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Magnetic states in a three-dimensional topological Kondo insulator
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We theoretically study the magnetic phase diagram of a three-dimensional topological Kondo insulator by
means of real-space dynamical mean-field theory. We find that ferromagnetically ordered states become stable
upon hole doping. Besides a wide ferromagnetic phase, we observe surface magnetism close to half-filling, which
corresponds to an A-type antiferromagnetic state. We further study the impact of the magnetism on the symmetry
protected surface states and find that depending on the surface and the magnetization direction, surface states are
still protected by reflection symmetry present in our model. The symmetry protected surface states are shifted
away by the magnetization from their original high-symmetry momenta in the Brillouin zone. Remarkably, due to
the magnetization, the surface states are deformed, resulting in the appearance of arcs in the momentum resolved
spectrum.
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I. INTRODUCTION

Topology has become a widely used tool in condensed
matter physics for predicting and analyzing symmetry pro-
tected surface states which include fascinating particles such as
Majorana, Weyl, or Dirac fermions [1,2]. While the influence
of topology in noninteracting systems is well understood by
now, the interplay between strong correlations and topology is
still obscure. Strong correlations are the origin for phenomena
that cannot be seen in noninteracting or weakly interacting sys-
tems, such as magnetism, unconventional superconductivity,
or quantum criticality. Naturally, questions arise such as how
the symmetry protected surface states change in the presence
of strong interactions or under the influence of magnetism,
and whether there are new phenomena that can only be ob-
served in strongly interacting topologically nontrivial systems
[3–9].

One remarkable observation in strongly interacting sys-
tems is the reduction of the classification of topological
phases in the presence of correlations; the classification
of topological phases changes due to strong correlations
[10–14]. Other interesting examples are the so-called topo-
logical Kondo insulators [15–21], which are topologically
nontrivial f -electron materials including strong correlations
in the f orbital. Candidate materials are, for example, SmB6

[22–27] or YbB12 [28,29]. The topologically nontrivial gap
is here formed by a hybridization between conduction (c)
electrons and strongly interacting f electrons. Due to the
presence of strong interactions in localized orbitals, the Kondo
effect and magnetism can often be observed in f -electron
materials. Thus these topological Kondo insulators provide
an opportunity to study the interplay between topology and
phenomena originating in strong correlations. For example,
the interplay between Kondo physics and topology results in
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the Kondo breakdown, where the behavior of the topological
surface states completely changes at finite temperature [30–
32]. Furthermore, these materials have created a stir in the
condensed matter community because of the observation of
quantum oscillations in strong magnetic fields, which contra-
dicts our common knowledge about insulators [33].

We here analyze another intriguing phenomenon based on
the interplay of nontrivial topology and strong correlations,
namely, magnetism in a three-dimensional (3D) topological
Kondo insulator. Recently a topological phase has been ob-
served in the magnet Co2MnGa [34], which might open a path
for generating highly spin-polarized currents. Furthermore, the
Kondo insulator SmB6 is known to have a magnetic phase
under pressure [35–39], which might be an A-type antiferro-
magnetic state. Thus a study of magnetism in a topological
Kondo insulator and its impact on the symmetry protected
surface states are highly desired.

In this paper, we use the real-space dynamical mean-
field theory, which allows us to analyze the effect of strong
correlations in a topologically nontrivial f -electron material
and study bulk as well as surface properties. Besides a ferro-
magnetic phase, which is stable upon hole doping, we find an
antiferromagnetic surface state close to half-filling. Although
the time-reversal symmetry is broken by the magnetic state,
surface states are still protected by the reflection symmetry.
We demonstrate that the Dirac cones at the surface of the
topological Kondo insulator are shifted and deformed by the
magnetization. A remarkable effect of the magnetization on
the Dirac cones is the emergence of arcs in the spectrum,
which appear due to the energetic splitting of different spin
directions.

This paper is organized as follows. In the next section,
we will introduce the model and shortly explain the method
used to analyze magnetic states. This is followed by sections
discussing the phase diagram, the bulk properties and the
impact of the magnetism on the surface states. A conclusion
finishes the paper.
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II. MODEL AND METHOD

For the purpose of describing magnetism in a topological
Kondo insulator, we use a Hamiltonian in a three-dimensional
(3D) cubic lattice, which includes two spin-degenerate orbitals.
The orbitals correspond to a conduction (c) electron band and
an f -electron band.

The Hamiltonian reads

H = H0 + Hint,

H0 =
∑

k

∑
σ={↑,↓}

∑
o={c,f }

εo
k c

†
k,σ,ock,σ,o

+V
∑

k,τ1,mτ2
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†
k,τ1,c
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x
τ1τ2

+V
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k,τ1,mτ2

c
†
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y
τ1τ2

+V
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c
†
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ck,τ2,f sin kzσ
z
τ1τ2

+ 0.2
∑
i,σ

ni,σ,c,

εc
k = −0.1(cos(kx ) + cos(ky ) + cos(kz))

+ 0.075 cos(kx ) cos(ky )

+ 0.075 cos(ky ) cos(kz)

+ 0.075 cos(kx ) cos(kz)

+ 0.15 cos(kx ) cos(ky ) cos(kz),

ε
f

k = −0.1εc
k ,

Hint = U
∑

i

ni,↑,f ni,↓,f .

The operator c
†
k,σ,o creates an electron with momentum k and

spin direction σ in orbital o ∈ {c, f }. εo
k describes the energy

depending on the momentum for each orbital. The energies
have been chosen in a way that there are band inversions
between c-electrons and f -electrons at (π, 0, 0), (0, π, 0), and
(0, 0, π ) in the Brillouin zone, which resembles qualitatively
the band structure of SmB6. We include nearest-neighbor, next-
nearest-neighbor, and next-next-nearest-neighbor hoppings on
a cubic lattice. Due to the hybridization V between the c-
electron band and the f -electron band, a gap opens in the
bulk spectrum, see Fig. 1. We will later use the hybridization
strength V as a free parameter in the model. σx , σy , σ z are the
Pauli matrices. The operator ni,σ,c and ni,σ,f are local density
operators on lattice site i for the c and f electrons, respectively.
Finally, Hint describes a repulsive local density-density inter-
action in the f -electron band, necessary to describe the Kondo
effect in strongly interacting f -electron systems. Throughout
this paper we set U = 0.8.

Because there is an odd number of band inversions between
the c-electron band and the f -electron band, which have
different parity, combined with a gap in the bulk spectrum,
this model is a 3D strong topological insulator [15,16,40–42].
The noninteracting band structure with open surfaces, depicted
in Fig. 1(b), shows the surface states at (kx, ky ) = (0, 0) and
(π, 0) on the surface. Another surface state exists at (kx, ky ) =

FIG. 1. (Left) Schematic picture of the model used in the real-
space DMFT. (Right) (a) Bulk band structure of the noninteracting
model for hybridization strength V = 0.06. (b) Noninteracting band
structure for a slab calculation including 100 layers with open
surfaces. Visible are the Dirac cones at (kx, ky ) = (0, 0) and (π, 0).
Another Dirac cone exists at (0, π ), which is not shown.

(0, π ), which is not shown in Fig. 1(b). The inclusion of strong
interactions into the f -electron band leads to the Kondo effect
and a renormalization of the band gap. One remarkable effect of
the interaction is the emergence of strongly correlated surface
states, which can result in a Kondo breakdown on the surface
at finite temperatures [30,31].

In order to analyze a strongly correlated and topologically
nontrivial system with open surfaces, we use the real-space
dynamical mean-field theory (DMFT). DMFT [43] maps a
lattice model onto a quantum impurity model, which must
be solved self-consistently. DMFT thereby includes local
fluctuations exactly and is therefore well suited to study the
Kondo effect in f -electron materials. The real-space DMFT
maps each atom of a finite lattice onto a separate quantum
impurity model. Thus the effect of inhomogeneities such as
impurities or surfaces can be included into this theory.

To properly study the above described Hamiltonian, we
perform calculations for a homogeneous system, studying
bulk properties, and for slabs consisting of 20 layers, see
Fig. 1. For the homogeneous system, we use single-site DMFT
focusing on nonmagnetic and ferromagnetic states. The slab
calculations are done using the real-space DMFT with open
boundary conditions, where each layer is mapped onto its
own quantum impurity model. Thus the quantum impurity
model consists of the interacting f electron, which is coupled
to an effective band of conduction electrons. A local self-
energy is calculated for each layer, which is consistent with
the approximations made in DMFT. These self-energies are
then inserted into the 3D model with open surfaces, from
which Green’s functions and new input for layer-dependent
quantum impurity models can be calculated. This is done until
self-consistency is reached. This provides us the possibility to
analyze the impact of the magnetic state on the surface states.
Single-site DMFT for bulk ferromagnetism as well as the real-
space DMFT calculations are performed self-consistently. For
solving the quantum impurity models, we use the numerical
renormalization group [44,45], which is well suited to calculate
real-frequency spectral functions and self-energies at low
temperatures with high resolution around the Fermi energy
for arbitrary interaction strengths [46,47].
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FIG. 2. Phase diagram for different number of c electrons nc

and hybridization strengths V for a system consisting of 20 layers
with open boundaries. A c-electron filling of nc = 0.9 corresponds
to a half-filled system nc + nf = 2. (a) Magnetization for the surface
layer. (b) Magnetization of the layer in the middle of the slab. The
magnetic phase below the blue line corresponds to the ferromagnetic
phase. The magnetic phase below the green line corresponds to an
A-type antiferromagnetic phase. The white area at small V in the
phase diagram corresponds to a magnetic phase which cannot be
described by our ansatz.

Because we map each layer of our model onto a single
quantum impurity model, our ansatz only includes solutions
where all atoms in the same layer have the same proper-
ties. Thus we can only describe in-plane ferromagnetic or
paramagnetic (vanishing magnetization) solutions. In order to
stabilize magnetic states, we dope holes into the c-electron
band changing the number of c electrons from nc = 0.9 to 0.4.
The f -electron number is kept fixed at nf = 1.1. Thus the
model is half-filled for nc = 0.9. We perform all calculations
at T = 0.

III. PHASE DIAGRAM

Figure 2 depicts the phase diagram obtained in our calcula-
tions. The magnetization of the f electrons, mf = n↑,f − n↓,f

is shown for different hybridization strengths and number
of conduction electrons, nc = n↑,c + n↓c. Because the cal-
culations are done for a system with open surfaces, the
magnetization is generally different at the surface [panel (a)]
and the layer in the middle of the slab [panel (b)]. Depending
on the hybridization strength, the phase diagram includes
three different phases: when the hybridization strength is
large, the system forms a nonmagnetic state. At intermedi-
ate hybridization strengths, 0.04 � V � 0.07 and conduction
electron filling nc < 0.9, we find in-plane ferromagnetic states.
For hybridization strengths V < 0.04, our calculations do
not converge indicating that the magnetic solution cannot
be described by in-plane ferromagnetic states. Because the
magnetization in the bulk of the material vanishes smoothly
towards the nonmagnetic phase, the phase transition between
the ferromagnetic phase and the nonmagnetic phase is second
order.

This phase diagram fits into the more general Doniach phase
diagram [48], which describes the competition between the

FIG. 3. Magnetizations for hybridization strength V = 0.045 and
different numbers of c electrons nc, showing the ferromagnetic phase
and the surface magnetic phase.

Kondo effect and the RKKY interaction. Large hybridization
strengths result in a strong screening by the Kondo effect and
thus the formation of nonmagnetic states. Small hybridization
strengths result in a weak Kondo screening so that a magnetic
state is formed due to the RKKY interaction. Furthermore, in
calculations for the Kondo lattice it was found that for small
hybridization strengths a phase transition within the magnetic
phase can be observed, which qualitatively agrees with the
phase transition found here at V ≈ 0.04 [49,50].

Generally, the surface magnetization is larger than the
bulk magnetization, which can be understood as an effective
increase of correlations at the surface. However, besides the
normal ferromagnetic state, where surface and bulk are mag-
netized in the same direction, we find magnetic states, which
are in-plane ferromagnetic, but the magnetization oscillates
depending on the layer. A so-called A-type antiferromagnetic
state, with in-plane ferromagnetic and out-of-plane antiferro-
magnetic order, is formed [39]. Furthermore, the magnetization
quickly decreases when going from the surface into the bulk.
These solutions can be found for c-electron fillings close to
half-filling and form a region in the phase diagram which is
surrounded by a green line in Fig. 2. We note that because
our ansatz does only include in-plane ferromagnetic states,
we cannot rule out the possibility of an antiferromagnetic
Néel state in this parameter region. The study of a possible
Néel state is left as future study. Furthermore, we note that
close to the phase boundary of the ferromagnetic phase, the
magnetization of the A-type antiferromagnetic phase does not
completely vanish in the middle of our slab consisting of 20
layers. We believe that this is a finite size effect and that
the magnetization would vanish in the bulk for large enough
systems. We thus believe that the A-type antiferromagnetic
phase corresponds to a surface magnetic phase. Characteristic
magnetization curves are shown in Fig. 3. Black and red lines
show examples of the magnetization of the A-type surface
magnetic states. The magnetization oscillates and vanishes in
the bulk. The green and blue line, one the other hand, are
examples of the ferromagnetic state. For these solutions, the
magnetization slightly decreases when going from the surface
into the bulk, but it never becomes zero.
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FIG. 4. Local spectral functions for the ferromagnetic state nc =
0.7 and V = 0.05 showing separately all four orbitals.

IV. BULK SPECTRAL PROPERTIES

Before examining the impact of the magnetic order on the
metallic surface states, let us firstly look at the bulk properties.
Because states exhibiting surface magnetism are nonmagnetic
in the bulk, these states have a renormalized bulk gap similar
to nonmagnetic states, which is shifted away from the Fermi
energy because of the hole doping. We will, therefore, focus
in this section on states exhibiting bulk ferromagnetism.

Figure 4 shows a typical local spectral function in the
ferromagnetic state for a c-electron filling of nc = 0.7. The
direction of the magnetization is the z direction.

Clearly resolved is a strong reduction of the spectral weight
at the Fermi energy in the local spectral function for three of
the four orbitals and a peak at the Fermi energy for the f

electron with down-spin. At first sight, the existence of such
dip structures close to the Fermi energy might be astonishing,
because the total filling of the system isnc + nf = 0.7 + 1.1 =
1.8 and thus not half-filled. However, a gap at the Fermi energy
for certain spin directions is a commonly observed feature in
the ferromagnetic state of a Kondo lattice, resulting in a half-
metallic state [51–57]. c and f electrons adapt their filling
in the ferromagnetic state so that a commensurable situation is
created for one of the hybridized spin sectors. The driving force
behind this commensurability condition is the Kondo effect. A
closer look at the spectral functions presented in Fig. 4 reveals,
however, that this dip is not exactly at the Fermi energy, but
slightly above.

To further investigate this, we directly show the commen-
surability condition in Fig. 5. It is important to note that the
hybridization used in the model Hamiltonian couples the spins
of the c and f electrons using all three Pauli matrices. Thus the
spin-up (spin-down) component of the c electron is coupled
to spin up and spin down of the f electron, while in the
calculations for a periodic Anderson model showing a perfect
commensurability, the spin-up (spin-down) component of the c

electron is only coupled to the spin-up (spin-down) component
of the f electron. Because there is a coupling between all
spin components, the ferromagnetic state is frustrated. In our
model Hamiltonian, the coupling between the up-spin (down-
spin) component of the c electron and down-spin (up-spin)
component of the f electron occurs in x and y directions

FIG. 5. Phase diagram as a function of the number of c electrons
nc and hybridization strength V . The plot shows the particle numbers
(a) nc↑ + nf ↓ and (b) nc↓ + nf ↑ for the middle layer of the slab. The
blue line in (b) surrounds the parameter where nc↓ + nf ↑ = 1.1.

(sin kxσ
x and sin kyσ

y), while a coupling between the up-spin
(down-spin) and the up-spin (down-spin) occurs in z direction
(sin kzσ

z).
We show in Fig. 5 the occupation numbers for nc↑ + nf ↓

[panel (a)] and nc↓ + nf ↑ [panel (b)]. In Fig. 5(b), we observe
a large area of the parameter (surrounded by a blue line) where
nc↓ + nf ↑ = 1.1 and does not change although the conduction
electron number is varied. This phase of constant occupation
resembles the ferromagnetic bulk phase in Fig. 2. Only at the
boundary of the ferromagnetic phase, the occupation number
changes slightly. On the other hand, in panel (a), nc↑ + nf ↓,
there is no area of constant occupation. We can thus identify
the spin-down component of the c electron combined with
the up-spin component of the f electron as the spin sector
with commensurability. However, because of the frustration
occurring due to the hybridization in z direction, the combined
occupation is not unity, but slightly larger than one. As a
consequence, the gap, which is visible in the local density of
states for these orbitals, is slightly shifted above the Fermi
energy.

In order to obtain more information about the bulk excitation
spectrum, we show momentum-resolved spectral functions of
both spin sectors in Figs. 6 and 7. Figure 6 shows the spectral
function for the spin sector {|c ↓〉, |f ↑〉}, which approxi-
mately fulfills the commensurability condition nc↓ + nf ↑ ≈
1. The gap observed in the local spectral functions is also
clearly visible here. Looking at Fig. 6(a), which shows a cut
through the whole 3D Brillouin zone, we see that bands enter
into the gap (see panel (a) between (π, π, π ) → (0, 0, 0) →
(0, 0, π )). Thus the gap structure visible in Fig. 4 is not a
full gap. It is, however, instructive to constrain the momentum
space to kz = 0 and kz = π , whose spectral functions are
shown in panel (b). For these momenta, (kx, ky, kz = 0) and
(kx, ky, kz = π ), the coupling between the spin-up (spin-down)
component of the c electrons and the spin-up (spin-down)
component of the f electrons vanishes. For these momenta,
a situation similar to the periodic Anderson model for which a
full gap has been observed is reproduced. Indeed, bands do not
enter the gap for these momentum planes; for these momenta,

075104-4



MAGNETIC STATES IN A THREE-DIMENSIONAL … PHYSICAL REVIEW B 98, 075104 (2018)

FIG. 6. Momentum resolved spectral functions of the bulk fer-
romagnetic state for the spin sector {|c ↓〉, |f ↑〉}. (a) shows a cut
through the whole Brillouin zone. (b) shows cuts through the kx-ky

plane for fixed kz, which jumps at the red line from 0 to π .

we find a full gap for the spin sector with approximate
commensurability condition.

The momentum resolved spectral function for the other
spin sector, {|c ↑〉, |f ↓〉}, is shown in Fig. 7. A general
feature of the spectral function of the spin sector without
commensurability is the strong correlation effect, which leads
to a strong broadening around the gap. Thus there is no real gap
for this spin sector, but an energy region without quasi-particle
bands. However, a closer look at the spectral function shown
in Fig. 7(a), which shows a cut through the 3D Brillouin zone,
reveals that there is at least one quasiparticle band which
enters this “gap” region between (0, 0, 0) → (0, 0, π ). If we
constrain the plot to the (kx, ky, kz = 0) and (kx, ky, kz = π

momentum planes, see Fig. 7(b), we can see that this band is
absent.

V. SURFACE STATES

Up to now, we have looked at the bulk properties of the
system and found a ferromagnetic phase. Next, we want to
analyze the effect of the magnetic phase on the symmetry
protected surface states, which manifests themselves as Dirac
cones in the momentum resolved spectrum.

FIG. 7. Same as Fig. 6, but for the spin sector {|c ↑〉, |f ↓〉}.

FIG. 8. Momentum-resolved spectrum for nc = 0.7, V = 0.05
in the ferromagnetic phase with magnetization in z direction for
the {|c ↓〉, |f ↑〉} spin sector. The calculation is done for a slab of
20 layers with open boundary condition in z direction. Thus the
magnetization is perpendicular to the surface. The plot shows the
spectrum of the surface layer for (kx, ky ) ∈ ([−1, 1], [−1, 1]) for
which in the noninteracting spectrum a Dirac cone exists.

The Dirac cones at the open surface in the noninteracting
spectrum, which are located in the Brillouin zone at (0,0),
(π, 0), and (0, π ), are protected by time-reversal symmetry.
Thus it is not astonishing to find that in a ferromagnetically
ordered system (magnetization in z direction) the surface states
have vanished on the z surface. Figure 8 shows the momentum
resolved spectral function (kx , ky , energy) of the z surface
for V = 0.05 and nc = 0.7. Figure 8 was thereby obtained by
computing the spectral function for fixed momentum (kx, ky ).
Whenever there is a peak in the spectral function depending
on the energy, we plot a single dot. Thus the spectrum does not
include information about the height of the peak in the spectral
function. Due to the bulk magnetization of nf ↑ − nf ↓ = 0.27,
which increases at the surface tonf ↑ − nf ↓ = 0.35, the surface
states are fully gapped; there is no Dirac cone visible in the
surface spectrum.

However, the situation is different when looking at different
surfaces. While in Fig. 8 we analyze the z surface for a magne-
tization in z direction, in Fig. 9, we show the surface spectrum
in x direction (the magnetization is still in z direction) for the
{|c ↓〉, |f ↑〉} spin sector. Thus this situation corresponds to
an in-plane magnetic state. We see at the first sight that the
spectrum is not gapped. Taking into account the knowledge
about the bulk spectrum, we conclude that these bands are
surface states. In Fig. 10, we show the momentum-resolved

FIG. 9. The same as Fig. 8, but with open surface in x direction,
which corresponds to an in-plane magnetization at the surface.
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FIG. 10. Momentum-resolved spectrum for nc = 0.7, V = 0.05
in the ferromagnetic phase for the {|c ↓〉, |f ↑〉} spin sector. The plot
shows the spectral intensity on the surface layer in x-direction. The
momentum is labeled as (ky, kz ). The momentum ky increases on the
path between (ky, kz ) = (−π, π ) → (0, π ) → (π, π ).

spectral function of the surface layer for a cut through the
surface Brillouin zone, which also clearly shows states going
through the bulk gap. The position of these surface states is
thereby approximately at the same momenta as the symmetry
protected Dirac cones in the nonmagnetic system, namely at
(ky, kz) = (0, 0), (π, 0), and (0, π ).

How can we understand the existence of these surface states
and are these surface states protected by any symmetries or
just accidental? As the time-reversal symmetry is broken by
the magnetization, this symmetry cannot protect any surface
states spanning the gap. The answer to this question comes here
from the cubic symmetry of the model Hamiltonian, a sym-
metry which is also preserved in the Kondo insulator SmB6.
Because of the cubic symmetry, the Hamiltonian conserves
the following reflection symmetry, even in the presence of a
magnetization along the z direction: Rz = iσ zτ zPz, where σ z

and τ z are Pauli matrices acting on the spin-indices and orbital-
indices, respectively; Pz flips the sign of kz (Pz : kz → −kz).
In the case of a magnetization in x or y direction, we can
define operators Rx = iσ xτ zPx or Ry = iσ yτ zPy , which still
commute with the Hamiltonian.

The presence of this symmetry guarantees that the Hamilto-
nian can be separated into two subspaces, which do not couple
to each other even in the presence of a magnetization. In the
case of a magnetization in z direction, the Hamiltonian is
separated on the reflection invariant planes in the Brillouin
zone, kz = 0 or kz = π , into the {|c ↑〉, |f ↓〉} spin sector
and {|c ↓〉, |f ↑〉} spin sector, which correspond to the plus-
(Rz� = �) and minus- (Rz� = −�) subspaces of the reflec-
tion operator, respectively. Thus this separation shown above
is not accidental, but originates in the reflection symmetry
[20,30,58,59].

From now on, we will focus on the minus sector of the
reflection operator, {|c ↓〉, |f ↑〉} spin sector, constrained to
the kz = 0 or kz = π plane of the Brillouin zone. We have
demonstrated above that this sector is gapped in the bulk when
constrained to these planes in the Brillouin zone. Thus the
Chern number is well defined. In the presence of electron
correlations, the Chern number can be calculated from the

Green’s function as [7,60,61]

N = εμνρ

24π2

∫
d3kTr

(
G−1 ∂G

∂kμ

G−1 ∂G

∂kν

G−1 ∂G

∂kρ

)
, (1)

with k := (ω, kx, ky ). εμνρ denotes the total antisymmetric
Levi-Civita symbol satisfying ε012 = 1. The Green’s function
is defined on the imaginary axis G(k) := G(iω, k).

In the work of Wang and Zhang [42], it was shown that
as long as the self-energy is nonsingular, replacing the full
Green’s function G with the simplified Green’s function

G̃−1(iω, k) = iωρ0 − Heff (k), (2)

Heff (k) = H (k) + Re�(iω = 0),

= n0(k)ρ0 + n(k)ρi (3)

does not change the value of the Chern number. The Pauli
matrices ρi act on the two states spanning the minus sector of
the reflection, {|c ↓〉, |f ↑〉}. (We have confirmed the absence
of any singularity in the self-energy by direct computation;
the imaginary part of the self-energy vanishes around the
gap.) In the case, where the effective Hamiltonian Heff is
two-dimensional, a further simplification is possible. The
coefficient vector n, which is defined in Eq. (3), can be used
to efficiently calculate the Chern number of the minus sector
of the reflection reading

N = 1

4π

∫
d2k �̂n ·

(
∂ �̂n
∂kx

× ∂ �̂n
∂ky

)
, (4)

where �̂n := �n/
√�n · �n.

Calculating the Chern number for the ferromagnetic phase,
we find that the Chern number N = 2 for kz = 0 and N = −1
for kz = π . These nonzero Chern numbers are the evidence for
the existence of two chiral surface states for kz = 0 and one
chiral surface state for kz = π spanning the gap in the {|c ↓
〉, |f ↑〉} spin sector, if Rz = iσ zτ zPz is conserved. This means
that we have symmetry protected surface states on the surfaces
in x and y directions for a magnetization in z direction. Thus the
system realizes a ferromagnetic topological crystalline half-
metallic state. These values of the Chern number can also be
easily verified in the spectrum shown in Fig. 10. For the kz =
0 plane, we find two chiral states at (ky, kz) = (−π, 0) and
(0,0) running from left to right for increasing energy, which
corresponds to the Chern number N = 2, and one chiral state at
(ky, kz) = (0, π ) running from right to left, which corresponds
to N = −1.

We have seen in the paragraph above that the existence
of surface states on the x surface for a ferromagnetic state
with magnetization in z direction is protected by symmetry in
our Hamiltonian. We next want to ask, what is the impact of
the magnetization on the surface states, which resemble Dirac
cones in the nonmagnetic system? The symmetry protection
due to nontrivial topology works in the ferromagnetic system
only for the reflection invariant planes; kz = 0 and kz = π for
a magnetization in z direction. The topological surface states
in the ferromagnetic system constrained to these momentum
planes take the form of chiral edge modes. Away from these
planes, the symmetry protection due to the reflection symmetry
does not work. In the nonmagnetic system, on the other hand,
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FIG. 11. Comparison of the surface states between the non-
magnetic system and the ferromagnetic system. (a) Surface state
for momenta around (ky, kz ) = (0, 0) in the magnetic state (V =
0.06, nc = 0.7 and nf ↑ − nf ↓ = 0.2). (b) Same as (a) but for the
nonmagnetic state (V = 0.06, nc = 0.9 and nf ↑ − nf ↓ = 0.0). (c)
and (d) show cuts through the Brillouin zone for energy E = 0.019
of (a) and (b), respectively. (e) Position of the Dirac cone depending on
the surface magnetization for fixed hybridization strength V = 0.06
changing the c-electron filling.

we have full rotational invariant Dirac cones which are formed
by states from both spin sectors, {|c ↑〉, |f ↓〉} and {|c ↓〉, |f ↑
〉}.

Figures 11(a)–11(d) show a comparison between the surface
state of the nonmagnetic system (nc = 0.9, V = 0.06) and
the ferromagnetic state (nc = 0.7, V = 0.06). Figures 11(a)
and 11(b) show three dimensional plots (ky-kz energy) of the
surface state on the surface in x direction for the magnetic
and nonmagnetic system, respectively. Figures 11(c) and 11(d)
show intensity plots for fixed energy E = 0.019, approxi-
mately at the center of the Dirac cone in the nonmagnetic
system.

We immediately see from the comparison in Figs. 11(a)
and 11(b) that the Dirac cone is strongly deformed by the
ferromagnetic state. While the lower dome of the Dirac cone
(energy E < 0.02) remains approximately as it is, the upper
dome and the Dirac point (energy E � 0.02) are moved to
different momenta. For a better comparison, we show intensity
plots of the spectral function for E = 0.019 in panels (c) and
(d). Approximately at this energy the Dirac cone contracts to a
single point in the Brillouin zone. The spectral function shown
here is the sum of all orbitals calculated at the surface layer.
Figure 11(d) shows the nonmagnetic state. Clearly visible are
regions of high intensity (white-blue) in the spectral function
around (ky, kz) = (0, 0), (π, 0), (0, π ). These regions of high
intensity correspond to the Dirac cones in the spectrum and
are located at the high symmetry points in the Brillouin zone.
Figure 11(c) shows the spectral function at the same energy

FIG. 12. Momentum resolved spectral function of the surface
layer for nc = 0.5 and V = 0.04 with surface magnetization nf ↑ −
nf ↓ = 0.6. The energy of the spectral function is fixed to E = 0.005
below the center of the Dirac cone. Due to the magnetization, the
Dirac cone appears not as a ring in the spectral function, but as an arc.

for the ferromagnetic state of panel (a). It is clearly seen that
the high-intensity regions in the spectral function have shifted
away from the high symmetry points in the Brillouin zone. The
Dirac cones on the kz = 0 plane is shifted to the right and the
Dirac cone on the kz = π plane is shifted to the left. The Dirac
cones are thereby still perfectly located on the planes with
kz = 0 and π , which is due to the reflection symmetry. Because
we add the spectral intensity of all orbitals in these plots, there
is also a rather high intensity at (ky, kz) = (π, π ). This density
of states originates in the {|c ↑〉, |f ↓〉} spin sector, which is
not fully gapped. In Fig. 11(e), we finally show the position
of the Dirac cone depending on the surface magnetization.
The position of the Dirac cone is calculated by finding the
maximum of the spectral density for kz = 0 and E = 0.019
depending on ky . We see that the position of the Dirac cone
behaves linearly with the surface magnetization.

Above we have seen that the Dirac cones in the nonmagnetic
system are changed to chiral states protected by reflection
symmetry in the ferromagnetic system and seem to be shifted
away from the high symmetry points of the Brillouin zone.
However, this is not the only effect on the surface states.
The Dirac cones in the nonmagnetic system consists of c

and f electrons with up- and down-spin directions. On the
ferromagnetically polarized surface, electrons with different
spin-direction have different energy. The consequence of this
is shown in Fig. 12, which shows the surface spectrum for
energy E = 0.005, which cuts through the Dirac cone. The
spectrum includes all bands and spin-directions. In the case
of the nonmagnetic system, the spectrum shows rings of high
intensity around the high-symmetry points where the Dirac
cones are located. In Fig. 12, we show that in the ferromagnetic
system an arc instead of the ring is observed. The origin of this
arc in the spectrum is different from the Weyl-semimetal. It
arises because of the magnetic polarization of the Dirac cone.
There is only one half of the Dirac cone present. The other half
of the Dirac cone has vanished due to the energy shift of the
electrons.
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FIG. 13. Spectrum of the A-type antiferromagnetic state (nc =
0.8 and V = 0.04). (a) (ky-kz-energy) plot of the spectrum on an
x-surface. (b) Momentum-resolved spectrum for E = 0.005.

Before concluding, let us present some results about the A-
type antiferromagnetic state, where the magnetization vanishes
in the bulk. First, because the bulk is nonmagnetic, time-
reversal symmetry and reflection symmetry are conserved in
the bulk. Thus the symmetry protection of topological states
holds in the bulk. At the surface, the time-reversal symmetry
is broken, but the reflection symmetry for the direction of
the magnetization is conserved. A similar protection as in the
ferromagnetic state could work. On the other hand, due to the
antiferromagnetic ordering of different layers, the spin sectors
{|c ↑〉, |f ↓〉} and {|c ↓〉, |f ↑〉} are not separated any more.
Thus the surface states could be gapped out due to hybridization
with the other spin sector. However, our results show that
even for the antiferromagnetic surface state, Dirac-type surface
states still exist, see Fig. 13. Because of the mixing of different
spin sectors, a gapped sector does not exist anymore, the
spectrum at the surface includes different bands. Focusing on
the momenta around (ky, kz) = (0, 0), we see a deformed Dirac
cone which is shifted from (ky, kz) = (0, 0) to approximately
(ky, kz) = (1, 0) due to a strong surface magnetization, see
Fig. 13(a). The spectral intensity for energy E = 0.005 is
shown in Fig. 13(b). We observe two regions of high intensity
(green-blue) for kz = 0 and one region for kz = π , which coin-

cides with the existence of the Dirac cones in the ferromagnetic
state. Thus we conclude that even for this antiferromagnetic
state the symmetry protected surface states exist. Furthermore,
we see that the Dirac cone at (ky, kz) = (1, 0) has an arc shape
due to the magnetic polarization. Besides these deformed Dirac
cones, we see broad bands with intermediate intensity (orange)
around (ky, kz) = (π, π ).

VI. CONCLUSIONS

We have analyzed the possibility of magnetically ordered
states in a 3D cubic topological Kondo insulator. We have
demonstrated the existence of a wide ferromagnetic phase
which emerges upon hole doping. Besides this phase, we find
surface magnetic states close to half-filling, which are A-
type antiferromagnetically ordered. While in the nonmagnetic
system there are symmetry protected surface states on all
surfaces of this system, the surface states are gapped out in the
ferromagnetic state when the magnetization is perpendicular
to the surface. Surface states for layers with in-plane magne-
tization are thereby protected by reflection symmetry in our
model, which is also conserved in the candidate topological
Kondo insulator SmB6. The emergence or absence of surface
states depending on the magnetization direction could thereby
yield interesting technological applications. Switching the
magnetization direction by an external magnetic field would
generate or destroy the surface states spanning the gap.

We have furthermore elucidated the impact of the magne-
tization on the surface states, which manifest themselves as
Dirac cones in the nonmagnetic system. The magnetization
shifts the Dirac cones away from the high symmetry points in
the surface Brillouin zone. The shift is thereby proportional to
the surface magnetization. Furthermore, while in the nonmag-
netic system Dirac cones appear as rings in the momentum
resolved spectrum at fixed energy, these surface states are
deformed into arcs due to the magnetization. The arc thereby
occurs due to the energy shift of certain spin-directions.

This study shows that the interplay between strong cor-
relations and nontrivial topology has quite a few of novel
phenomena to be explored, which might be also used in future
applications.
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