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We present a formal derivation of the many-body perturbation theory for a system of electrons and bosons
subject to a nonlinear electron-boson coupling. The interaction is treated at an arbitrary high order of bosons
scattered. The considered Hamiltonian includes the well-known linear coupling as a special limit. This is the case,
for example, of the Holstein and Fröhlich Hamiltonians. Indeed, whereas linear coupling has been extensively
studied, the scattering processes of electrons with multiple bosonic quasiparticles are largely unexplored. We
focus here on a self-consistent theory in terms of dressed propagators and generalize the Hedin’s equations using
the Schwinger technique of functional derivatives. The method leads to an exact derivation of the electronic
and bosonic self-energies, expressed in terms of a new family of vertex functions, high-order correlators, and
bosonic and electronic mean-field potentials. In the electronic case we prove that the mean-field potential is the
nth-order extension of the well-known Debye-Waller potential. We also introduce a bosonic mean-field potential
entirely dictated by nonlinear electron-boson effects. The present scheme, treating electrons and bosons on an
equal footing, demonstrates the full symmetry of the problem. The vertex functions are shown to have purely
electronic and bosonic character as well as a mixed electron-boson one. These four vertex functions are shown
to satisfy a generalized Bethe-Salpeter equation. Multibosons response functions are also studied and explicit
expressions for the two and the three bosons case are given.
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I. INTRODUCTION

Electron-boson (e-b) Hamiltonians are ubiquitous in par-
ticle, condensed matter physics and optics: the fundamental
electron-electron interaction is mediated by photons, which
are bosonic particles; lattice vibrations (phonons) play a
fundamental role in superconductivity [1]; and collective
excitations in many-electron systems (plasmons) as well as
bound electron-hole states (excitons) have a bosonic nature.
Many examples of such a duality can also be found in strongly
correlated systems [2]. The interaction between electrons
and bosons is typically treated linearly in electronic density
and bosonic displacement [3]. The proportionality constant
may have different expressions depending on the microscopic
details of the system.

However, there are cases where nonlinear coupling is com-
parable in strength or even dominates the first-order electron-
boson interaction.

a. Electron-phonon coupling in quantum dots. Very of-
ten the quadratic and linear effects are inseparable, and the
former can arise in, e.g., perturbative elimination of the
off-diagonal electron-phonon coupling in quantum dots. For
instance, quadratic coupling of carriers in quantum dots to
acoustic phonons modifies the polarization decay and leads
to exponential dephasing [4]. Linear coupling alone generates
acoustic satellites in the spectrum, but causes no Lorentzian
broadening [5,6].

b. Flexural phonons. The balance between the first- and the
second-order effects can be influenced by the symmetry. If a
system possesses a mirror plane, the coupling to the oscillations
normal to this plane cannot be linear. This fact was noticed by
Mariani and von Oppen [7] who demonstrated that flexural
phonons couple quadratically to the electron density. On the
other hand, if the mirror symmetry is broken by the presence
of a substrate or by the gating, the coupling becomes linear
again [8].

c. Holstein and Fröhlich models. The interplay between the
effects induced by different orders of the e-b interaction can
have important consequences in the Holstein model [9]. This
uses a simplified form of the Fröhlich Hamiltonian, where
carriers couple to a branch of dispersionless optical phonons
through a momentum-independent coupling. In this case
even small positive nonlinear interaction reduces the effective
coupling between the electrons and the lattice, suppressing
charge-density-wave correlations, and hardening the effective
phonon frequency [10,11]. These findings prompted further
theoretical investigations of the Holstein model with even
more complicated double-well electron-phonon interaction
[12,13] using a generalization of the momentum average
approximation [14], and of general form of interaction using
the determinant quantum Monte Carlo approach [15]. Closely
connected to these studies are recent experiments emphasizing
the role of nonlinear lattice dynamics as a mean for control [16],
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and as a basis for enhanced superconductivity in MgB2 [17] and
some cuprates [18]. They point toward large ionic displacement
which is a prerequisite for the nonlinear electron-phonon
coupling.

d. Finite temperature effects. Another prominent example is
the renormalization of electronic structures due to zero or finite
temperature phonons. As demonstrated by Heine, Allen, and
Cardona (HAC) [19,20] the linear and quadratic couplings (in
atomic displacement) are of the same order in the electron-ion
interaction potential. Moreover, they need to be considered
on an equal footing in order for the system to respect the
system translational invariance. The effect of the second-order
correction is quite large in carbon materials and can lead to a
substantial band gap modification [21–23].

e. Anharmonic effects. Some recent works have also demon-
strated that, potentially, even simple systems like diamond
[24,25] or palladium [26] show remarkable nonlinear effects.
However, at the moment, these anharmonic effects can be
treated only by using an adiabatic approach based on finite
displacements of the atoms. This approach ignores dynamic
effects that, however, have been shown to be relevant in the
linear coupling case [22] and, therefore, cannot be neglected,
a priori in the case of nonlinear coupling.

f. Existing theoretical approaches. Nonlinear electron-
boson models have been treated theoretically by essentially
stretching methods developed for pure electronic case or linear
coupling scenario: quantum Monte Carlo [11], the average
momentum approximation [14], and the cumulant expansion
[4]. Since only electronic spectrum was of interest, they rely
on diagrammatic methods, without systematically exploring
the renormalization of phononic properties due to electrons.
However, as has been shown in the linear case using pertur-
bative expansions of both electron and phonon propagators,
electrons typically overscreen bare phonon frequencies leading
to the conclusion that renormalized phonon frequencies must
be fitted to experiments [27]. Thus, Marini et al. [28] have
recently extended many-body perturbation theory (MBPT)
for electron-phonon interaction including quadratic terms and
using density functional theory [29] as a starting point. This is
a remarkable achievement since even ab initio determination
of a momentum-dependent electron-phonon linear coupling
function is a nontrivial task [30]. The Born-Oppenheimer
approximation is commonly used as a starting point. However,
the seminal works of Abedi et al. [31] and Requist et al.
[32] on the exact factorization of the fermionic and bosonic
wave function show that alternative paths beyond the Born-
Oppenheimer approximation are possible.

g. Diagrammatic perturbation theory. Nonexistence of the
Wick theorem for bosons [33], which is a consequence of the
fact that averages of the normal product of bosonic operators
are nonzero, makes it difficult to develop a diagrammatic
perturbation theory [34]. To circumvent this difficulty, systems
above the Bose-condensation temperature are implicitly as-
sumed [35]. Method of functional derivatives is a complemen-
tary method [36]. In contrast to diagrammatic constructions
based on the series expansions of the evolution operator on
a contour, it yields functional relations between the dressed
propagators. They do not rely on the Wick theorem. In the
seminal works of Hedin [37] and van Leeuwen [27], the
Schwinger technique of functional derivatives is used to derive

the linear electron-boson coupling and no Debye-Waller (DW)
potential is found. This is in stringent disagreement with the
HAC theory where this potential naturally appears. On the
other hand, any diagrammatic approach predicts the existence
of the DW potential, as, for example, in Ref. [28]. It is
therefore desirable to formulate self-consistent (sc) MBPT for
the electron-boson system with nonlinear coupling, i.e., in
terms of the dressed propagators, in a functional derivative
approach.

h. Out-of-equilibrium scenarios. Our further motivation
for this work is experimental feasibility to generate coherent
phonons [38,39] and plasmons [40–42]. For such scenarios
the notion of transient spectral properties is of special interest
[43–45]. A powerful method to deal with time-dependent
processes is the nonequilibrium Green’s function (NEGF)
approach [46]. The method relies on solving the Kadanoff-
Baym equations (KBE) of motion for the Green’s functions
(GFs) on the Keldysh time contour [47–51]. To the best of our
knowledge, for systems with nonlinear coupling such theory
is not available.

Our paper is organized as follows: In Sec. II we introduce
the Hamiltonian and its properties. Given the Hamiltonian in
Sec. III, we derive the corresponding equation of motion for
the bosonic and electronic operators. The equation of motion
are analyzed in terms of functional derivatives in Sec. III B.
The Green’s functions are introduced in Sec. IV.

We first discuss the electronic case whose self-energy is
derived exactly to all orders in the electron-boson interaction
in Sec. V. We derive the form of a generalized Debye-Waller
potential in Sec. V A which, in turns, defines the remaining
nonlocal and time-dependent mass operator, Sec. V B.

The bosonic subsystem is, then, split in single-boson and
multiboson case in analogy with the electronic case. In Sec. VI
we introduce the bosonic self-energy that we split exactly
in a mass operator, Sec. VI C, and a mean-field potential,
Sec. VI A. The exact bosonic mass operator is rewritten in terms
of four generalized vertex functions whose coupled equation
of motion is derived in Sec. VI D.

The presented exact formulation is illustrated by the deriva-
tions of the lowest order approximations for the electronic
(Sec. VII A) and bosonic (Sec. VII B) self-energies.

The last part of the work is devoted to the electronic
and bosonic response functions (Sec. VIII). We derive a
Bethe-Salpeter-like equation for the electronic response in
Sec. VIII A. In Sec. VIII B we discuss the bosonic case by
showing how to reduce the general bosonic dynamics to
diagonal number conserving response functions. Then, the
cases of two and three bosons are studied, respectively, in
Secs. VIII B 2 and VIII B 3.

Finally, in Appendix A we motivate our treatment of
electron-electron correlation, and in Appendix B we formally
connect the formalism to the electron-phonon problem. In
Appendix E we finally list some key mathematical quantities
and approximations used throughout the whole paper. Logical
flow of the whole work is depicted in Fig. 1.

II. NOTATION AND HAMILTONIAN

We start from the generic form of the total Hamiltonian of
the system that we assume to be composed by fermions and
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FIG. 1. Logical structure of the work.

bosons with a nonlinear interaction

Ĥ = Ĥe + Ĥb + Ĥe-b. (1)

The unperturbed part of Ĥ is Ĥe + Ĥb and can be rewritten
in terms of corresponding energies (Ei is the energy of the
electronic state i, �ν is the energy of the bosonic mode ν) and
eigenstates obeying fermionic, bosonic statistics, respectively:

Ĥe =
∑

i

Ei ĉ
†
i ĉi , (2a)

Ĥb = 1

2

∑
ν

�ν

(
P̂ 2

ν + Q̂2
ν

)
. (2b)

In general, the partitioning of a physical Hamiltonian in the
form of Eq. (1) is a highly nontrivial problem [31,32]. In the
present context we are interested in the nonlinear e-b coupling
and, to keep the formulation simple, we assume that such
a partition does exist and that the electronic correlation can
be approximatively described with a mean-field potential that
renormalizes the free electrons and bosons. This is a common
practice, for example, in the DFT approach to electrons
and phonons. The DFT mean-field potential is defined in
Appendix A.

In Eq. (2b) we have introduced the operators for the
bosonic coordinates Q̂ν and momenta P̂ν . The fermions are
described by the corresponding creation (ĉ†i ) and annihilation
(ĉi) operators. These are used to expand the electronic field
operator ψ̂ (x) = ∑

i φi (x)ĉi , with φi (x) eigenfunctions of the
electronic Hamiltonian in the first quantization [denoted as
he(x)].

Ei and �ν are the independent electrons and bosons
energies. They are assumed to incorporate the mean-field
potentials embodied in Ĥe + Ĥb. Q̂ν and P̂ν are expressed in

the standard way in terms of the creation (b̂†ν) and annihilation
(b̂ν) operators:

Q̂ν = 1√
2

(b̂†ν + b̂ν ), (3a)

P̂ν = i√
2

(b̂†ν − b̂ν ). (3b)

The electron-boson interaction is taken to have the general
form

Ĥe-b =
∑
n, ν

∫
dx ψ̂†(x)V n

ν (x)ψ̂ (x)Q̂n
ν, (4)

with

Q̂n
ν =

n∏
i=1

Q̂νi
, (5a)

V n
ν (x) = 1

n!

(
n∏

i=1

∂νi

)
eq

Ve-b(x). (5b)

Here Ve-b(x) is a generic potential that dictates the electron-
boson interaction. The connection to the electron-phonon
problem is given in Appendix B. Equation (5b) makes it clear
that V n

ν (x) is a symmetric tensor with respect to indices ν. The
differentiation is performed with respect to the bosonic coordi-
nates evaluated at the equilibrium point. The physical form of
the potential depends on the specific problem. Therefore, the
equilibrium coordinates are specific to the kind of physics the
bosons are describing. In the case of phonons, (

∏n
i=1 ∂νi

)eq is
evaluated at the equilibrium atomic configuration, as defined
in Appendix B.

Averaging the total Hamiltonian, Eq. (1), with respect
to electronic coordinates leads to the effective anharmonic
bosonic Hamiltonian. Solving such a model leads to, among
other effects, the prediction of the temperature dependence
of the averaged displacement. While an interesting and well-
discussed problem on its own, we will not consider this effect
here assuming that for each given temperature a Hamiltonian
of the type defined by Eq. (1) can be derived such that

〈Q̂ν〉 = 0. (6)

In contrast, as will be shown using our diagrammatic approach,
other correlators of the position operator will be modified by
electron-boson interaction in a nontrivial way.

Equation (5) highlights an important and crucial aspect
of the notation. The symbol ν represents a generic vector
of bosonic indices of dimension n, which is indicated as a
superscript and should not be confused with power. Therefore
we consider the most general case where the nth-order e-b
interaction is a nonlocal function of n bosonic coordinates.

For convenience we also introduce the electronic operator

γ̂ n
ν ≡

∫
dx ψ̂†(x)V n

ν (x)ψ̂ (x), (7)

such that Ĥe-b can be written as

Ĥe-b =
∑
n, ν

γ̂ n
ν Q̂n

ν . (8)
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Having introduced the general electron-boson Hamiltonian (1)
and specified its ingredients, our goal now is to obtain a self-
consistent set of equations that relate well-defined objects such
as electron and boson propagators. To this end, we generalize
the Schwinger’s method of functional derivatives [52], which
allows us to express more complicated correlators that appear
in their equations of motion (the Martin-Schwinger hierarchy)
in terms of functional derivatives.

III. THE EQUATION OF MOTION FOR THE ELECTRONIC
AND BOSONIC OPERATORS

A. Time-dependence

For our purpose we define operators in the Heisenberg
picture (indicated here by the H subscript) with time arguments
running on the Keldysh contour (z ∈ C):

ÔH (z) ≡ Û (z0, z)Ô Û (z, z0), (9)

where z0 is arbitrary initial time and Û (z, z0) is the time-
evolution operator from the initial time z0 to z. In this picture,
the operators are explicitly time-dependent, whereas wave
functions are not. This allows us to make a connection with
the many-body perturbation theory, which relies on the time
evolution on the contour and on the Wick theorem. In what
follows, the picture in which operators are given is not explic-
itly indicated when it can be inferred from the corresponding
arguments.

The electronic, bosonic operators satisfy standard anticom-
mutation (denoted with +), commutation (denoted with −)
rules, respectively:

[ψ̂ (x1), ψ̂†(x2)]+ = δ(x1 − x2), (10a)

[Q̂μ , P̂ν]− = iδμν. (10b)

We now introduce a short-hand notation (xi , zi ) ≡ i so
that ψ̂ (1) ≡ ψ̂ (x1, z1). The Heisenberg equations of motion
(EOM) for ψ̂ , Q̂, and P̂ follow by applying Eqs. (10) to
evaluate commutators with the full Hamiltonian Ĥ :

i
d

dz1
ψ̂ (1) =

⎡⎣he(1) +
∑
n, ν

V n
ν (x1)Q̂n

ν (z1)

⎤⎦ψ̂ (1), (11a)

d

dz1
Q̂ν (z1) = �νP̂ν (z1), (11b)

d

dz1
P̂ν (z1) = −�νQ̂ν (z1) −

∑
m, μ

m γ̂ m
μ⊕ν (z1)Q̂m−1

μ (z1).

(11c)

In Eq. (11c) the combinatorial prefactor m follows from the fact
that γ̂ m also is a symmetric tensor of rank m. This equation is
formally demonstrated in Appendix C.

In Eq. (11c) we have introduced a general definition for a
multidimensional operator whose index is a composition of two
subgroups of indexes. In the case of γ̂ m

μ⊕ν , the vector of indices

μ has m − 1 components, and (μ ⊕ ν) = (μ1, . . . , μm−1, ν)
is correctly m dimensional. By combining the last two of
Eqs. (11) we obtain a second-order differential equation for

the displacement operator [53] with a source term[
d2

dz2
1

+ �2
ν

]
Q̂ν (z1) = −�ν

∑
m,μ

m γ̂ m
μ⊕ν (z1)Q̂m−1

μ (z1).

(12)

More complicated operators appearing on the right-hand side
of Eqs. (11) and (12) can be expressed using the method of
functional derivatives.

B. Functional derivatives

In order to introduce the functional derivatives approach
we couple the Hamiltonian to time-dependent auxiliary fields
ξn
ν (z) and η(x, z),

Ĥξ,η(z) = Ĥ +
∑
n, ν

ξn
ν (z)Q̂n

ν (z) +
∫

dx η(x, z)ρ̂(x, z), (13)

where a superscript in ξn
ν (z) indicates that ν is ann-dimensional

vector of indices. We introduced the electron density operator
ρ̂(1) = ψ̂†(1)ψ̂ (1).

Consider now the time evolution in the presence of these
external fields. The corresponding time-evolution operator is
denoted as Ûξ,η(z0, z). Now in the definition of the average
operator

〈Ôξ,η(z)〉ξ,η = Tr
{
T exp

[−i
∫
C dz̄Ĥξ,η(z̄)

]
Ôξ,η(z)

}
Tr

{
T exp

[−i
∫
C dz̄Ĥξ,η(z̄)

]} , (14)

the ξ and η functions occur twice signaling that both
the operator Ô in the Heisenberg picture Ôξ,η(z) =
Ûξ,η(z0, z)ÔÛξ,η(z, z0) and the density matrix are defined with
respect to the perturbed Hamiltonian. Starting from this form
various functional derivatives can be computed. We write 〈· · · 〉
for 〈· · · 〉ξ,η where it does not lead to ambiguities.

Let us consider the case of a generic, contour-ordered prod-
uct of operators

∏
i Ô(i)(zi ). Constituent operators depend,

in general, on different times zi and are distinguished by the
subscript (i). By the formal differentiation, one can prove that

i
δ

δξn
μ(z̄)

〈
T
{∏

i

Ô(i)
ξ, η(zi )

}〉∣∣∣∣∣
ξn
μ=0, η=0

=
〈
T
{∏

i

Ô(i)(zi ) Q̂n
μ(z̄)

}〉

−
〈
T
{∏

i

Ô(i)(zi )

}〉〈
Q̂n

μ(z̄)
〉
, (15)

where T denotes the contour-ordering operator. The second
term in Eq. (15) stems from the variation of denominator, i.e.,
it assures correct normalization. In general, this identity can
contain side by side electronic and bosonic operators and also
operators with equal time arguments. For the latter, the standard
definition of T needs to be amended with a rule that equal-
time operators do not change their relative order upon contour
ordering. For mixed operators, only the permutations of the
electronic ones induce a sign change [46].
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A similar expression holds for the derivative with respect
to η:

i
δ

δη(1)

〈
T
{∏

i

Ô(i)
ξ, η(zi )

}〉∣∣∣∣∣
ξn
μ=0, η=0

=
〈
T
{∏

i

Ô(i)(zi ) ρ(1)

}〉
−

〈
T
{∏

i

Ô(i)(zi )

}〉
〈ρ(1)〉.

(16)

Here and in the following we always assume that the limit of
zero auxiliary fields is taken after variations. In practice, how-
ever, this means that during derivations all Green’s functions
are formally dependent on the auxiliary fields. This will be
evident from the form of the electronic and bosonic Dyson
equations with mean fields that include the auxiliary fields.

IV. GREEN’S FUNCTION
AND DIAGRAMMATIC NOTATION

We use the standard definitions of the electronic Green’s
function (GF) on the Keldysh contour:

G(1, 2) = −i〈T {ψ̂ (1)ψ̂†(2)}〉, (17)

where 〈· · · 〉 is the trace evaluated with the exact density matrix.
The bosonic propagators on the Keldysh contour extend the

definition of the electronic case

Dm,n
μ,ν (z1, z2) = −i

〈
T
{
�Q̂m

μ (z1)�Q̂n
ν (z2)

}〉
, (18)

where �Ô ≡ Ô − 〈Ô〉 is the fluctuation operator. In the case
m = n = 1 the standard bosonic propagator is recovered:

Dμ,ν (z1, z2) = D1,1
μ,ν (z1, z2). (19)

Thanks to Eq. (14), we can rewrite Dm,n as

iDm,n
μ,ν (z1, z2) = 〈

T Q̂m
μ (z1)Q̂n

ν (z2)
〉 − 〈

Q̂m
μ (z1)

〉〈
Q̂n

ν (z2)
〉

= i
δ
〈
Q̂m

μ (z1)
〉

δξn
ν (z2)

. (20)

This equation can be further generalized to

Dm,n
μ,ν (z1, z2) = i

δ

δξk
κ (z1)

D
m−k,n
λ,ν (z1, z2)

+ 〈
Q̂k

κ (z1)
〉
D

m−k,n
λ,ν (z1, z2)

+ 〈
Q̂m−k

λ (z1)
〉
Dk,n

κ,ν (z1, z2), (21)

for k < m and μ = κ ⊕ λ. Equation (21) is proved in
Appendix D. The last two terms represent a contraction of
symmetric tensors of ranks m − k and k yielding a symmetric
tensor of rank m (with respect to the first argument). We will
make extensive use of these differential forms of Dm,n as
well as of the representations in terms of Feynman diagrams.
We introduce ad hoc graphical objects to easily represent the
multifold aspects of the nonlinear e-b interaction; in Fig. 2 all
ingredients of the diagrammatic representation are shown.

In general, the selection of k bosonic operators out of m

that appear on the right-hand side (r.h.s.) of Eq. (21) can be
performed in ( m

k
) ways. These correspond to all the possible

FIG. 2. Definition of the diagrammatic elements used in this
work. (a) © and × represent a generic time and position point,
respectively. These two symbols can be combined to indicate a time
and position vertex ⊕1 equivalent to 1 = (x1, z1). (b) Finally a box
around a spatial point represents the scattering integral V n

ν (x) with
two fermionic and n bosonic dangling lines. (c) Bosonic propagators
can be represented in three different forms depending on their order.
(d) Expectation value of the bosonic coordinates expressed in terms
of a bosonic propagator. (e) Electronic Green’s function.

choices of k elements out of m. However Eq. (21) is exact
for any choice of the κ elements. Therefore no combinatorial
prefactor is needed whenever Eq. (21) is used.

By using Eq. (6) we can write〈
Q̂m

μ⊕ν (z1)
〉 = iDm−1,1

μ,ν (z1, z
+
1 ). (22)

We use here z+
1 = z1 + 0+. It is important to note here that in

the limit ξn
μ = 0, η = 0 we have that 〈Q̂m

μ⊕ν (z1)〉 is constant
because of the time-translation invariance. However, during
the derivation the time dependence is induced by the auxiliary
fields.

The EOM for bosonic displacement operators (12) leads us
to consider a specific case of Dm−1,1, which can be reduced
to simpler propagators by the application of Eq. (21) with k =
m − 2:

Dm−1,1
μ,ν (z1, z2) = i

δ

δξm−2
κ (z1)

Dλ,ν (z1, z2)

+ 〈
Q̂m−2

κ (z1)
〉
Dλ,ν (z1, z2), (23)

where we used the fact that 〈Q̂λ〉 is zero in the limit of vanishing
auxiliary fields and μ = κ ⊕ λ.

V. ELECTRON DYNAMICS

The EOM for G is obtained with the help of
EOMs for the constituent operators and using the relation
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d
dz1

θ (z1 − z2) = δ(z1 − z2). Thus we have[
i

∂

∂z1
− he(1) − η(1)

]
G(1, 2)

= δ(1, 2) − i
∑
n, ν

V n
ν (x1)

〈
T
{
ψ̂ (1)Q̂n

ν (z1)ψ̂†(2)
}〉

. (24)

Using Eq. (15), the correlator on the r.h.s. of Eq. (24) can be
expressed as the functional derivative

−i
〈
T ψ̂ (1)Q̂n

ν (z1)ψ̂†(2)
〉 =

[
i

δ

δξn
ν (z1)

+ 〈
Q̂n

ν (z1)
〉]

G(1, 2).

(25)

Our goal is to rewrite Eq. (24) in the form of a Dyson
equation, which involves a dressed mean-field potential � and
correlated mass operator M:[

i
∂

∂z1
− he(1) − η(1) − �(1)

]
G(1, 2)

= δ(1, 2) +
∫

d3 M (1, 3)G(3, 2). (26)

The potential � follows from the second term on the r.h.s. of
Eq. (25),

�(1) =
∑
n, ν

V n
ν (x1)

〈
Q̂n

ν (z1)
〉
. (27)

The mass operator is implicitly written as∫
d3 M (1, 3)G(3, 2) = i

∑
n, ν

V n
ν (x1)

δ

δξn
ν (z1)

G(1, 2). (28)

The potential � and the mass operator M can be conveniently
combined in the electronic self-energy operator �e:

�e(1, 2) = �(1)δ(1, 2) + M (1, 2). (29)

A. The nth-order Debye-Waller potential

In order to rewrite � in terms of the bosonic Green’s
function, we apply Eq. (22) to Eq. (27). It follows that we
can introduce a nth-order bosonic mean field �n

DW (1) defined
as

�n
DW (1) = i

∑
ν

V n
ν (x1)Dn−1,1

μ,νn
(z1, z

+
1 ), (30)

with ν = μ ⊕ νn. �n
DW is showed in diagrammatic form in

Fig. 3(a) in the general case.
Equation (30) provides a generalization of the Debye-

Waller (DW) potential to arbitrary orders. The expression
of this potential is well known in the electron-phonon case
only when n = 2, and it has been derived only by using
a diagrammatic approach. In the present case, it naturally
appears as the mean-field electronic potential induced by the

FIG. 3. (a) Diagrammatic form of the nth-order DW potential.
(b) Perturbative expansions in term of bare bosonic propagators
(they are denoted as dashed lines) lead to complicated diagrams. The
inclusion of nonlinear e-b interaction leads to nonvanishing odd-order
terms that are zero in the linear interaction case.

nonlinear electron-boson interaction:

�2
DW (1) = i

∑
ν1,ν2

V 2
ν1,ν2

(x1)Dν1,ν2 (z1, z
+
1 ). (31)

The DW potential has a long history in the electron-phonon
context. Early developments are nicely summarized in the
HAC approach. They present a very simple perturbation
theory derivation that also emphasizes a close connection with
self-energy originating from the first-order coupling (due to
translational invariance).

The present approach extends its definition to arbitrary
orders and, also, highlights its physical origin. The Schwinger’s
variational derivative technique has the merit of showing that
the mean-field potential is due to the dressing of the η potential
induced by the nth-order fictitious interaction ξn. Physically
this corresponds to the dressing of the electronic potential
induced by strongly anharmonic effects.

This also clarifies why the DW potential is not present in
any previous treatment [27,54] of the electron-phonon inter-
action performed using the Schwinger’s variational derivative
technique. The reason is that in these works the e-b interaction
is treated at the first order only.

In conventional theories involving linear electron-boson
interactions the 〈Q̂n

μ(z1)〉 averages are, in general, connected
to the boson mean displacement (n = 1) and the population
(n = 2). As a consequence, it is zero for any odd value of n.
The presence of higher-order e-b interactions deeply modifies
this simple scenario. 〈Q̂n

μ(z1)〉 is a nth-order bosonic tadpole
whose dynamics includes nontrivial contributions, like the one
showed in Fig. 3(b). These tadpoles are, in general, nonzero.
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B. The mass operator

The mass operator requires additional manipulations. We
integrate by parts

M (1, 2) = i
∑
n, ν

V n
ν (x1)

∫
d3

[
δ

δξn
ν (z1)

G(1, 3)

]
G−1(3, 2)

= −i
∑
n, ν

V n
ν (x1)

∫
d3 G(1, 3)

δ

δξn
ν (z1)

G−1(3, 2).

(32)

This equation is exact. Now the problem is how to evaluate this
variational derivative. By noticing that[

i
∂

∂z1
− he(1) − η(1) − �(1)

]
δ(1, 2)

= G−1(1, 2) + M (1, 2), (33)

we have that

− δ

δξn
ν (z1)

G−1(3, 2) = δ�(2)

δξn
ν (z1)

δ(2, 3) + δM (3, 2)

δξn
ν (z1)

= δ�(2)

δξn
ν (z1)

δ(2, 3) −
∫

d4567
δtM (3, 2)

δtG(4, 5)

×G(4, 6)
δG−1(6, 7)

δξn
ν (z1)

G(7, 5). (34)

In Eq. (34) we have introduced the δt symbol to make clear that
we are using a total derivative. In this way the derivation of the
electronic self-energy and vertex function closely follows the
well-established procedure introduced in the case of the linear
e-b coupling [27]. In the next section we will further discuss
this subtle but important aspect.

We can now define a vertex function that extends to the e-b
case the known electronic vertex function. In order to do so
we start by expanding the first term appearing on the r.h.s. of
Eq. (34) using Eq. (20):

δ�(2)

δξn
ν (z1)

=
∑
m, μ

V m
μ (x2)

δ
〈
Qm

μ (z2)
〉

δξn
ν (z1)

=
∑
m, μ

V m
μ (x2)Dm,n

μ,ν (z2, z1). (35)

It is natural to define the electron-boson vertex function
�e-b,m

μ (1, 2; z) [55] as

− δ

δξn
ν (z1)

G−1(3, 2)

≡ �e-b,n
ν (3, 2; z1)

= −
∑
m, μ

∫
dz4

δG−1(3, 2)

δ
〈
Qm

μ (z4)
〉 δ

〈
Qm

μ (z4)
〉

δξn
ν (z1)

=
∑
m, μ

∫
dz4 �

e-b,m

μ (3, 2; z4)Dm,n
μ,ν (z4, z1). (36)

Here we have also introduced an alternative form of the e-b
vertex function:

�
e-b,n

μ (1, 2; z3) ≡ −δG−1(1, 2)

δ
〈
Qn

μ(z3)
〉 . (37)

From Eqs. (35) and (37) it follows that �
e-b

satisfies the
following integrodifferential equation:

�
e-b,n

ν (1, 2; z3) = �
e-b,n

ν (1, 2; z3)
∣∣
0 +

∫
d4567

δtM (1, 2)

δtG(4, 5)

×G(4, 6)�
e-b,n

ν (6, 7; z3)G(7, 5), (38)

with

�
e-b,n

ν (1, 2; z3)
∣∣
0 = δ�(1)

δ
〈
Qn

ν (z3)
〉δ(1 − 2)

= δ(1 − 2)δ(z1 − z3)V n
ν (x1). (39)

In Eq. (38) appears M [defined in Eq. (29)] instead of �e as
η does not depend on ξ and the lowest-order derivative comes
through �. This, in practice, means that in the independent
particle approximation (IPA) (�e = 0) the mixed e-b vertex is
zero, as it should be.

By analogy with the electronic case, it can be regarded as
the Bethe-Salpeter equation for the vertex function. It was dis-
cussed in the linear electron-phonon coupling by van Leeuwen
[27]. Equation (38) also defines the electron-electron kernel

Ke-e(1, 5; 2, 4) ≡ δt�
e(1, 2)

δtG(4, 5)
(40)

that will also appear in Sec. VIII A in the case of the equation
of motion for the electronic response function. Note that in
this section we have already introduced a specific notation for
the vertex and for the kernel. Indeed, in both cases we have
that the vertex/kernel is defined as the functional derivative
of electronic/bosonic observable (the inverse GF for the
vertex and the self-energy for the kernel) with respect to
an electronic/bosonic potential (for the vertex) or GF (for
the kernel). In the present case Ke-e is purely electronic,
while in �e-b the field ξ is bosonic. In the following sections
we will introduce other vertexes and associated kernels and
demonstrate that they are connected via matrix generalization
of the Bethe-Salpeter equation.

The full mass operator can be finally written as

M (1, 2) = i
∑
n, ν

∑
m, μ

∫
d3

∫
dz4 V n

ν (x1)G(1, 3)

×�
e-b,m

μ (3, 2; z4)Dm,n
μ,ν (z4, z1). (41)

By comparing the expression for the electron self-energy
with the expression in a pure electronic case one observes
that

∑
m, μ

∑
n, ν V m

μ (3)Dmn
μν (z3, z1)V n

ν (1) plays the role of the
screened Coulomb interaction.

Equation (41) is not the most convenient representation of
the electron self-energy because there is no simple way of com-
puting the kernel Ke-e(1, 5; 2, 4) even though the diagrammatic
form of �e is known. As can be seen from the exact formula,
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FIG. 4. Diagrammatic form of the self-energy operator (a) and
of the vertex function (b) for arbitrary orders of the electron-boson
interaction and arbitrary number of bosons involved in the scattering.
In order to close this set of equations, expressions for the bosonic

propagator Dm,n (Secs. VI C and VIII) and the vertex function �
e-b,n

(Sec. VI D) are additionally needed. The lowest order approximation
for the electron self-energy is described in Sec. VII.

Eq. (41), and its diagrammatic representation in Fig. 4(a), the
self-energy contains the bosonic propagator D, and, therefore,
the variation δ�e(1,2)

δD(4,5) is implicitly included in the δt�
e(1,2)

δtG(4,5) . This
is the main difference from the pure electronic case, where the
screened interaction explicitly depends on the electron Green’s
function. Thus, although Eq. (41) is exact, it is not practical.
A better approach is to consider from the beginning the
electronic self-energy to be a functional of both propagators,
i.e., �e = �e[G,D], which requires the introduction of other
vertex functions. This procedure will be implemented below
in combination with the bosonic self-energy.

VI. SINGLE-BOSON DYNAMICS

Starting from the equation of motion (12) for Q̂μ we derive
the equation of motion for the bosonic propagator Dμ,ν in a
similar way to the electronic case:

− 1

�μ

[
∂2

∂z2
1

+ �2
μ

]
Dμ,ν (z1, z2)

= δμνδ(z1 − z2)

− i
∑
ζ ,n

n

[ ∫
dx1 V n

ζ⊕μ(x1)
〈
T �

[
ρ̂(1) Q̂n−1

ζ (z1)
]
Q̂ν (z2)

〉︸ ︷︷ ︸
J

(n)
V

+ ξn
ζ⊕μ(z1)

〈
T �Q̂n−1

ζ (z1)Q̂ν (z2)
〉︸ ︷︷ ︸

J
(n)
ξ

]
, (42)

The last term is driven by the auxiliary fields ξn
ζ . According

to the rules specified above, the limit of zero ξn
ζ is to be taken

at the end of derivations.
In Eq. (42) we have schematically represented with J

(n)
V and

J
(n)
ξ , respectively, the term induced by the scattering potential

and by the auxiliary field. The goal of this section is to rewrite

FIG. 5. The nth-order bosonic mean-field potential is one of the
constituents of the total bosonic self-energy.

exactly

−i
∑
ζ ,n

n

[∫
dx1 V n

ζ⊕μ(x1)J (n)
V + ξn

ζ⊕μ(z1)J (n)
ξ

]

=
∑

α

∫
dz3{�μ,α (z1, z3)

+ [Uμ,α (z1) + �μ,α (z1)]δ(z1 − z3)}Dα,ν (z3, z2). (43)

In Eq. (43) we have introduced the generalized bosonic mass
operator � and the mean-field potentials U and �. � is driven
by the fictitious external field and vanishes when ξ → 0. �, U ,
and � sum in the total bosonic self-energy �b that, consistently
with Eq. (29), is defined as

�b
μ,ν (z1, z2) = �μ,ν (z1, z2) + Uμ,ν (z1)δ(z1 − z2). (44)

In order to find the explicit expression for �, U , and �, we
start by observing that Eq. (42) includes linear (n = 1) and
higher-order (n > 1) terms. In the n = 1 case, 〈Q̂〉 = 0, and
we can use the chain rule to write

J
(1)
V = 〈T ρ̂(1)Q̂ν (z2)〉

= i
δ〈ρ̂(1)〉
δξ 1

ν (z2)

= −
∫

d34 G(1, 3)
δG−1(3, 4)

δξ 1
ν (z2)

G(4, 1). (45)

We can now use the definition of the electronic vertex, Eq. (36),
and rewrite J

(1)
V in terms of the mass operator �1:

�1
μ,α (z1, z2) =

∫
d34

∫
dx1 V 1

μ (x1)

×G(1, 3)G(4, 1)�
e-b,1
α (3, 4; z2) (46)

that is diagrammatically represented in Fig. 6(a). This contri-
bution to the bosonic mass operator does not require further
manipulations and is an explicit function of the single-boson
correlator D. �(1) represents the generalization to the case of
nonlinear e-b coupling of the first-order e-b mass operator well
known and widely used in the literature [56,57] to calculate,
for example, phonon linewidths [58].

We now move to the n > 1 case. We observe that, thanks to
Eq. (6), 〈

T �Q̂n−1
ζ (z1)Q̂ν (z2)

〉 = iD
n−1,1
ζ ,ν (z1, z2), (47)
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FIG. 6. A total of eight diagrams constituting the exact bosonic mass operator �μ,ν (z1, z2).

and, by using Eq. (23) with m = n and k = n − 2, we can express J
(n>1)
ξ as

J
(n>1)
ξ =

∑
ζ

n ξn
ζ⊕μ(z1)Dn−1,1

ζ ,ν (z1, z2) =
∑
κ,α

n ξn
μ⊕κ⊕α (z1)

(〈
Q̂n−2

κ (z1)
〉 + i

δ

δξn−2
κ (z1)

)
Dα,ν (z1, z2), (48)

with ζ = κ ⊕ α.

The J
(n>1)
V correlator can be evaluated by using Eq. (16):

J
(n>1)
V =

(〈
Q̂n−2

κ (z1)
〉 + i

δ

δξn−2
κ (z1)

)(
〈ρ̂(1)〉 + i

δ

δη(1)

)
Dα,ν (z1, z2). (49)

In Eq. (49) the δη derivative is made acting before the δξ one. In this way the limit of zero external field can be safely taken and
the last term of Eq. (23) vanishes. It is, indeed, important to remind that 〈Q̂α (z1)〉 = 0 only when ξ = 0.

If we now collect Eqs. (48) and (49) and plug them into Eq. (42) we can recast the EOM for D in the form

− 1

�μ

[
∂2

∂z2
1

+ �2
μ

]
Dμ,ν (z1, z2) = δμνδ(z1 − z2) +

∑
n>1, κ,α

n
[〈
γ̂ n

μ⊕κ⊕α (z1)
〉 + ξn

μ⊕κ⊕α (z1)
]〈
Q̂n−2

κ (z1)
〉
Dα,ν (z1, z2)︸ ︷︷ ︸

U+�

+
∑

α

∫
dz3 �(1)

μ,α (z1, z3)Dα,ν (z3, z2) +
∑

n>1, κ,α

n

∫
dx1 V n

μ⊕κ⊕α (x1)

[
i
δ[ρ(1)Dα,ν (z1, z2)]

δξn−2
κ (z1)︸ ︷︷ ︸
�(2)

+ i
〈
Q̂n−2

κ (z1)
〉δDα,ν (z1, z2)

δη(1)︸ ︷︷ ︸
�(3)

− δ2Dα,ν (z1, z2)

δη(1)δξn−2
κ (z1)︸ ︷︷ ︸

�(4)

]
. (50)

Equation (50) represents a key result of this work. We have already schematically identified the different terms that compose
the EOM for D. The J

(n)
ξ term reduces, when ξn → 0 only to the U potential, while the J

(n)
V term reduces to the sum of

three mass operators. In the following we study them in detail in order to recast Eq. (50) in the form of a Dyson equation
for D.
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A. Mean-field potentials

The first contribution to the EOM for D is through the mean-field potentials U and �. These potentials are due to the first
term on the r.h.s. of Eq. (48) and to the 〈Q̂n−2

κ (z1)〉Dα,ν (z1, z2) term in Eq. (50). The sum of these two terms can be rewritten as
the action of two local potentials on the bosonic propagator:∑

α

[Uμ,α (z1) + �μ,α (z1)]Dα,ν (z1, z2), (51)

with

Uμ,α (z1) =
∑

n�2, κ

n
〈
γ̂ n

μ⊕κ⊕α (z1)
〉〈
Q̂n−2

κ (z1)
〉
, (52a)

�μ,α (z1) =
∑

n�2, κ

nξn
μ⊕κ⊕α (z1)

〈
Q̂n−2

κ (z1)
〉
. (52b)

We remind the reader that ξn
μ⊕κ⊕α and γ̂ n

μ⊕κ⊕α are symmetric tensors of rank n, and κ is an n − 2 dimensional vector. Equation
(52a) is represented diagrammatically in Fig. 5 in the limit of vanishing auxiliary fields.

B. The pure bosonic vertex function �b-b

A key ingredient of Eq. (50) is the first-order derivative δD(z1,z2 )
δξn(z1 ) . This term shows some remarkable properties that we study

here in detail. We start from the term

δDα,ν (z1, z2)

δξn−2
κ (z1)

=
∑
β,γ

∫
dz3dz4 Dα,β (z1, z3)�b-b,n−2

β,γ ;κ (z3, z4; z1)Dγ,ν (z4, z2). (53)

Equation (53) introduces a further vertex with an entire bosonic character:

�
b-b,n
β,γ ;κ (z1, z2; z3) ≡ −δD−1

β,γ (z1, z2)

δξn
κ (z3)

. (54)

The lowest-order contribution to this vertex function is from the variational derivative of the driving field entering the mean-field
potential, Eq. (52a):

�
b-b,n
β,γ ;λ(z1, z2; z3)

∣∣
0 =

∑
m�2, κ

m
δ
[
ξm
μ⊕κ⊕α (z1)

〈
Q̂m−2

κ (z1)
〉]

δξn
λ (z3)

δ(z1 − z2). (55)

In the limit ξ → 0 only the derivative of ξm
μ⊕κ⊕α (z1) gives a nonzero contribution. As written previously the ξ function is totally

symmetric. In practice this means that, if we call I the n-dimensional vector containing a generic permutation of the λ indexes,
we have that ξn

λ = ξn
λI1 ,...,λIn

. It follows that

δξm
μ⊕κ⊕α (z1)

δξn
λ (z3)

= δ(z1 − z3)δnm

n

n!

n!∑
I=1

δκ1,λI2
· · · δκ1,λIn−1

δμ,λI1
δα,λIn

. (56)

Equation (56) gives, in practice, only n(n − 1) terms as all ( n

n−2 ) permutations of λI2 · · · λIn−1 inside the 〈Q̂m−2
λI2 ···λIn−1

(z1)〉 gives

the same contribution. The final form of �b-b,n|0 is, therefore

�
b-b,n
β,γ ;λ(z1, z2; z3)

∣∣
0 ≡ �

b-b,n
β,γ ;λ(z1)

∣∣
0δ(z1 − z2)δ(z1 − z3) = 1

(n − 1)!

n!∑
I=1

〈
Q̂n−2

λI2 ···λIn−1
(z1)

〉
δμ,λI1

δα,λIn
δ(z1 − z2)δ(z1 − z3). (57)

Note the contracted single-time form of �b-b,n|0 introduced in Eq. (57). It will be used in the zeroth-order approximations for �b,
cf. Eq. (44).

C. Nonlinear self-energies

The first term we analyze is �(2). With the help of Eq. (53) it follows that

�(2a)
μ,ν (z1, z2) = i

∑
n�2, κ,α

n
〈
γ̂ n

μ⊕κ⊕α (z1)
〉∑

β

∫
dz3 Dα,β (z1, z3)�b-b,n−2

β,ν;κ (z3, z2; z1). (58)
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By expressing the electron density in terms of the equal times Green’s function as ρ(1) = −iG(1, 1+), we compute the variation
δ〈ρ̂(1)〉

δξn−2
κ (z1 ) . It yields

�(2b)
μ,ν (z1) =

∑
n�2, κ,λ,l

n

∫
dx1 V n

μ⊕κ⊕ν (x1)
∫

d34 G(1, 3)
∫

dz5 �
e-b,l

λ (3, 4; z5)Dl,n−2
λ,κ (z5, z1)G(4, 1+). (59)

This mass operator is local and can be seen as a correlated correction to U . There is no analogous contribution to the mean-field
potential in pure electronic systems, and to the best of our knowledge, it was not discussed in the context of e-b interactions.

Next we consider the 〈Q̂n−2
κ 〉 δD

δη
variation

�(3)
μ,ν (z1, z2) = i

∑
n�2, κ,α

n

∫
dx1 V n

μ⊕κ⊕α (x1)
〈
Q̂n−2

κ (z1)
〉∑

β

∫
dz3 Dα,β (z1, z3)�b-e

β,ν (z3, z2; 1) (60)

[Fig. 6(d)], where we used the chain rule of differentiation and introduced a new vertex function with two bosonic and one
fermionic coordinates:

�b-e
β,γ (z1, z2; 3) ≡ −δD−1

β,γ (z1, z2)

δη(3)
= −

∫
d4

δD−1
β,γ (z1, z2)

δ〈ρ̂(4)〉
δ〈ρ̂(4)〉
δη(3)

≡
∫

d4 �
b-e
β,γ (z1, z2; 4)χ (4, 3). (61)

Notice that similarly to the other mixed vertex, Eq. (36), we pulled out the common part of the functional derivative from the
definition. The common part is given by the electron density response function

χ (1, 2) = δ〈ρ̂(1)〉
δη(2)

= −i
δG

(
1, 1+)

δη(2)
. (62)

Other terms as well as contributions to the vertex function �b-e
β,γ (z1, z2; 3) from the bosonic self-energy will be considered in the

next section.
Our next contribution results from the application of double differential operators δ2

δξn−2
κ (z1 )δη(1) and consists of three terms

�(4a)
μ,ν (z1, z2) = −

∑
n�2, κ,α

n

∫
dx1 V n

μ⊕κ⊕α (x1)
∑

β,φ,ψ

∫
dz3dz4dz5 Dα,φ (z1, z4)�b-b,n−2

φ,ψ ;κ (z4, z5; z1)Dψ,β (z5, z3)�b-e
β,ν (z3, z2; 1),

(63a)

�(4b)
μ,ν (z1, z2) = −

∑
n�2, κ,α

n

∫
dx1 V n

μ⊕κ⊕α (x1)
∑

β,φ,ψ

∫
dz3dz4dz5 Dα,β (z1, z3)�b-e

β,φ (z3, z4; 1)Dφ,ψ (z4, z5)�b-b,n−2
ψ,ν;κ (z5, z2; z1),

(63b)

�(4c)
μ,ν (z1, z2) + �(4d )

μ,ν (z1, z2) = −
∑

n�2, κ,α

n

∫
dx1 V n

μ⊕κ⊕α (x1)
∑

β

∫
dz3 Dα,β (z1, z3)

δ�b-e
β,ν (z3, z2; 1)

δξn−2
κ (z1)

. (63c)

Note that Eq. (63c) produces two terms, �(4c) and �(4d ), as it will be demonstrated in the next section.

D. Vertex functions

In the preceding sections we derived the equation of motion of the bosonic propagator Dμ,ν , Eq. (50). Its important ingredients
are the mean-field potentials Uμ,ν and �μ,ν , Eqs. (52a) and (52) and the bosonic mass operator � consisting of eight terms �(1),
�(2a), �(2b), �(3), �(4a), �(4b), �(4c), and �(4d ). They, in turn, explicitly depend on three vertex functions: �e-b, �b-e, and �b-b.
�e-e appears implicitly through the response function χ , in Eq. (61). The vertex functions contain one, two, or three external
bosonic indices. In order to close the functional equations, we still need to express these vertex functions in terms of already
defined correlators.

In order to do so, let us rewrite the vertex function as components of a Jacobian matrix:

�(1, 2; 3) ≡ −
⎡⎣ δG−1(1,2)

δη(3)
δG−1(1,2)
δξn

κ (z3 )

δD−1
μ,ν (z1,z2 )
δη(3)

δD−1
μ,ν (z1,z2 )
δξn

κ (z3 )

⎤⎦ =
⎡⎣ �e-e(1, 2; 3) �e-b,n

κ (1, 2; z3)

�b-e
μ,ν (z1, z2; 3) �b-b,n

μ,ν;κ (z1, z2; z3)

⎤⎦ (64)

and

K(1, 5; 2, 4) ≡
⎡⎣ δ�e(1,2)

δG(4,5)
δM (1,2)

δDφ,ψ (z4,z5 )

δ�μ,ν (z1,z2 )
δG(4,5)

δ�b
μ,ν (z1,z2 )

δDφ,ψ (z4,z5 )

⎤⎦ =
[

Ke-e(1, 5; 2, 4) Ke-b(1, z5; 2, z4)

Kb-e(z1, 5; z2, 4) Kb-b(z1, z5; z2, z4)

]
. (65)

Here � is built of the vertex functions, and K is the matrix of kernels.
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FIG. 7. Diagrammatic form of the generalized Bethe-Salpeter equation. Black dots denote generic electron or boson indexes, i, j = (e, b).

The definitions introduced with Eqs. (64) and (65) make clear that the electronic and bosonic degrees of freedom are totally
symmetric and treated on equal footing. Indeed the rows and columns of the two matrices can be labeled with the kind of
input/output legs of the vertex/kernel [ e-e

b-e
e-b
b-b ].

For a given diagrammatic expression of the electronic and bosonic self-energies, the corresponding partial variations can be
easily computed. Finally, we introduce the free term given by the derivatives of the mean-field electronic and bosonic potentials:

�0(1, 2; 3) ≡
[
�e-e

0 (1, 2; 3) �e-b
0 (1, 2; z3)

�b-e
0 (z1, z2; 3) �b-b

0 (z1, z2; z3)

]
≡

⎡⎣ δη(1)
δη(3)δ(1 − 2) δ�(1)

δξn
κ (z3 )δ(1 − 2)

δUμ,ν (z1 )
δη(3) δ(z1 − z2) δ�μ,ν (z1 )

δξn
κ (z3 ) δ(z1 − z2)

⎤⎦, (66)

with

�e-e
0 (1, 2; 3) = δ(1 − 2)δ(1 − 3), (67a)

�e-b
0 (1, 2; z3) = �e-b,n

κ (1, 2; z3)
∣∣
0 =

∑
m,μ

V m
μ (x1)Dm,n

μ,κ (z1, z3)δ(1 − 2), (67b)

�b-e
0 (z1, z2; 3) = �b-e

μ,ν (z1, z2; 3)
∣∣
0

=
∑
m, λ

m
〈
Q̂m−2

λ (z1)
〉 ∫

dx1 V m
μ⊕λ⊕ν (x1)χ (1, 3)δ(z1 − z2), (67c)

�b-b
0 (z1, z2; z3) = �b-b,n

μ,ν;κ (z1, z2; z3)
∣∣
0 = 1

(n − 1)!

n!∑
I=1

〈
Q̂n−2

κI2 ...κIn−1
(z1)

〉
δμ,κI1

δν,κIn
δ(z1 − z2)δ(z1 − z3). (67d)

These four quantities are related by a system of linear equations:

�i-j(1, 2; 3)=�
i-j
0 (1, 2, 3)+K i-e(1, 5; 2, 4)G(4, 6)G(7, 5)�e-j(6, 7; 3)+K i-b(1, 5; z2, z4)Dψ,ξ (z4, z6)Dφ,η(z7, z5)�b-j

ξ,φ (z6, z7; 3),
(68)

where the summation and the integration over the repeated arguments is assumed, and the generic indexes are i, j = (e, b). This
is the sought generalized Bethe-Salpeter equation (GBSE) for the vertex functions (Figs. 7 and 8).

Now we are in the position to evaluate Eq. (63c), which, in fact, contains the variation δ�b-e

δξn . Since � is a solution of the
complicated equation, its explicit form is not known. Therefore we use again the chain rule:

δ�b-e
β,γ (z3, z2; 1)

δξn
κ (z4)

=
∑
φ,ψ

∫
dz5dz6

δ�b-e
β,γ (z3, z2; 1)

δDφ,ψ (z5, z6)

δDφ,ψ (z5, z6)

δξn
κ (z4)

+
∫

d56
δ�b-e

β,γ (z3, z2; 1)

δG(5, 6)

δG(5, 6)

δξn
κ (z4)

=
∑
φ,ψ

∫
dz5dz6

δ�b-e
β,γ (z3, z2; 1)

δDφ,ψ (z5, z6)

∑
χ,λ

∫
dz7dz8 Dφ,χ (z5, z7)�b-b,n

χ,λ;κ (z7, z8; z4)Dλ,ψ (z8, z6)

+
∫

d5678
δ�b-e

β,γ (z3, z2; 1)

δG(5, 6)
G(5, 7)�e-b,n

κ (7, 8; z4)G(8, 6). (69)

With this ingredient, the theory of interacting fermions and
bosons is formally complete: the self-energies are expressed
in terms of propagators and vertex functions. Note that we do
not have yet determining equations for higher-order bosonic

propagators and for the electron density response functions.
For the former, one would have to study the equation of
motion for Q̂n

ν , which is rather complicated. Therefore, in
Sec. VIII we use again the method of functional derivatives
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FIG. 8. Diagrammatic representation of the lowest-order vertex
functions, Eq. (67).

to recast χ and Dm,n
μ,ν in terms of the simplest propagators G

and D.
The vertex functions are related by the generalized Bethe-

Salpeter equation which retains a surprisingly simple structure
pertinent to the pure electronic case. The relation between bare
and dressed vertex functions is a nontrivial point in the theory
of electron-phonon interactions (see Sec. V A of Giustino [1]).
In the case of linear electron-phonon interactions the vertex
is renormalized solely due to the electron-electron interactions
(e.g., Fig. 2 of Leeuwen [27]). In the nonlinear case considered
here, the four vertex functions inevitably arise from a single
electron-boson vertex, V n

ν (x). At a marked difference with
these simpler theories, there are now four ways to renormalize
the bare vertex. In Sec. VII we consider what form the
electron and the boson propagators take when the lowest-
order approximations [Eqs. (67)] are adopted for the vertex
functions.

VII. LOWEST-ORDER APPROXIMATIONS FOR THE
BOSONIC AND ELECTRONIC SELF-ENERGIES

The solution of the Dyson equations for fermions and
bosons are considerably more involved than in the case of
linear electron-boson coupling. The equations have two levels
of internal consistency that we schematically represent in
Fig. 9.

Let us take the electronic case as an example. The Dyson
equation is itself nonlinear. For a given approximation for M

the Dyson equation must be solved and the newGplugged inM

FIG. 9. Schematic representation of the self-consistent cycle in-
volving the different components of the generalized Hedin’s equa-
tions. The dashed lines correspond to the generalized GW approxi-
mation where the vertex functions � are taken to their lowest-order
approximation and Dm,n ≈ Dm,n|0.

FIG. 10. The lowest-order fermionic self-energy.

for a new solution. This process must be continued up to when
self-consistency is reached. Besides this internal consistency

the mass operator depends on the vertex function �
e-b

and
on the multiboson propagators Dn,m. The usual approach to
cut this self-consistent loop is based on approximating the
vertexes to their lowest order and to take the independent boson
approximation (IBA) for Dn,m. A similar procedure can be
applied in the bosonic case.

It is interesting to note that, at variance with the purely
electronic case, the zeroth-order bosonic vertex functions are
still dependent on Dn,m through the 〈Q̂n

ν〉 terms appearing
in Eqs. (67c) and (67d). This dependence is resolved in
the self-consistent loop of Fig. 9 by simply looking at the
〈Q̂n

ν〉 as contractions of the bosonic response function. There-

fore, for the zeroth-order vertexes will use the IBA 〈Q̂n
ν〉 ≈

D
n−1,1
(ν1...νn−1 ),νn

(z, z+)|
0
.

A. Electrons: The generalized Fan approximation

By using the zeroth-order �
b-e

vertex function, Eq. (39) in
the mass operator expression, Eq. (41), allows us to introduce
a generalization of the Fan approximation [1,20]. Indeed we
get M (1, 2) ≈ M0(1, 2) with

M0(1, 2) = i
∑
n, ν

∑
mμ

V n
ν (x1)V m

μ (x2)G(1, 2)Dm,n
μ,ν (z2, z1)

∣∣
0.

(70)

Equation (70) represents the generalization of the usual Fan
approximation which is known only in the linear coupling case
(corresponding tom = n = 1). Its diagrammatic form is shown
in Fig. 10.

In Eq. (70) Dn,m|0 is the zeroth-order approximation for the
bosonic propagator which can be recast as a functional of non-
interacting bosonic propagators, as described in Sec.VIII B 1
for some specific cases.

B. Bosons: A generalized polarization self-energy

As sketched in Fig. 9, the lowest-order approximation for
the bosonic self-energy is obtained by using the zeroth-order
generalized vertex functions, Eq. (67), and the IBA (Dn,m ≈
Dn,m|0) and IPA (χ ≈ χ0) for for bosons and electrons,
respectively.

These approximation must be used in Eqs. (46), (52),
(58)–(60), and (63). Equations (63b) and (63c) need not be
considered because they contain variations of other vertex
functions.
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FIG. 11. Lowest-order approximation for the bosonic mass operators �μ,ν (z1, z2)|0.

In total we obtain six terms:

�(1)
μ,ν (z1, z2)

∣∣
0

=
∫

dx1 dx2 V 1
μ (x1)G(1, 2)G(2, 1)V 1

ν (x2), (71a)

�(2a)
μ,ν (z1)

∣∣
0 =

∑
n�2, κ,α

n
〈
γ̂ n

μ⊕κ⊕α (z1)
〉∑

β

Dα,β (z1, z1)�b-b,n−2
β,ν;κ (z1)

∣∣
0, (71b)

�(2b)
μ,ν (z1)

∣∣
0 =

∑
n, κ

n

∫
dx1 V n

μ⊕κ⊕ν (x1)
∑
l, λ

∫
d3 G(1, 3)V l

λ (x3)Dl,n−2
λ,κ (z3, z1)

∣∣
0G(3, 1+), (71c)

�(3)
μ,ν (z1, z2)

∣∣
0 = i

∑
n,m, κ

α,β,λ

(nm)
∫

dx1 V n
μ⊕κ⊕α (x1)

〈
Q̂n−2

κ

〉 ∫
dx2 Dα,β (z1, z2)V m

β⊕λ⊕ν (x2)
〈
Q̂m−2

λ

〉
χ0(2, 1), (71d)

�(4a)
μ,ν (z1, z2)

∣∣
0 = −

∑
n,κ,α

n

∫
dx1 V n

μ⊕κ⊕α (x1)
∑

β,φ,ψ

∫
dz3Dα,φ (z1, z1)�b-b,n−2

φ,ψ ;κ (z1)
∣∣
0Dψ,β (z1, z3)

×
∑

m, ζ ,β

m

∫
dx2 V m

β⊕ζ⊕ν (x2)
〈
Q̂m−2

ζ

〉
Dψ,β (z1, z2)χ0(2, 1), (71e)

�(4b)
μ,ν (z1)

∣∣
0 = −

∑
n,κ,β,φ,ψ,α

n

∫
dx1 V n

μ⊕κ⊕α (x1)�b-b,n−2
ψ,ν;κ (z1)

∣∣
0

×
∑
m, λ

m

∫
dx3dz3 V m

β⊕λ⊕φ (x3)
〈
Q̂m−2

λ

〉
Dα,β (z1, z3)Dφ,ψ (z3, z1)χ0(3, 1). (71f)

These equations are depicted diagrammatically in Fig. 11.

VIII. RESPONSE FUNCTIONS

The electronic and bosonic self-energies are written, also,
in terms of the response functions χ (1, 2) and Dm,n

μ,ν (z1, z2)
with n > 1 or m > 1. These response functions are more
involved to calculate compared to the single-body case. In-
deed, in the purely electronic case, the single electronic GF

satisfies the Dyson equation, while the two-bodies GF solves
a more complicated Bethe-Salpeter equation [59]. This is the
contracted form of the equation of motion for the electronic
vertex.

However, when the electronic and bosonic degrees of
freedom are considered on equal footing as in Sec. VI D,
the four vertex functions are mutually connected via a matrix
integrodifferential, Eq. (68)—the generalized Bethe-Salpeter
equation.
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In the following sections our goal is investigate the form
which take the electronic and the bosonic response func-
tions as a consequence of the GBSE. In addition, thanks to
the power of the Schwinger technique of functional deriva-
tives, we will rewrite the equation of motion for the re-
sponse function in terms of single fermion and single boson
self-energies.

We have two aspects that complicate enormously the goal of
this section: (i) the electronic and bosonic response functions
are mutually dependent and (ii) the D may contain an arbitrary
pair of incoming and outgoing bosonic lines (n,m).

A. Electronic response

The electronic response, Eq. (62), can be rewritten in terms
of the purely electronic vertex �e-e by means of the usual chain
rule and connecting ρ to the trace of G:

χ (1, 2) = i

∫
d34 G(1, 3)

δG−1(3, 4)

δη(2)
G(4, 1+)

= i

∫
d34 G(1, 3)G(4, 1+)�e-e(3, 4; 2). (72)

From Eq. (68) we do know that the equation of motion for
�e-e corresponds to the e-e channel of GBSE. In practice this
means that, at variance with the purely electronic case, it is
not possible to write the equation of motion for the response
function solely in terms of χ . Indeed, χ will depend, in general,
on Dn,m and, also, on the two mixed generalized response
functions obtained by contracting �b-e and �e-b with bosonic
and fermionic operators.

An alternative path, which we follow here, is to find an
explicit form of �e-e and use Eq. (72) to obtain χ . From Eq. (68)
we know that

�e-e(3, 4; 2) = �e-e
0 (3, 4, 2) +

∫
d5678 Ke-e(3, 6; 4, 5)

×G(5, 7)G(8, 6)�e-e(7, 8; 2)

+
∑
ψξφη

∫
d56

∫
dz7z8 Ke-b

ψ,φ (3, z6; 4, z5)

×Dφ,ξ (z5, z7)Dη,ψ (z8, z6)�b-e
ξ,η(z7, z8; 2).

(73)

The first two terms in Eq. (73) represent a generalization of the
usual Bethe-Salpeter equation, widely used in the context of
optical absorption [59], to the case of an arbitrary number of
bosons that mediate the electron-hole interaction. The second
term, instead, is new and represents a boson-mediated electron-
hole propagation. The electron-hole pair annihilates producing
a number of bosons, which are subsequently scattered giving
rise to a particle-hole pair.

In order to visualize this important modifications we con-
sider the case where M is approximated with the generalized
Fan form, Eq. (70), to evaluate Ke-e and Ke-b:

Ke-e(3, 5; 4, 6) ≈ Ke-e
0 (3, 4)δ(3, 5)δ(4, 6)

= i
∑
nm

∑
μν

V n
ν (x3)V m

μ (x4)Dm,n
μ,ν (z4, z3)

∣∣
0

(74)

FIG. 12. First-order contributions to the electronic response func-
tion. (a) The contribution from Ke-e

0 when n = 2, while (b) is the
contribution from Ke-b

0 when n = 1. Both terms are calculated with
M approximated with the generalized Fan approximation, Eq. (70).
Already at this simple order of perturbation theory (a) shows the
simultaneous electron-hole interaction mediated by three bosons. (b),
instead, is totally new and shows how the electron-hole dynamics
is temporarily transformed in a two bosons dynamics already in the
linear coupling.

and

Ke-b
φ,ψ (3, z5; 4, z6)

≈ Ke-b
φ,ψ (z3; z4)

∣∣
0
δ(z3 − z6)δ(z4 − z5)

= iG(3, 4)
∑
nm

∑
κ λ

∫
dx3x4V

n
κ⊕φ (x3)V m

λ⊕ψ (x4)

×D
m−1,n−1
λ,κ (z4, z3)

∣∣
0. (75)

We can now use Feynman diagrams to make the different
contributions to χ more transparent. Let us consider the
specific case where we use �e-e(6, 7; 3) ≈ �e-e

0 (6, 7; 3) and
�b-e(z6, z7; 3) ≈ �b-e(z6, z7; 3)|0 in the r.h.s. of Eq. (73). If
we plug Eqs. (74), (75) in Eq. (73) and the resulting �e-e in
Eq. (72), a closed form expression for χ follows.

In Fig. 12 we consider two interesting cases of Eq. (73): (a)
the contribution from the first integral and Ke-e evaluated with
n = m = 3 and (b) the contribution from the second integral
when n = m = 1 in Ke-b and n = 2 in �b-e.

B. Bosonic response

We start from Eq. (21), applied to Dn+�n,n. Thanks to this
equation it is possible, for a given n, to reduce the evaluation
of Dn+�n,n to the one of Dn,n, D�n,n, and the functional
derivative of Dn,n. If we assume �n � n (the derivation can
be easily extended to the case �n > n) Eq. (21) lowers the
order of n + �n. If we further apply the same procedure
to D�n,n = Dn,�n = D�n+(n−�n),�n the initial problem of
evaluating Dn+m,n can be cast in an expression which includes
only diagonal response function, of the form Dm,m with m an
arbitrary integer m � n.
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Let us take as an example the D5,2(z1, z2) case. From
Eq. (21) it follows that

D5,2
μ,ν (z1, z2) = i

δ

δξ 3
κ (z1)

D
2,2
λ,ν (z1, z2) + 〈

Q̂3
κ (z1)

〉
D

2,2
λ,ν (z1, z2)

+ 〈
Q̂2

λ(z1)
〉
D3,2

κ,ν (z1, z2),

(76)

with μ = κ ⊕ λ. We can now apply again Eq. (21) on
D3,2

κ,ν (z1, z2). It follows that

D3,2
κ,ν (z1, z2) = i

δ

δξ 1
β (z1)

D2,2
α,ν (z1, z2) + 〈

Q̂2
α (z1)

〉
D

1,2
β,ν (z1, z2),

(77)

with κ = β ⊕ α. A last application of Eq. (21) finally gives

D
1,2
β,ν (z1, z2) = D

2,1
ν,β (z2, z1) = i

δ

δξ 1
ν2

(z2)
Dν1,β (z2, z1). (78)

We have finally reduced D5,2 to an explicit functional of
only diagonal response functions and their derivatives D5,2 =
F [D,D2,2, δD

δξ 1 ,
δD2,2

δξ 1 , δD2,2

δξ 3 ]. From this simple example it fol-
lows that it is enough to study diagonal bosonic response
functions and their functional derivatives in order to calculate
any nondiagonal response functions.

In the following we discuss the IBA and give as an example
the case of D2,2 and D3,3.

1. The independent bosons approximation

The limit of independent bosons is instructive to understand
the actual number of diagrams that can be expected at any level
of the perturbative expansion. In order to evaluate this number
in the IBA we observe that

Dm,n
μ,ν (z1, z2)

∣∣
0 = −i

〈
T
{
�Q̂μ1 (z1) · · · �Q̂μm

(z1)

×�Q̂ν1 (z2) · · · �Q̂νn
(z2)

}〉
0, (79)

with 〈· · · 〉0 the thermal average corresponding to the free-
bosons Hamiltonian. Dm,n

μ,ν |
0

reduces to the sum of all possible
contractions of two bosonic operators. From simple combina-
torics arguments we know that the number of possible ordered
pairs of two operators out of a product of n � 2 is given by the
number of the so-called chord diagrams [60]

Nn =
{

(n − 1)!! even n,
0 odd n.

(80)

By doing simple diagrammatic expansion we see, indeed,
that D2,2

μ,ν (z1, z2)|
0

produces a total of N4 = 3 terms. One
of them is disconnected and corresponds to the complete
contractions of the two terms 〈�Q̂μ1 (z1)�Q̂μ2 (z1)〉0 and
〈�Q̂ν1 (z2)�Q̂ν2 (z2)〉0.

In the D3,3
μ,ν (z1, z2)|

0
case, instead, all contractions are

connected because there is always at least one contraction
with different time arguments. This means that we have in
total N6 = 15 terms. The explicit form of D3,3

μ,ν (z1, z2)|
0

will
be given in Sec. VIII B 3.

We can therefore generally state that Dn,m
μ,ν (z1, z2)|

0
is

composed of Nn+m − NnNm connected diagrams.

This simple combinatorics discussion allows us to derive
some general rule on the strength of the nth order of the pertur-
bative expansion. As it is clear from the derivation done in the
precedent sections at any order of the perturbative expansion,
a Dm,n

μ,ν appears multiplied by V n
ν V m

μ . These potentials include
a 1/(n!m!) prefactor.

Overall we can deduce that the (n,m) order in the bosonic
propagator will be weighted with a Nn+m/(n!m!) prefactor.
When n increases this term decays fast enough to make the
overall expansion controllable.

2. The two-bosons case

The case of D2,2 can be easily worked out following an
approach similar to what has been used in Sec. VIII A. From
Eq. (35) we know that

D2,2
μ,ν (z1, z2) =

δ
〈
Q̂2

μ(z1)
〉

δξ 2
ν (z2)

. (81)

At the same time we can rewrite the 〈Q̂2
μ(z1)〉 in terms of the

single-body GF, using Eq. (20):〈
Q̂2

μ(z1)
〉 = iDμ1μ2 (z1, z

+
1 ). (82)

By applying the chain rule we get

D2,2
μ,ν (z1, z2) =

δ
〈
Q̂2

μ(z1)
〉

δξ 2
ν (z2)

= i
δDμ1,μ2 (z1, z

+
1 )

δξ 2
ν (z2)

. (83)

We can now follow the procedure for the electronic case and
connect D2,2 to the �b-b vertex:

i
δDμ1,μ2 (z1, z1)

δξ 2
ν (z2)

= i
∑

α

∫
dz3dz4Dμ1α1 (z1, z3)

×�b-b,2
α1,α2;ν (z3, z4; z2)Dα2,μ2 (z4, z1). (84)

Equation (84) is represented diagrammatically in Fig. 13(a).
Equation (68) provides the equation of motion for �b-b,2

α1,α2

that, in a similar way to Eq. (73), is written in terms of the
pure bosonic (b-b) and the mixed boson-electron (b-e) vertex
functions. This equation involves the kernels Kb-b and Kb-e.
We can now follow the same path of the purely electronic
case and use the lowest-order bosonic self-energy, Eq. (71), to
derive the corresponding expression for the b-b and b-e kernels
and, consequently, of �b-b,2. Two representative diagrams
contributing to D2,2 are shown in Figs. 13(b) and 13(c).

The IBA for D2,2 can be easily evaluated by using the
zeroth-order expression for �b-b,2. From Eq. (57) we know
that when n = 2 we have only n!/(n − 1)! = 2 terms,

�b-b,2
α1,α2;ν (z1, z2; z3)

∣∣
0

= δ(z1 − z2)δ(z1 − z3)
[
δα1,ν1δα2,ν2 + δα1,ν2δα2,ν1

]
, (85)

which gives

D2,2
μ,ν (z1, z2)

∣∣
0 = i

[
Dμ1,ν1 (z1, z2)Dν2,μ2 (z2, z1)

+Dμ1,ν2 (z1, z2)Dν2,μ1 (z2, z1)
]
. (86)
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FIG. 13. (a) Diagrammatic representation of the first-order func-
tional derivative of D, Eq. (83). (b) and (c) Two terms contributing to
D2,2 which show the connection between the single-boson self-energy
and the bosonic response function. Indeed diagram (b) comes from the

scattering term in Kb-b due to δ�(3)|0
δD

. Similarly diagram (c) is induced

by the contribution of δ�(1)|0
δG

to Kb-e. Both terms are treated, in (b)
and (c), at the first order in the generalized Bethe-Salpeter equation,
Eq. (68).

Equation (86) coincides with the expression that can be derived
by using the diagrammatic approach.

3. The three-bosons case

In the three-bosons case the calculation of D3,3 may appear
to be prohibitively complicated. Still, the present scheme
allows us, via the functional derivative approach, to derive it
in an elegant and compact way. We start by applying Eq. (21)
to D3,3:

D3,3
μ,ν (z1, z2) =

[
i

δ

δξ 2
λ (z1)

+ 〈
Q̂2

λ(z1)
〉]

D1,3
t,ν (z1, z2), (87)

with μ ≡ λ ⊕ t . By using Eq. (21) again we get that

D1,3
t,ν (z1, z2) = D3,1

ν,t (z2, z1)

=
[
i

δ

δξ 2
σ (z2)

+ 〈
Q̂2

σ (z2)
〉]

Ds,t (z2, z1), (88)

FIG. 14. Diagrammatic representation of the terms in Eq. (89)
contributing to D3,3.

where ν ≡ σ ⊕ s. Equations (87) and (88) show that D3,3 is
composed of five terms:

D3,3
μ,ν (z1, z2) =

[
D

2,2
λ,σ (z1, z2) − δ2

δξ 2
λ (z1)ξ 2

σ (z2)

+ 〈
Q̂2

λ(z1)
〉〈
Q̂2

σ (z2)
〉 + i

〈
Q̂2

σ (z2)
〉 δ

δξ 2
λ (z1)

+ i
〈
Q̂2

λ(z1)
〉 δ

δξ 2
σ (z2)

]
Ds,t (z2, z1). (89)

The construction of the diagrammatic form of Eq. (89) can
be done by using a simple diagrammatic form of Eq. (84),
as shown in Fig. 13(a). This shows that any of the functional
derivatives appearing in Eq. (89) can be rewritten in terms of a
second-order b-b vertex function. In this way it is possible
to rewrite D3,3 in terms of known quantities, as shown in
Fig. 14. All diagrams represented in Fig. 14 reduce when
�b-b,2 ≈ �b-b,2|0 to the IBA expression for D3,3 which is,
indeed, composed of a total of 15 terms.

IX. CONCLUSIONS

In this work we applied Schwinger’s variational derivative
technique to calculate the coupled electronic and bosonic
dynamics induced by an electron-boson Hamiltonian with
coupling linearly proportional to the electronic density n̂(x)
and to all orders in the bosonic displacement Q̂ν .

The complex and coupled electronic and bosonic dynamics
is formulated in the form of a system of functional relations
between the dressed electronic G(1, 2), the single boson
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Dμ,ν (z1, z2) propagators, and the generalized electronic and
bosonic self-energies �e(1, 2) and �b(z1, z2).

These are expressed as closed functionals of the electron
density-density response χ , the multiboson response functions
Dn,m, and four different vertex functions �e-e, �b-e, �e-b, and
�b-b. These vertex functions are shown to have either a mixed
electron-boson character (�b-e and �e-b), or a purely electronic
(�e-e) and bosonic (�b-b) character. The exact equations of
motion for all these quantities are formally derived. Sound
and controlled approximations are also proposed in order to
make the calculations feasible.

The present formulation allows us to tackle the very am-
bitious problem of deriving using the Schwinger’s technique
coupled equations of motion for the electronic and bosonic
response functions and provide several interesting conclusions
and new concepts.

We extend to the nonlinear e-b interaction known concepts
like the Debye-Waller potential and the Fan approximation. We
further extend the Bethe-Salpeter equation to a 2 × 2 nonlinear
system of integrodifferential equations for the four vertex
functions. Thanks to this equation we show that there is no
simple way to decouple the electronic and bosonic dynamics.
We demonstrate, by using simple diagrammatic examples, that
electrons and bosons can equally well mediate the electron-
hole and boson-boson interaction. The present scheme, indeed,
demonstrates a full and deep symmetry between the electronic
and bosonic degrees of freedom.

The final result is an important generalization of the well-
known Hedin’s equations with a wealth of potential applica-
tions in different areas of condensed matter physics, optics,
and chemistry.

ACKNOWLEDGMENTS

A.M. acknowledges the funding received from the Euro-
pean Union project MaX Materials design at the eXascale
H2020-EINFRA-2015-1, Grant Agreement No. 676598 and
Nanoscience Foundries and Fine Analysis - Europe H2020-
INFRAIA-2014-2015, Grant Agreement No. 654360. Y.P.
acknowledges funding of his position by the German Research
Foundation (DFG) Collaborative Research Centre SFB/TRR
173 “Spin+X.”

APPENDIX A: THE MEAN-FIELD TREATMENT OF THE
ELECTRON-ELECTRON INTERACTION

In order to describe how we treat the correlation induced
by the electron-electron interaction let us start from the full
Hamiltonian in the first quantization and make explicit the
distinction between dressed and undressed operators:

Ĥ = Ĥ 0
e + Ĥ 0

b + Ĥ 0
e-b + Ĥe-e, (A1)

with the 0 superscript indicating bare operators. Indeed the
dressing of the different components of the Hamiltonian (when
possible) is a product of the dynamics and cannot be, a priori,
inserted from the beginning.

In Eq. (A1) we introduced

Ĥe-e = 1

2

∑
i �=j

v(xi − xj ), (A2)

with v the bare Coloumb potential. It is well documented in
the literature that one of the effects of Ĥe-e is to screen itself
and all other interactions, including the e-b one. This has been
extensively demonstrated, for example, in Ref. [28].

The path we take here is, therefore, to embody Ĥe-e in a
mean-field correction to Ĥ 0

e and, consequently, dressing of Ĥ 0
b

and Ĥ 0
e-b:

Ĥ ⇒ [
Ĥ 0

e + V̂mf
] + Ĥb + Ĥe-b, (A3)

with Ĥe = Ĥ 0
e + V̂mf . Equation (A3) is the connection with

Eq. (1). The specific form of V̂mf depends on the physical
problem. An example is to use DFT, where V̂mf = V̂Hxc is the
Hartree plus the Kohn-Sham exchange-correlation potential
[61]. In this case also the dressing of Ĥ 0

e-b and Ĥ 0
e-e is well

known and widely documented. In the case of the electron-
phonon problem, for example, the self-consistent dressing of
the electron-nuclei interaction is described by the density-
functional perturbation theory (DFPT) [62,63].

APPENDIX B: CONNECTION WITH THE
ELECTRON-PHONON PROBLEM

A specific physical application of the present theoretical
scheme is represented by the coupled electron-phonon system.
This is a very wide field with a wealth of application in several
branches of physics.

The Hamiltonian of the coupled electron-phonon system is
obtained by starting from the total Hamiltonian of the system
that we divide in its independent bare electronic Ĥe, nuclear
Ĥn(R), electron-nucleus (e-n) Ŵe-n(R) parts

Ĥ (R) = Ĥe + Ĥn(R) + Ŵe-n(R), (B1)

where R is a generic notation representing positions of the
nuclei. The notation used in this paper is the same adopted in
Ref. [28].

In introducing Eq. (B1) it is important to stress that Ĥn(R)
includes both the kinetic and nuclear-nuclear interaction while
Ŵe-n(R) represents the electron-nuclei interaction, whose ex-
pansion in the atomic displacements leads, as well known,
to the diagrammatic expansion. Moreover, in the spirit of
Appendix A we have assumed, in Eq. (B1), to use DFT to
describe the effect of the electron-electron correlation via the
well-known exchange-correlation potential.

We split, now, the generic atomic position operator R̂I in
its reference plus displacement

R̂I ≡ RI 1̂ + �R̂I . (B2)

The Cartesian components of �R̂I play the role of the bosonic
coordinate operators Qν . We can, indeed, write that

�R̂I =
∑

ν

(NMI�ν )−1/2η(ν|I )Q̂ν, (B3)

with N the number of atoms in the system, MI is the mass
of atom I , and η is the phonon mode polarization vector.
We assume here, for simplicity, a finite system that can
be generalized to an periodic solid using periodic boundary
conditions.
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Our initial system is, therefore, characterized by a set of dressed, electronic, and bosonic single-particle states with energies
{Ei} and frequencies {�ν}. We have in total 3N bosonic coordinates.

We have now all ingredients to expand the Ŵe-n(R) in terms of ψ̂ (x) and Q̂ν . Indeed we can, formally, write that

Ŵe-n(R) =
∑

n

Ŵ (n)
e-n (R) =

∑
n

∑
ν

∫
dx ψ̂†(x)V (n)

ν (x)ψ̂ (x)Q̂n
ν , (B4)

with

V (n)
ν (x) =

(
n∏

i=1

∂νi

)
eq

Vscf (x − R). (B5)

In Eq. (B5) Vscf is the dressed DFPT electron-nuclei potential and the derivative is taken at the equilibrium position R = R.

APPENDIX C: PROOF OF EQ. (11c)

The equation of motion for P̂ can be derived by using some care. Indeed Eq. (10b) implies that

[
P̂ν (z1), Q̂m

α (z1)
]
− =

[
P̂ν (z1),

m∏
i=1

Q̂αi
(z1)

]
−

= (−i)
m∑

j=1

δν,αj

m∏
i �=j,i=1

Q̂αi
(z1). (C1)

If we now plug Eq. (C1) into the [P̂ν (z1), Ĥ (z1)]− commutator we get

(−i)[P̂ν (z1), Ĥ (z1)]− = d

dz1
P̂ν (z1) = −�νQ̂ν (z1) −

∑
m,α

m∑
j=1

δν,αj
γ̂α (z1)

m∏
i �=j,i=1

Q̂αi
(z1). (C2)

Now we reorder the components of α vector (γ is a fully symmetric tensor) so that

δν,αj
γα (z1) = γα1,...,αj−1,ν,αj+1,...,αm

(z1) = γα1,...,αm−1,ν (z1). (C3)

We now rename α by introducing the m − 1 dimensional vector μ ≡ (α1, . . . , αm−1). Thanks to Eq. (C3) we have that

m∏
i �=j,i=1

Q̂αi
(z1) = Q̂m−1

μ (z1), (C4)

and we finally get

d

dz1
P̂ν (z1) = −�νQ̂ν (z1) −

∑
m,μ

m γ̂ m
μ⊕ν (z1)Q̂m−1

μ (z1). (C5)

APPENDIX D: PROOF OF EQ. (21)

We start by observing that

iδ

δξk
α (z1)

D
m−k,n
β,ν (z1, z2) = δ

δξk
α (z1)

[〈
T Q̂m−k

β (z1)Q̂n
ν (z2)

〉 − 〈
Q̂m−k

β (z1)
〉〈
Q̂n

ν (z2)
〉]
. (D1)

We start by expanding the three terms resulting from the functional derivative of the three components of D:

δ

δξk
α (z1)

〈
T Q̂m−k

β (z1)Q̂n
ν (z2)

〉 = 〈
T Q̂m−k

β (z1)Q̂n
ν (z2)Q̂k

α (z1)
〉 − 〈

T Q̂m−k
β (z1)Q̂n

ν (z2)
〉〈
Q̂k

α (z1)
〉
. (D2)

The second and third term are due to the derivative of the two single displacement operator averages:

δ

δξk
α (z1)

〈
Q̂m−k

β (z1)
〉 = 〈

Q̂m−k
β (z1)Q̂k

α (z1)
〉 − 〈

Q̂m−k
β (z1)

〉〈
Q̂k

α (z1)
〉

(D3)

and

δ

δξk
α (z1)

〈
Q̂n

ν (z2)
〉 = 〈

T Q̂n
ν (z2)Q̂k

α (z1)
〉 − 〈

Q̂n
ν (z2)

〉〈
Q̂k

α (z1)
〉
. (D4)
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If now we put together all components of Eq. (D1) we get

iδ

δξk
α (z1)

D
m−k,n
β,ν (z1, z2) = 〈

T Q̂m
β⊗α (z1)Q̂n

ν (z2)
〉 − 〈

Q̂m
β⊗α (z1)

〉〈
Q̂n

ν (z2)
〉 − 〈

T Q̂m−k
β (z1)Q̂n

ν (z2)
〉〈
Q̂k

α (z1)
〉

+ 〈
Q̂m−k

β (z1)
〉〈
Q̂k

α (z1)
〉〈
Q̂n

ν (z2)
〉 − 〈

T Q̂n
ν (z2)Q̂k

α (z1)
〉〈
Q̂m−k

β (z1)
〉 + 〈

Q̂n
ν (z2)

〉〈
Q̂k

α (z1)
〉〈
Q̂m−k

β (z1)
〉
. (D5)

Equation (D5) finally gives

iδ

δξk
α (z1)

D
m−k,n
β,ν (z1, z2) = D

m,n
β⊗α,ν (z1, z2) − 〈

Q̂k
α (z1)

〉
D

m−k,n
β,ν (z1, z2) − 〈

Q̂m−k
β (z1)

〉
Dk,n

α,ν (z1, z2). (D6)

In Eq. (D5) we have used the fact that〈
T Q̂m−k

β (z1)Q̂n
ν (z2)Q̂k

α (z1)
〉 = 〈

T Q̂m
β⊗α (z1)Q̂n

ν (z2)
〉
. (D7)

Equation (D6) proves Eq. (21).

APPENDIX E: SUMMARY OF DEFINITIONS

a. Bosonic coordinates and the interaction vertex

Q̂n
ν =

n∏
i=1

Q̂νi
, V n

ν (x) = 1

n!

(
n∏

i=1

∂νi

)
eq

Ve-b(x), γ̂ n
ν =

∫
dx ψ̂†(x)V n

ν (x)ψ̂ (x).

b. Auxiliary fields

Ĥξ,η(z) = Ĥ +
∑
n, ν

ξn
ν (z)Q̂n

ν +
∫

dx η(x, z)ρ̂(x).

c. Correlators and electronic response

G(1, 2) ≡ −i〈T {ψ̂ (1)ψ̂†(2)}〉, Dn,m
μ,ν (z1, z2) ≡ −i

〈
T
{
�Q̂n

μ(z1)�Q̂m
ν (z2)

}〉
, χ (1, 2) ≡ δ〈ρ̂(1)〉

δη(2)
.

d. Mean-field potentials

�(1) =
∑
m, μ

V m
μ (x1)

〈
Q̂m

μ (z1)
〉
, Uμ,ν (z1) =

∑
n, κ

n
〈
γ̂ n

μ⊕κ⊕ν (z1)
〉〈
Q̂n−2

κ (z1)
〉
.

e. Electronic mass operator

M (1, 2) = i
∑
n, ν

∑
m, μ

∫
d3

∫
dz4 V n

ν (x1)G(1, 3)�
e-b,m

μ (3, 2; z4)Dm,n
μ,ν (z4, z1).

f. Bosonic mass operator

�μ,ν (z1, z2) =
∑

I=(1,2a,3,4a,4b,4c,4d )

�(I )
μ,ν (z1, z2) + �(2b)

μ,ν (z1)δ(z1 − z2).

g. Vertex functions

�e-e(1, 2; 3) = δG−1(1, 2)

δη(3)
, �e-b,k

κ (1, 2; z3) = δG−1(1, 2)

δξk
κ (3)

, �
e-b,k

κ (1, 2; z3) = δG−1(1, 2)

δ
〈
Qm

κ (z3)
〉 ,

�b-e
μ,ν (z1, z2; 3) = δD−1

μ,ν (z1, z2)

δη(3)
, �b-b,k

μ,ν;κ (z1, z2; z3) = δD−1
μ,ν (z1, z2)

δξk
κ (3)

.

h. Kernels

Ke-e(1, 5; 2, 4) = δ�e(1, 2)

δG(4, 5)
, Ke-b(1, z5; z2, 4) = δM (1, 2)

δDφ,ψ (z4, z5)
,

Kb-e(z1, 5; 2, z4) = δ�μ,ν (z1, z2)

δG(4, 5)
, Kb-b(z1, z5; z2, z4) = δ�b

μ,ν (z1, z2)

δDφ,ψ (z4, z5)
.
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