not a solvable
algebraic system (except maybe if Ĥ and Q̂ commute and have
a common set of eigenfunctions). One possible solution is to
assume some value of λ and try to iterate so that the constraint
is fulfilled.

Note, however, that the extremal value of c is not necessarily
a maximum or minimum of L. To ensure the minimum or
maximum, one has to define [54]

Lij = ∂L

∂cicj

= Hij + νAij + λQij , (B14)

oi =
∑

j

Oij cj , (B15)

qi =
∑

j

Qij cj , (B16)

and investigate the determinant

det(e) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
...

...
Lij − eδij oi qi

. . .
...

...
. . . oj . . . 0 0
. . . qj . . . 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (B17)

The expansion of det(e) is a polynomial of the order of K − 2.
The roots of the polynomial are all positive if E is a minimum
at c, and are all negative if E is a maximum at c. Without the
constraint, given by Eq. (B13), this polynomial can be used to
prove the Ritz variational upper bounds [55].

Even if we would be able to determine c using Eq. (B11), it
is not guaranteed that the energy would be minimized. Section
B 4 of this appendix details how the energy minimization and
the determination of the Lagrange multipliers can be done
simultaneously.

2. The approach of Wu and Van Voorhis

Wu and Van Voorhis introduced an approach [11] in which
Eq. (B11), the eigenvalue problem of the Kohn-Sham Hamil-
tonian, is solved for a given λ value. This λ is determined by
minimizing

f (λ) = Q − Q0 = 0 (B18)

by a root-finding algorithm. One can, for example, use a
Newton iteration

λ(n) = λ(n−1) − α
f (λ)

f ′(λ(n−1))
, (B19)

where

f ′(λ) = df (λ)

dλ
(B20)

and α is the step size. The derivative f ′ can be calculated using
perturbation theory [11] or by finite differencing. In the latter
case,

f ′(λ) = f (λ + δ) − f (λ)

δ
(B21)
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has to be calculated for some small δ self-consistently. In this
approach, each energy-minimizing self-consistent loop has an
inner loop to find λ.

3. Simple iterative optimization

In this section, we describe the iterative optimization of
λ. We drop the constraint of the normalization (ν = 0) and
consider only the solution of Eqs. (B11) and (B13). For a single
orbital, the normalization will be enforced by normalizing the
wave function at each iteration; in the case of a set of orbitals,
a Gram-Schmidt orthogonalization step will be incorporated.

The simplest iterative solution is a steepest-descent ap-
proach where c varies in the direction of the antigradient,

c
(n+1)
k = c

(n)
k − x0

∂L

∂ck

= c
(n)
k − x0

⎡
⎣∑

j

(Hkj + λQkj )cj

⎤
⎦,

(B22)

and λ changes in the direction of the gradient,

λ(n+1) = λ(n) + x0
∂L

∂λ
= λ(n) + x0(Q − Q0). (B23)

This is very closely related to the approach of Wu and Van
Voorhis; Eq. (B22) is a self-consistent minimization step and
Eq. (B23) steers λ toward the optimal value. The step in
Eq. (B23) can be further improved by using f ′ as in Eq. (B19),
if f ′ is readily available.

4. Constrained iterative optimization

Alternatively, one can adjust λ to fulfill the constraint.
Unlike the simple update of λ described in the previous section,
now we force the constraint on the interaction. Rewriting
Eq. (B22) in matrix vector notation,

c(n+1) = c(n) − x0(H + λQ)c(n), (B24)

the constraint can be written as

Q0 = c(n+1)Qc(n+1)

= {[I − x0(H + λQ)]c(n)}Q{[I − x0(H + λQ)]c(n)},
(B25)

where for the left multiplication one uses the transpose of the
vector. Here we omit the transpose sign to simplify the notation.
After dropping the terms that are quadratic in x0, we can solve
the equation for λ,

λ = 1

c(n)Q2c(n)

[
(c(n)HQc(n) ) − c(n)Qc(n) − Q0

2x0

]
, (B26)

and use this new λ value in the iteration. This expression
contains Q2 and HQ operators which are simple to evaluate

in real-space approaches but could cause difficulties in other
basis function representations.

Alternatively [34,35], we can make an iteration for λ in each
step, adjusting it to improve the satisfaction of the constraint.
We are looking for the optimal δλ so that the iteration

λ(n+1) = λ(n) + δλ (B27)

converges to the optimal λ value.
The effect of an iterative step using δλQ alone is

c(n+1) = c(n) − x0δλQc(n). (B28)

The same procedure as above gives

δλ = c(n)Qc(n) − Q0

2x0c(n)Q2c(n)
(B29)

as the optimal δλ to enforce Q0 = c(n+1)Qc(n+1). The same
approach can also be used to constrain the change of the
expectation value of Q. In this case, δλ should be chosen as

δλ = c(n)Qc(n) − c(n+1)Qc(n+1)

2x0c(n)Q2c(n)
. (B30)

In practice [34,35], the following update algorithm proved
to be efficient:

(1) Make an intermediate step,

c(n+1/2) = c(n) − x0(H + λ(n)Q)c(n). (B31)

(2) Change λ to the ideal value,

λ(n+1) = λ(n) + c0
c(n+1/2)Qc(n+1/2) − c(n)Qc(n)

2x0c(n)Q2c(n) + d0

+ c(n)Qc(n) − Q0

2x0c(n)Q2c(n) + d0
. (B32)

(3) Advance iteration with the corrected λ,

c(n) = c(n+1/2) − x0(λ(n+1) − λ(n) )Qc(n+1/2). (B33)

In step (2), both correction terms [Eqs. (B29) and (B30)] are
used: the first one reduces the change in the expectation value
and the second one adjusts the expectation value to its desired
value. The numerical parameter c0 sets the relative weight of
the two terms. The second numerical constant d0 is a parameter
to compensate the neglected terms in deriving Eqs. (B29) and
(B30). In step (3), Q is multiplied by (λ(n+1) − λ(n) ) and not
by λ(n+1) because the λ(n)Q term has already acted on the wave
function in step (1).

The extension of the above formalism for the many-orbital
case is straightforward and the relevant equations are given in
the main text.
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