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Observation of signatures of subresolution defects in two-dimensional
superconductors with a scanning SQUID
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The diamagnetic susceptibility of a superconductor is directly related to its superfluid density. Mutual
inductance is a highly sensitive method for characterizing thin films, however, in traditional mutual inductance
measurements, the measured response is a nontrivial average over the area of the mutual inductance coils,
which are typically of millimeter size. Here we measure localized, isolated features in the diamagnetic
susceptibility of Nb superconducting thin films with lithographically defined through holes, δ-doped SrTiO3, and
the two-dimensional electron system at the interface between LaAlO3 and SrTiO3, using scanning superconducting
quantum interference device susceptometry, with spatial resolution as fine as 0.7 μm. We show that these features
can be modeled as locally suppressed superfluid density, with a single parameter that characterizes the strength
of each feature. This method provides a systematic means of finding and quantifying submicron defects in
two-dimensional superconductors.
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I. INTRODUCTION

Two-dimensional superconductors, in which the super-
conducting thickness d is much smaller than the London
penetration depth λ [1], are both technologically important and
central to active fields of research in condensed-matter physics.
Thin-film cuprates [2] make it possible to explore fundamen-
tal properties of the cuprate phase diagram. Superconduct-
ing complex oxide heterostructures, such as LaAlO3/SrTiO3

(LAO/STO) [3,4] and δ-doped SrTiO3 (STO) [5], exhibit
tunable two-dimensional superconductivity. Exquisite control
of heterostructure growth enables engineered systems demon-
strating high-temperature superconductivity [6]. Wafer-scale
superconducting electronics rely on well-controlled thin films
[7]. Both fundamental studies and development of applications
of superconductivity require an understanding of, if not com-
plete control over, typical defects that may influence or obscure
the intrinsic effects of interest.

In this paper, we image the susceptibility of thin-film
samples using a superconducting quantum interference device
(SQUID) susceptometer with two concentric micron-scale
loops. We find approximately circular features (“halos”) in
susceptibility with a minimum at the center and an asymmetry
that mimics our sensor layout. We interpret these features as
regions of reduced superfluid density that are small compared
to the size of our sensors (∼1 μm). Subresolution defects
have the simplest possible geometry for a defect in two
dimensions, as they are effectively pointlike for the purposes
of our measurements. Some possible intrinsic sources of such
defects could include the intersection of a line defect, such
as a crystallographic dislocation, with the superconducting
plane, small patches of phase-separated material, or dopant

inhomogeneity. Subresolution defects can also be intentionally
added to a system, for example, in ion irradiation experiments
that test the sensitivity of the superconductivity to changes in
scattering or to create vortex pinning sites in order to improve
the critical current of superconducting wires.

Two-coil mutual inductance experiments with millimeter-
scale spatial resolution have been an excellent method for
characterizing the area-averaged properties of thin-film super-
conductors for many years [8,9]. Our susceptometers [10,11]
have two micron scale pickup loops integrated into two-
junction scanning superconducting quantum interference de-
vices (SQUIDs) in a gradiometric configuration. In addition,
each pickup loop is paired with a one-turn, coplanar, concentric
field coil. This provides a similar geometry to the two-coil
mutual inductance experiments mentioned above, but with
better spatial resolution and high sensitivity even at low,
quasi-dc frequencies. Here we demonstrate how these SQUID
susceptometers detect defects in two-dimensional supercon-
ductors that are much smaller than the length scales of our
sensor. We first describe a simple model [12] and compare
it to results for artificial defects with variable sizes. We then
present experimental results on two two-dimensional systems
and find that the model reproduces the effect that we observe
in real samples under reasonable assumptions for sample and
imaging parameters.

II. EXPERIMENTAL METHODS

A. Data acquisition

We imaged the susceptibility of a Nb film with in-
tentionally introduced holes and in two two-dimensional
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FIG. 1. Assumed geometry. A superconducting film of thickness
d and infinite extent in the x and y directions is centered on the plane
z = 0. The susceptometer field coil and pickup loop are modeled as
coplanar, infinitely thin circular loops of radius a and b respectively,
oriented parallel to the thin film in the plane z = z0. A point defect is
at x = x0, y = 0, z = 0.

superconductors using scanning SQUID microscopes in a
liquid-helium cryostat (Nb films) and in a dilution refrig-
erator [13] (δ-doped STO, LAO/STO). The Nb films were
0.2-μm-thick sputtered films containing lithographically de-
fined through holes. The δ-doped STO and LAO/STO were
grown by pulsed laser deposition; details of the growth of the
δ-doped STO can be found in Ref. [14] (sample with doped
layer 5.5 nm thick, 1 at. % Nb doping) and of the LAO/STO
in Ref. [15]. Details of the imaging conditions (temperatures,
field coil current, and excitation frequency) are noted in
the figure captions. The SQUID sensors used in this study
were Nb-Al2O3-Nb trilayer susceptometers [10,11]. We define
the susceptibility, φ = �/I�0, as the mutual inductance of
the SQUID field coil/pickup loop pair in the presence of the
sample. This mutual inductance is given by the ratio of the flux
� through the SQUID pickup loop to the current through the
field coil I normalized by the superconducting flux quantum
�0 = h/2e. φ has two components: φ1 is the flux response
in phase with the field coil current, acquired by recording
the flux signal with zero phase shift relative to the field
coil current using a lock-in amplifier; φ2 is the out-of-phase
response, with the lockin set to a 90◦ phase shift relative to
the field coil current. A negative value for φ1 corresponds to a
diamagnetic susceptibility, while a positive value corresponds
to a paramagnetic susceptibility.

B. Image processing

For the images of holes in thin films of niobium in Fig. 3,
we subtracted the susceptibility at a corner of each image,
to more directly compare the data with Ref. [12], which
calculates to first order in a perturbation expansion. For the
images plotted in Figs. 6(a), 7(a), 8(a) and 8(b), we measured
the susceptibility as a function of height z0 (see Fig. 1),
recording both quadratures with an SR830 lock-in amplifier,
before taking each susceptibility image. We also recorded both
quadratures of the susceptibility signal during imaging. To set
the zero in these images, we subtracted the average of the 20
points furthest from the sample in susceptibility vs height for
each quadrature independently. For the in-phase susceptibility
images of LAO/STO plotted in Figs. 6(b), 9(a), and 10(a), we
subtracted a susceptibility offset following the same procedure
as described above for the δ-doped STO data; for the out-of-
phase data, for the temperature series, we subtracted the mean

of the image taken at the highest temperature, Fig. 9(b)(vii),
and for the field coil series, the mean of the image taken at the
lowest field coil current, Fig. 10(b)(i).

III. THEORETICAL MODELING

A. In-phase susceptibility

We used the approach outlined in Ref. [12] to calculate
the in-phase susceptibility signal due to the reduction or
enhancement of the Pearl length associated with defects as
imaged by a scanning SQUID susceptometer microscope. For
the sake of completeness we summarize here the results of this
approach for a point defect in a thin film.

Our assumed geometry is illustrated in Fig. 1. Several
assumptions go into the calculation.

First, we assume that the superconducting film is in the Pearl
limit, [1] with the unperturbed London penetration depth λ0

larger than the superconducting film thickness d. In this limit,
the characteristic magnetic length scale is the Pearl length,
�0 = 2λ2

0/d. We further assume that the dimensions of the
region of modified penetration depth are small compared to
all other length scales of the problem, namely �0, the radius
of SQUID field coil a, and the radius of SQUID pickup loop
b. In modeling the SQUID itself, we use the approximation
that the field coil and pickup loop are each infinitely thin,
perfectly circular, and continuous loops, are exactly coplanar
and concentric with each other, and are exactly parallel to the
superconducting plane.

The first assumption is not met for our experiments with
holes in Nb, since their thickness (0.2 μm) is several pene-
tration depths (λ0 ≈ 0.08 μm) thick. These experiments do
however support our interpretation of halos as being due to
local reductions in the superfluid density that are on a length
scale shorter than the dimensions of our susceptometer pickup
loops. The first assumption is, however, comfortably met for
the δ-doped STO sample (�0 ≈ 2 mm) and the LAO/STO
sample (�0 ≈ 25 mm) as indicated by fits to our data. Separate
analyses of vortices [16] indicate Pearl lengths of many
hundreds of μm or longer in the δ-doped STO sample.

We do not know the underlying physical origin(s) of the
defects that produce halos in the susceptibility of either the δ-
doped STO or the LAO/STO, so we do not know precisely how
well the second assumption is satisfied. However, if the defects
were similar in size to the pickup loop of the SQUID, we would
expect to begin to see substructure or other deviations from
the model in the measured susceptibility profile. We do not
see such deviations for the naturally occurring defects studied
here. Likewise, for the intentionally introduced defects in Nb
films (Fig. 3), the image of the smallest hole appears similar to
the naturally occurring halos. However, as the holes become
larger, the minimum in susceptibility at the center of the defect
image gradually disappears. We will cover the applicability of
the final assumptions in Sec. IV, in our discussion of the results.

In the absence of vortices London’s equation for the fields
inside a superconductor is written (in S.I. units) as

�h + �∇ × (λ2 �j ) = 0, (1)

where �h is the magnetic field, λ is the (in our case inhomo-
geneous) London penetration depth, and �j is the superfluid
density. Writing �h = �hs + �hr , where �hs is the field from the

064510-2



OBSERVATION OF SIGNATURES OF SUBRESOLUTION … PHYSICAL REVIEW B 98, 064510 (2018)

field coil, and �hr is the response field from the superconductor,
and integrating over the film thickness, results in the following
for the z component of the field:

hs
z + hr

z + �

2

(
∂gy

∂x
− ∂gx

∂y

)
+ 1

2

(
gy

∂�

∂x
− gx

∂�

∂y

)
= 0,

(2)
where � = 2λ2/d is the Pearl length, and gx and gy are
the two-dimensional (2D) supercurrent densities in the x

and y directions respectively. Integrating Maxwell’s equation
�∇ × �h = �j over the film thickness, and neglecting terms
proportional to ∂hz/∂y and ∂hz/∂x, results in

gx = −2hr
y (0+),

gy = 2hr
x (0+), (3)

where the response fields are evaluated at the top surface of
the thin film. Then Eq. (2) becomes, also at the top surface but
suppressing the 0+ notation,

hs
z + hr

z + �

(
∂hr

x

∂x
+ ∂hr

y

∂y

)
+

(
hr

x

∂�

∂x
+ hr

y

∂�

∂y

)
= 0. (4)

We model the defect as a point deviation in the Pearl length:

�(�r ) = �0 − γ 3δ(�r − �r0), (5)

where γ , with the dimensions of a length, represents the
strength of the defect. We can write the field as the gradient of
a scalar potential: �h = �∇ϕ. Expanding the source and response
scalar potentials in the region of space 0 < z < z0 in Fourier
series

ϕs (�r, z) = 1

2π2

∫ ∞

0
ϕs (�k)ei�k·�r+kzd2k,

ϕr (�r, z) = 1

2π2

∫ ∞

0
ϕr (�k)ei�k·�r−kzd2k (6)

results in

ϕr (�k) = ϕs (�k)

1 + �0k
+ δϕr (�k) (7)

with

δϕ(�k) = γ 3e−ikxx0

(2π )2k(1 + k�0)

∫
ϕs (�q )

�k · �qeiqxx0

1 + q�0
d2q. (8)

The first term in Eq. (7) is the standard result for the suscepti-
bility of a homogeneous thin superconductor [12]; the second
term is the change in the response due to inhomogeneity. The
source potential for a circular loop of radius a carrying current
I is given by [17]

ϕs (�k) = πIa

k
e−kz0J1(ka), (9)

where J1 is the Bessel function of the first kind of order 1.
Substituting Eq. (9) into Eq. (8) results in

hr
z(�k) = −k δϕ(�k)

= − γ 3Iae−ikxx0

4π (1 + k�0)

∫ �k · �qJ1(qa)eiqxx0−qz0

q(1 + q�0)
d2q (10)

for the z component of the response field. Fourier trans-
forming Eq. (10), integrating over the pickup loop area

FIG. 2. In-phase susceptibility of defects in thin-film supercon-
ductors. (a) Plot of normalized in-phase defect response susceptibility
−2�0a

2φr,1/γ
3μ0 vs lateral spacing x0/a for various reduced Pearl

lengths �0/a, for spacing z0/a = 0.25 between the sample surface
and the field coil/pickup loop (see Fig. 1), and b/a = 0.46. (b) Peak
value of the normalized in-phase defect response susceptibility φr

1 as
a function of �0/a, for various values of b/a, with z/a = 0.25. For
large values of the Pearl length φr

1 is approximately proportional to
1/�2

0; for small �0’s φr
1 is nearly proportional to 1/a2. In all cases

the defect response susceptibility scales with the cube of the defect
strength parameter γ .

S, and using the relations
∫
S
ei�k·�rd2r = 2πbJ1(kb)/k and∫ 2π

0 cos(θ )e±iz cos(θ )dθ = ±2πiJ1(z) results for the in-phase
response flux through the pickup loop

φr
1 = �

I�0
= −μ0γ

3ab

2�0
Dx (a)Dx (b), (11)

where � is the flux through the pickup loop, �0 = h/2e is the
superconducting flux quantum, and

Dx (r ) =
∫ ∞

0

qJ1(qr )J1(qx0)e−qz0

(1 + q�0)
dq. (12)

Figure 2(a) plots the predictions of Eq. (11) for the in-phase
response flux as a function of lateral spacing x0 for a number of
values of �0/a, for fixed z0/a = 0.25 and b/a = 0.46. Note
that the response flux goes to zero as x0 goes to zero. This
is because when the field coil is centered directly above the
defect, there are no circulating Meissner shielding currents at
the defect. The response curve peaks at x0 ≈ a: the halos are
about the same size as the field coil used to image them. Further,
the response flux becomes weaker as the homogeneous Pearl
length �0 becomes larger. Figure 2(b) plots the peak value of
φr

1 as a function of �0/a for a number of values of b/a.

B. Out-of-phase susceptibility

We will now turn to the interpretation of the out-of-phase
susceptibility signal that we see in LAO/STO, but not in δ-
doped STO, at the same location as the in-phase signal.

It is important to first rule out spurious effects that could
mimic physically interesting ones. The simplest way to get an
unphysical out-of-phase signal is to have an unaccounted-for
RLC time constant coming from somewhere in the experi-
mental setup. In such a scenario, a signal that starts out purely
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in-phase acquires a phase shift

θRLC = tan−1

(
ωL − 1

ωC

R

)
, (13)

where R, L, and C are the parasitic resistance, inductance, and
capacitance of the experimental setup, and ω is the frequency
of the signal. Crucially, the phase shift depends on frequency
but not on the amplitude of the signal.

All of the images presented below for LAO/STO were taken
at the same frequency, 1863.3 Hz. If the phase were due to
RLC effects, we would expect it to be constant within a given
scan and from scan to scan. As such, while these effects may
give a small, uniform phase offset, they cannot account for
the strong dependence of the phase on position and field coil
amplitude. We therefore interpret the out-of-phase signal in the
LAO/STO data as coming from physical, dissipative processes
in the sample, as described below.

Mutual inductance measurements of the kind we consider
here effectively measure a complex susceptibility, χ = χ1 +
iχ2, where the real part describes the superfluid response while
the imaginary part is related to dissipation and power loss [18].
In measurements of the mutual inductance of superconductors,
the imaginary part has been shown to peak near Tc [19], and has
also been used to obtain information on such physics as inter-
and intragranular critical fields in granular superconductors
[20,21], vortex states and dynamics [22], and the spatial
distribution of superconductivity, e.g., whether it is filamentary
or not [23].

As has been demonstrated previously [19,24,25], the com-
plex mutual inductance can be numerically related to the com-
plex conductivity G, which is further the inverse of the complex
impedance Z = 1/G = R + iωL, where R is a generalized
resistance and L is a generalized inductance. In the zero-field
limit, where vortex contributions to the impedance can be taken
to be real, the inductive part of the complex impedance is given
by the kinetic inductance of the superfluid [25], from which
the Pearl length and, by extension, the superfluid density and
London penetration depth, can be extracted.

While the geometric factors involved in extracting these
superconducting parameters from scanning SQUID suscep-
tometry measurements have been considered previously [26],
extracting the complete complex conductivity in our geometry
has not. By obtaining the complex conductivity, we could, in
principle, extract from the out-of-phase halo signal a local
reduction of the critical current density near the observed
defects with numerical modeling [27].

IV. RESULTS

A. Intentionally produced defects

As a test of the theory described in Sec. III A [12] we
imaged the susceptibility of lithographically fabricated holes
in a 0.2-μm-thick Nb film. This theory can only be expected to
apply qualitatively to these experiments, since it is developed in
the Pearl limitλ > d, while the sample hadλ (≈ 0.07 μm)< d

(0.2 μm). For these experiments, we used a susceptometer with
the highest spatial resolution available, with 0.2 μm inside
diameter pickup loops [11], as diagramed in Fig. 3(a). In this
layout, the base electrode, which constitutes the field coil and
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FIG. 3. Experimental susceptibilities of lithographically defined
holes through a 0.2-μm niobium film. (a) Pickup loop (black)/field
coil (blue) layout for the susceptometer used. The red layer is a
superconducting shield for the pickup loop. (b)–(d) Susceptibility
images for square holes with sizes as labeled. Field coil current
1 mA at 2.024 kHz, T = 5 K. The SQUID substrate and sample
were touching during the scan, such that z0, the spacing between
the sample surface and the pickup loop layer, was about 0.5 μm. The
dashed line in (b) shows the location of the cross section through the
data displayed in Fig. 4.

the lower shield for the pickup loop, is in blue; the first wiring
level, which constitutes the pickup loop, is in black; and the
second wiring layer, which constitutes the upper shield for
the pickup loop, is in red. Figures 3(b)–3(d) are susceptibility
measurements for square holes of different sizes, as labeled.
The similarity of these measurements to the naturally occurring
halos described below supports our interpretation of such
features as being due to defects in the superconducting films.

The symbols in Fig. 4(a) represent a cross section as
indicated by the dashed line through the data of Fig. 3(b).

0.5 m (a)

 (f) (e) (d)

 (c) (b) 1.0 m

1.5 .0 m 2 m 2.5 m

-2 0 2-0.2

0

0.2

0.4

0.6

/I
(1

/A
) Data

Model

/
ab

x ( m)

0.5

0

1 m

FIG. 4. Theoretically predicted susceptibilities. (a) The symbols
are a cross section as indicated in Fig. 3(b). The solid line is from
the model [12] described above [Eq. (11)], with b = 0.79 μm (white
circle) and a = 0.22 μm (yellow circle) in (b). The fitting parameter
γ = −0.5 μm. (b)–(d) Calculated susceptibilities for square holes in
a niobium film with the sizes as labeled, obtained by convolving the
point spread function from (b) with the hole shapes.
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FIG. 5. Calculated susceptibilities using an experimental point
spread function. (a) Point spread function inferred from experimental
susceptibility of a 0.5μm × 0.5 μm hole in niobium. (b)–(d) Calcu-
lated susceptibilities for rectangular holes with sizes as labeled.

The solid line in Fig. 4(a) is a fit to Eq. (11), with the fitting
parameter γ = −0.5 μm chosen to fit the data on the right-
hand side of the cross section. The effective field coil radius
b =

√
(r2

in + r2
out )/2 = 0.79 μm, where rin is the inner radius

and rout is the outer radius of the field coil. The effective pickup
loop radius a = 0.22 μm was chosen to match the measured
mutual inductance between the field coil and the pickup loop
[11]. Figure 4(b) shows the predicted susceptibility for a point
defect with these parameters.

Modeling of the SQUID susceptibility signal from defects
of finite size is difficult. One possible approach is to sum up
the contribution from multiple small defects separated in space
from one another. The panels in Figs. 4(c)–4(f) are calculated
susceptibility images using

φ(x, y) =
∫ ∞

−∞
dx ′

∫ ∞

−∞
dy ′S(x ′, y ′)P (x − x ′, y − y ′);

(14)
the predicted SQUID susceptibilities for the larger holes are
the convolution of the point spread function P (x − x ′, y − y ′)
taken from Eq. (11) with S(x, y), the shape function for the
hole. For example the shape function for a square hole of side
s would be S(x, y) = 1 for |x| < s/2, |y| < s/2, 0 otherwise.

Comparison of Figs. 3 and 4 shows progressively poorer
agreement as the holes get larger, for several reasons. First,
the theory assumes circular symmetry, which is clearly not the
case for the susceptometer diagramed in Fig. 3(a). Second,
the implicit assumption of a linear, local response in Eq. (14)
ignores the nonlocal nature of the response of a superconductor
to applied magnetic fields.

One way to address the issue of the symmetry of the sensor
is to deconvolute the point spread function from experimental
data [28] using

P̄ (kx, ky ) = φ̄(kx, ky )H (k, kmax)/S̄(kx, ky ), (15)

where P̄ (kx, ky ), φ̄(kx, ky ), and S̄(kx, ky ) are the Fourier
transforms of the point spread function P (x, y), the measured
susceptibility φ(x, y), and the hole shape S(x, y), respec-
tively (see Fig. 5). The Hanning function, H (k, kmax) = [1 +

-0.1 -0.05 0

20 m

20 m

-1.5 -1 -0.5 0

 (a)  (b)

FIG. 6. We observe “halos,” approximately circular features of
reduced susceptibility, in several two-dimensional superconductors.
In-phase susceptibility images of (a) δ-doped SrTiO3 with 5.5 nm
thick, 1 at. % Nb doping layer (studied in detail in Ref. [14]) and
a set temperature of 150 mK, and (b) LaAlO3/SrTiO3 (sample G of
Ref. [30, Chap. 3]), where the temperature as measured at the sample
thermometer was 54 mK before and 84 mK after the scan.

cos(k/kmax)]/2 for k =
√

k2
x + k2

y < kmax and 0 otherwise,
was used to limit high-frequency noise in k space, with kmax =
12 μm−1. The predictions of this approach have the asymmetry
expected from the susceptometer layout, but “fill in” more
rapidly with hole size than experiment. We note that this second
approach, while it improves the accuracy of the susceptometer
shape, does not address the nonlocal nature of the response of
a superconductor to applied magnetic fields.

A more complete modeling of defects with finite size
would involve a numerical solution of London’s and Maxwell’s
equations using a realistic geometry for the susceptometer and
sample [11,29].

B. Naturally occurring defects

We observe halos of reduced diamagnetic susceptibility
in both two-dimensional superconducting systems considered
here, as shown in Figs. 6(a) and 6(b). We have also observed
similar features in a bulk superconductor [31]. The diameter
of the halos in the two-dimensional samples is similar to the
∼20-μm diameter of the field coil in the SQUID susceptometer
used. Our experience is that in LAO/STO samples there were
areas with many halos, but it was also possible to find areas
with few or no halos, whereas in the δ-doped STO, it was rare
to find halos at all and even more rare to find more than one
in a single scan area. Further, it was possible to produce halos
in LAO/STO samples by repeatedly touching the sample with
the susceptometer substrate.

Figure 7(a) is an enlargement of the halo feature located in
the center-right of Fig. 6(a). Averaged line cuts perpendicular
to the axis of bilateral symmetry of the halo show a double-
peaked feature, Fig. 7(b), on top of an approximately linear
background. The dashed curve in this figure is obtained by
fitting the data to Eq. (11) plus a linear background of unknown
origin, plus an offset flux φ0 given by the expression for the
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-1.5
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Data
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FIG. 7. The profile of a halo along a high-symmetry direction is
reproduced by our model for SQUID susceptometry of a pointlike
defect. (a) In-phase susceptibility image taken, with field coil current
0.25 mArms at 1472 Hz, on 5.5 nm, 1 at. % Nb δ-doped STO [cropped
version of Fig. 6(a)]. Superimposed on the image are the positions
of three line cuts, and the layout of the pickup loop (black) and
field coil (blue) region of the susceptometer used for this image [10].
(b) Average of line cuts (dots) and fit to Eq. (11) plus linear background
(dashed line). (c) Simulated image calculated with same parameters as
in (b) and a second-order background determined by fitting a surface
to the data far from the circular feature in (a). The field coil and
pickup loop (blue and black overlays, respectively) are represented
by concentric, coplanar circles of 8.4- and 2.7-μm radii, respectively.

SQUID susceptibility of a thin-film diamagnet [26],

φ0 = −aφs (1 − 2z̄/
√

1 + 4z̄2)/�0, (16)

where �0 is the Pearl length away from the defect, z̄ = z0/a,
and φs is the mutual inductance between the field coil and
the pickup loop in the absence of a sample. This fit gave
values for �0 = 1.98 ± 0.19 mm, and γ = −33.7 ± 0.5 μm,
using fixed values of a = 8.4 μm, b = 2.7 μm [26], and z0 =
2.9 ± 0.3 μm, calculated using the scan offset height set in the
measurement, the known sensor geometry, and an estimate for
the SQUID-sample surface angle. The errors in the fit values for
�0 are dominated by the uncertainty in z0, whereas the errors in
γ are dominated by statistical errors. Since for a homogeneous
thin film and in the absence of fluctuations the Pearl length
�0 = 2λ2

0/d, where λ0 is the London penetration depth and
d is the film thickness, and the 2D superfluid density Ns is
given by Ns = md/μ0q

2λ2
0, where m is the mass and q is the

charge of the superconducting charge carriers, it follows that
1/�0(T ) is a measure of the 2D superfluid density Ns (T ). A
Pearl length of 1 mm corresponds to a 2D superfluid density of
Ns = 3 × 1012 1/cm2. The extraordinarily long Pearl lengths
and γ values reported in this paper are a result of the very low
2D superfluid densities in LAO/STO and δ-doped STO.

Figure 7(c) shows a simulated image of a halo calculated
using the same parameters as in (c) plus this same background.

Figure 8 shows the evolution with temperature of the in-
phase susceptibility φ1 without [Fig. 8(a)] and with [Fig. 8(b)]
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FIG. 8. Temperature dependence of defect image in δ-doped STO. Images of in-phase susceptibility (a) without and (b) with background
subtraction and (c) out-of-phase susceptibility without background subtraction in the region of the δ-doped STO sample plotted in Fig. 7, as
a function of temperature. Temperatures noted on the figure were measured at the mixing chamber at the beginning of each scan. Images and
associated measurements of susceptibility as a function of height were taken at a field coil current of 0.25 mArms, 1472 Hz. (d) Line cuts through
the in-phase (φ1) images as indicated by the dashed lines in (a). (e) Line cuts through the out-of-phase (φ2) images as indicated by the dashed
lines in (c). The zeros of each curve (dashed lines) are offset by −0.02�0/A as the temperature is lowered. (f),(g) Best-fit values for the Pearl
length �0 and the defect strength parameter γ from fits to the in-phase susceptibility φ1 as described in the text.
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FIG. 9. Temperature dependence of defect images in LAO/STO. Images of (a) in-phase and (b) out-of-phase susceptibility taken as a
function of temperature on the same 5 unit cell LAO/STO sample as the data shown in Fig. 6(b). The labels at the top of the images display
the temperatures at the mixing chamber at the beginning and end of the scans. During this temperature series, a backgate voltage of 0 V was
applied to the LAO/STO. Images and associated susceptibility vs height measurements taken at field coil current of 1 mArms, 1863.3 Hz. (b)
Line cuts through the in-phase susceptibility images (φ1) as indicated by the dashed lines in (a). (d) Line cuts through the out-of-phase images
(φ2) as indicated by the dashed lines in (b). (e),(f) Best-fit values for the uniform Pearl length �0 and defect strength parameter γ from fits to
the in-phase susceptibility as described in the text.

background subtraction, and the out-of-phase susceptibility
φ2 [Fig. 8(c)] of the halo of Fig. 7(a) at a low-field coil
current (0.25 mArms). Figures 8(d) and 8(e) display horizontal
cross sections through the images as indicated by the dashed
lines in Figs. 8(a) and 8(c) respectively. As the temperature is
lowered, the superfluid density becomes larger, the Pearl length
becomes shorter, and the background susceptibility becomes
more diamagnetic, as expected from Eq. (16). Fits to this data
using the same procedure as for Fig. 7, displayed as dashed
lines in Fig. 8(d), result in values for 1/�0(T ) and 1/γ (T )
that decrease monotonically from low T to Tc. Figures 8(c)
and 8(e) reveal no measurable out-of-phase halo signature even
as the temperature approaches Tc near 320 mK. In contrast,
measuring a different sample (LAO/STO) as a function of
temperature at 1 mArms, Fig. 9, reveals features in the out-
of-phase susceptibility [Fig. 9(b)] at locations corresponding
to halos in the in-phase channel [Fig. 9(a)], even at T/Tc ∼ 0.3
[Fig. 9(b)(i)].

In LAO/STO, the susceptibility data on the halos and in the
background region have different temperature dependencies.
Looking at a point away from any halos, such as the one
indicated in Fig. 9(a)(i) at center right by a red “◦,” we see at
the lowest temperature the strongest diamagnetic signal in the
in-phase channel [Fig. 9(a)(i)] and no signal in the out-of-phase
channel [Fig. 9(b)(i)]. As the temperature is steadily increased,
the strength of the diamagnetism is gradually weakened
[Figs. 9(a)(ii)–9(a)(v)] before becoming paramagnetic in the
normal state [Figs. 9(a)(vi) and 9(a)(vii)]. In the out-of-phase

channel, the signal in the background region remains small and
mostly featureless as the temperature is increased [Figs. 9(b)(ii)
and 9(b)(iii)] until just below Tc, where it peaks [Figs. 9(b)(iv)
and 9(b)(v)]. In the normal state, the out-of-phase component
returns to zero [Figs. 9(b)(vi) and 9(b)(vii)].

Considering now a point on a halo, such as indicated by
the red “+” in Fig. 9(a)(i), the in-phase signal is already
less diamagnetic than the background even at the lowest
temperature [Fig. 9(a)(i)] and has a net paramagnetic response
at a lower temperature [Fig. 9(a)(v)] than the surrounding
background region, consistent with there being a lower Tc

associated with the halos than for the background region.
Likewise, the enhanced out-of-phase susceptibility of the +
pixel is already visible at the lowest temperature [Fig. 9(b)(i)]
and persists over a wider range of temperatures [Figs. 9(b)(ii)–
9(b)(iv)] than the surrounding region (◦ symbol), as seen by
faint lightening in the halo regions in Fig. 9(b)(v). By the
time the surrounding region is normal, as indicated by a non-
diamagnetic background, the out-of-phase signal associated
with the halos has already also vanished, leaving Figs. 9(b)(vi)
and 9(b)(vii) featureless. That is, in addition to a shift in
temperature associated with the lower Tc in halo regions, we
also see the peak in the out-of-phase component broadened
so much that it persists to our lowest measured temperatures.
These trends are reproduced in the line cuts displayed in
Figs. 9(c) and 9(d).

The susceptibility of the LAO/STO measured as a function
of field coil current (equivalently, applied field: this field
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FIG. 10. Field coil current dependence of defect images in LAO/STO. Susceptibility images as a function of field coil current at temperatures
of ∼0.4–0.5 T/Tc on the same 5 u.c. LAO/STO sample as the data shown in Figs. 6(b) and 9. (a) In-phase and (b) out-of-phase susceptibility.
During this field coil series, a backgate voltage of −30 V was applied to the LAO/STO. rms field coil currents as noted on images; excitation
frequency of 1863.3 Hz for all images and associated measurements of susceptibility vs height. (c) Line cuts through the in-phase susceptibility
(φ1) images as indicated by the dashed lines in (a). (d) Line cuts through the out-of-phase susceptibility (φ2) images as indicated by the dashed
lines in (b). Successive curves are offset by −0.05�0/A as the field coil current is increased. (e),(f) Best-fit values for the uniform Pearl length
�0 and defect strength parameter γ as a function of field coil current I , obtained by fitting the in-phase susceptibility of (c).

coil, with effective radius 8.4 μm, applies approximately
75μT/mA to the sample) shows similar trends as in the temper-
ature series (Fig. 10). At the lowest field coil current, both chan-
nels are nearly featureless [Figs. 10(a)(i) and 10(b)(i)]. Away
from the halos, the in-phase component gradually approaches
but does not reach zero as the current amplitude is increased
[Figs. 10(a)(ii)–10(a)(vi)]. The out-of-phase component away
from the halos steadily increases but does not clearly reach
its peak in the measured range [Figs. 10(b)(ii)–10(b)(vi)].
By contrast, the in-phase susceptibility on halos crosses zero
[Fig. 10(a)(iv)] and shows a net paramagnetic signal at higher
field amplitudes [Figs. 10(a)(v) and 10(a)(vi)] as seen in
the normal state in the temperature series [Fig. 9(a)(vii)].
Furthermore, the out-of-phase component does peak on halos
[Fig. 10(b)(iii)], falling off as the field amplitude is further
increased [Figs. 10(b)(iv)–10(b)(vi)]. The sign of the out-
of-phase component of the halos relative to the background
reverses at sufficiently high fields. A full theory of the out-
of-phase component of scanning SQUID microscopy will be
required to explain some of these results.

V. DISCUSSION

Comparison to model

While the calculated curves in Figs. 7(c) and 4(a) are in good
agreement with the data, there are some notable differences
between our images of halos and the calculated images.

First, in all of the experimental data, we see gaps in each
halo, whereas the calculated signals are circularly symmet-
ric. The gap is an artifact from the physical layout in our
sensors: the shields of the pickup loop [red in Figs. 7(a) and
3(a)] and the field coil [black in Figs. 7(a) and 3(a)] reduce
the field applied to the sample when the sensor is positioned
higher in y than the defect in Fig. 7(a) or lower in y than the
defect in Fig. 3(a).

Second, the experimental signal on the δ-doped sample
[Figs. 6(a), 7(a), 8(a)] appears to fade towards the top of the
image. This slope in the signal is present in the unperturbed
signal far from the halo as well, and may either be a true change
in the strength of the susceptibility signal with position or an
artifact due to poor scan plane compensation. The calculated
image in Fig. 7 includes a second-order background slope
determined from the data around the edge of the scan area,
away from the halo, and it shows a similar fading-out of the
halo towards the top of the image.

Finally, the halos in Figs. 6(b), 9, and 10 are somewhat
stretched along the vertical and/or compressed along the
horizontal, compared to the expected circular shape. This
distortion is almost certainly an artifact of imperfect spatial
calibration of the piezoelectric scanners.

Overall, the model confirms our interpretation of the halos
in susceptibility as originating from enhancements in � (re-
ductions in ns) at regions whose maximum spatial extent is
smaller than our sensor. In principle, if the defect is actually
pointlike, the model allows us to pinpoint the position of the
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defect to better than the diameter of the SQUID pickup loop;
the defect should be centered on the local minimum between
the two lobes of a cross section of a halo.

All other parameters being equal, γ tells us the relative
strength of a subresolution defect. If, for example, a scan area
contained several nonoverlapping halos, we could compare γ

from halo to halo and perhaps infer something about the nature
of the defects. The model does not capture any information
about the structure of the defect; the defect is simply a
delta function with zero spatial extent and perfect rotational
symmetry. Physical defects are not delta functions, of course.
The effective “strength” of a defect that we might extract from
images will depend not only on the actual local change in �,
but also on the shape and spatial extent of the defect.

For the data shown in Fig. 7, we obtain a value of γ =
−21 μm. To determine the size of the Pearl length [Eq. (5)]
in the defect from γ , one would have to assume an effective
area for the defect. Supposing that the defect were just smaller
than the pickup loop, with a radius of 1.5 μm, for example,
γ = −21 μm would imply a perturbed � of 2.3 mm.

VI. CONCLUSION

We have observed halolike features in susceptibility images
from intentionally introduced holes in superconducting Nb
films as well as from two two-dimensional oxide supercon-
ductor system. A straightforward model confirms our inter-
pretation of the halo features as originating from regions of

increased � (decreased ns) on length scales smaller than those
of our SQUID susceptometer. This understanding expands our
toolkit for characterizing superconducting thin films.

It would be interesting to compare estimates of vortex
pinning potentials, such as those given by vortex dragging
experiments [32,33] or by studying the statistics of the po-
sitions of vortices over many field-cooling cycles, to the defect
strength γ that we can extract from halos. We expect stronger
suppressions of ns to correspond to stronger pinning potentials.

While the model that we used to calculate a halo can tell us
where the defects are located, it cannot tell us about the struc-
ture or composition of the defects by itself. Complementary
measurements, such as scanned Laue microscopy and strain
mapping [34–36], would enable us to access such information.
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