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We theoretically investigate the Cooper-pair symmetry that can be realized in hole-doped monolayer MoS2 by
solving linearized BCS gap equations in the three-orbital attractive Hubbard-like model in the presence of the
atomic spin-orbit coupling. In hole-doped monolayer MoS2, both spin-orbit coupling and the multiorbital effects
are more prominent than those of an electron-doped system. Near the valence band edge, the Fermi surfaces are
composed of three different types of hole pockets; namely, one consists mainly of the almost spin degenerate
|dz2 〉 orbital near the � point, and the others are the spin-split upper and lower bands near the K and K′ points
arising from the |dx2−y2 〉 and |dxy〉 orbitals. The number of relevant Fermi pockets increases with the increase
of the doping. At very low doping, the upper split bands of |dx2−y2 〉 and |dxy〉 are concerned, yielding extremely
low Tc due to the small density of states of the split bands. For further doping, the conventional spin-singlet state
(SS) appears in the � pocket, which has a mixture of the spin-triplet, orbital-singlet (ST-OS) and spin-singlet,
orbital-triplet (SS-OT) states in the K and K′ pockets. The ratio of the mixture depends on the relative strength of
the interactions and the sign of the exchange interactions. Moderately strong ferromagnetic exchange interactions
even lead to the pairing state with the dominant ST-OS state over the conventional SS one. With these observations,
we expect that the fascinating pairing with relatively high Tc emerges at high doping that involves all three Fermi
pockets.
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I. INTRODUCTION

Noncentrosymmetric superconductors with strong spin-
orbit coupling (SOC) have provided us with a new platform for
investigating exotic superconductivity [1,2]. Researchers have
focused mainly on the Rashba-type SOC in various polar mate-
rials [3–5], and it causes an in-plane helical spin texture in mo-
mentum space. More recently, Ising-type SOC, by which elec-
tron spin tends to be locked in the out-of-plane direction, was
studied as well, both experimentally and theoretically [6–41].

The layered transition-metal dichalcogenides (TMDCs)
have attracted much interest as key semiconducting materials,
not only for electrical and optoelectronic devices but also
for spin-valleytronic devices [6–23]. In particular, MoS2 has
been known as a leading candidate for studying electric-field-
induced electron-doped superconductivity [24,25], whose in-
plane upper critical field Hc2 is about three times larger than
the Pauli limit at 1.5 K [26,27]. The relatively high Hc2 may
be due to the spin-valley locking toward the out-of-plane
direction caused by Ising-type SOC in addition to broken
spatial inversion symmetry [27].

Moreover, it has been reported recently that the metallic
monolayer TaS2, whose band structure is quite similar to that of
the hole-doped monolayer MoS2, exhibits the largest in-plane
Hc2 among a family of the layered TMDCs, without the need
for gating [28]. As the few-layer TaS2 with global inversion
symmetry also shows much higher Hc2 than the Pauli limit, it
is also pointed out the importance of the Ising-type SOC. A
similar tendency has also been observed in NbSe2 [29], which
can be viewed as heavily hole doped monolayer MoSe2.

So far, the superconducting state of MoS2 has been ob-
served only in the electron-doped system [24–27], while the

extensive studies to realize the hole-doped superconductivity
have been hampered by either technical or some intrinsic
reasons. Nevertheless, the hole-doped superconductivity is
much more fascinating than the electron-doped one since the
valence bands have richer characteristics originating from Mo
d orbitals, and the resulting Cooper pairs are expected to
have a richer variety as well [28,29,38–40]. For instance, the
topological superconductivity with mixed spin-singlet d-wave
and spin-triplet p-wave states is discussed theoretically by the
Coulomb repulsion in the slightly hole doped MoS2 [38]. It
has also been proposed that the topological superconductivity
is driven by the on-site attraction in NbSe2 and TaS2 under the
magnetic field [39]. Meanwhile, a mixture of the spin-singlet
and spin-triplet states has been suggested by considering the
on-site attraction at very low doping [40].

So far no systematic investigations of the doping depen-
dence have been performed; however, the doping rate is an
important factor in the TMDCs since TaS2 [28] and NbSe2

[29] exhibit superconductivity, while MoS2 does not, where the
hole carrier in the former is much larger than that in the latter.
Therefore, a systematic study of the possible pairing states with
hole doping is highly desired in monolayer TMDCs.

In this paper, we theoretically investigate the Cooper-pair
symmetry in hole doping on the basis of the three-orbital
attractive Hubbard-like model. Using the realistic tight-binding
model for MoS2 from the first-principles band calculation
[42–47] and assuming spin-independent spherical interactions
as a leading mechanism for superconductivity, we obtain
the (linearized) gap equations. Solving the linearized gap
equations for each irreducible representation of the D3h point
group, we determine the Cooper-pair symmetry and Tc at
various hole-doping rates.
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FIG. 1. Crystalline structure of MoS2 drawn by VESTA [48] and
the first Brillouin zone. (a) The unit cell of the bulk MoS2 with the
trigonal prismatic coordination. The red point represents an inversion
center. (b) The top view of monolayer MoS2. The blue and green
spheres represent Mo and S atoms, respectively. R1-3 and −R1-3

stand for the Mo-Mo nearest-neighboring vectors, and a1 and a2

are the unit vectors as the unit length a ≡ 1. The diamond-shaped
area indicates the two-dimensional unit cell. (c) The two-dimensional
Brillouin zone. b1 and b2 are the reciprocal unit vectors.

It turns out that Tc is too low to observe at very low doping
since the density of states (DOS) of the upper branch of the
split bands around the K and K′ points, which has the main
pockets for superconductivity, is very small. This may be
one of the reasons why no superconductivity is observed in
hole doping. However, for further dopings, the number of
relevant Fermi pockets increases, showing a variety of the
pairing state with higher Tc. This observation indicates that the
hole-doped superconductivity could be realized at moderately
high dopings.

This paper is organized as follows. In Sec. II, we introduce
the three-orbital attractive Hubbard-like model including the
atomic SOC. Then, we derive the (linearized) gap equations in
terms of the symmetry-classified gap components. In Sec. III,
we exhibit the solutions of the linearized gap equations for
several sets of interaction parameters and doping rates. We
mainly discuss the doping dependences. The final section
summarizes the paper.

II. MODEL AND GAP EQUATIONS

The unit cell of the bulk MoS2 consists of two units. Each
unit is made up of one Mo atom located at the center of six S
atoms at the corners of the triangular prism, which constitutes
a building block of a MoS2 monolayer [42]. The bulk MoS2

has D4
6h symmetry, and there is an inversion center between

two monolayers, as shown in Fig. 1(a). On the other hand,
monolayer MoS2 has D1

3h symmetry but lacks spatial inversion
symmetry. The top view of the monolayer MoS2 is shown in
Fig. 1(b), and the corresponding Brillouin zone is shown in
Fig. 1(c).

It is well known that the Bloch states of monolayer MoS2

near the band edges consist mostly of Mo d orbitals, dz2 , dx2−y2 ,
and dxy , where the contributions from dyz, dzx , and S p orbitals
are negligible [42–45].

In this section, we first introduce the three-orbital tight-
binding model with the Ising-type SOC. Then, the Hubbard-
like effective interactions are introduced under the assumption
of spherical symmetry, which may arise predominantly from
electron-phonon interactions among orbitals. After setting up

the model Hamiltonian, we derive the linearized BCS gap
equations to be solved.

A. Three-orbital tight-binding model

The Mo five d orbitals in the trigonal prismatic structure of
S atoms split into A′

1 (dz2 ), E′ (dx2−y2 , dxy), and E′′ (dzx , dyz)
orbitals, where the latter two orbitals in E′′ are far from the
band edges, and hence, they are omitted. In this paper, we use
the magnetic quantum-number representation instead of the
real one for the relevant d orbitals as

|0〉 ≡ |dz2〉, |±2〉 ≡ 1√
2

(|dx2−y2〉 ± i|dxy〉). (1)

We consider the Mo-Mo nearest-neighbor hoppings tA for
|0〉-|0〉, tE for |±2〉-|±2〉, t ′E for |±2〉-|∓2〉, and t for |0〉-|±2〉
orbitals. Then, the three-orbital tight-binding model measured
from the chemical potential μ is given by

Hkin =
∑
kσ

∑
mm′

[εmm′ (k) − μδmm′ ]c†kmσ ckm′σ , (2)

ε(k) =

⎛
⎜⎝

εA + tA(k) t+(k) t−(k)

t+∗(k) εE + t+E (k) t ′E(k)

t−∗(k) t ′∗E (k) εE + t−E (k)

⎞
⎟⎠, (3)

with the orbital basis (|0〉, |+2〉, |−2〉) and the spin σ = ±1
(up/down). Here, εA and εE represent the energy levels of
|0〉 and |±2〉 orbitals, respectively, and the hopping matrix
elements are given by

tA(k) = Re(2tAγ0,k ), (4)

t+E (k) = Re(2tEγ0,k ), (5)

t−E (k) = Re(2t∗Eγ0,k ), (6)

t+(k) = tγ−1,k + t∗γ ∗
+1,k, (7)

t−(k) = t∗γ+1,k + tγ ∗
−1,k, (8)

t ′E(k) = t ′E(γ−1,k + γ ∗
+1,k ), (9)

where we have introduced

γn,k = eiky + 2e−iky/2 cos

(√
3kx

2
− 2π

3
n

)

(n = 0,±1). (10)

Note that according to symmetry arguments, it is shown that the
hopping integrals tA and t ′E are real, while tE and t are complex.
The imaginary parts of tE and t arise from the hoppings between
|dx2−y2〉 and |dxy〉 orbitals and between |dxy〉 and |dz2〉 orbitals,
respectively, by implicitly taking into account the presence of
S atoms. Otherwise, the imaginary parts of tE and t vanish, and
the system becomes the triangular lattice with spatial inversion
symmetry. Throughout this paper, we set εA = 1.046, εE =
2.104, tA = −0.184, t ′E = −0.0805, tE = 0.138 − 0.338i, and
t = 0.359 + 0.284i eV, which are taken from Ref. [43], where
the real representation for d orbitals, i.e., the right-hand side
of Eq. (1), is used.
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FIG. 2. Band structure, the DOS, and the Fermi surfaces of
monolayer MoS2. (a) The spin dependence. The red and blue lines
represent up- and down-spin bands, respectively. (b) The orbital
dependence, where the red, green, and blue lines represent |0〉, |+2〉,
and |−2〉, respectively. (c) The doping dependence of the DOS at the
Fermi level. The doubly stepwise behavior appears when the Fermi
level goes across the top of the split bands as shown in (d) the enlarged
view of (a). (e)–(g) The Fermi surfaces at the representative doping
rates in regions A–C.

The atomic SOC is given by

HSOC = λ

2

∑
kmσ

(mσ )c†kmσ ckmσ , (11)

where λ is the strength of the SOC, which is estimated from the
direct gap of the band calculation as λ ∼ 0.073 eV [43], and
we adopt this value. HSOC has only diagonal matrix elements,
i.e., Ising-type, since we consider the orbitals with m = 0, ±2,
which are connected only by quadrupolar transitions. As a
result, the z component of the spin σ becomes a good quantum
number.

Using the above model parameters, the obtained energy
dispersions near band edges well reproduce the essential
features of the band structures from the first-principles band
calculation [43], as shown in Fig. 2.

The spin and orbital dependences of the energy bands are
shown in Figs. 2(a) and 2(b), respectively. It is shown that
the bottoms of the conduction bands near the K and K′ points
are almost spin degenerate because they are mainly composed
of the |0〉 orbital, and the SOC affects them only through the
valence bands perturbatively.

On the other hand, the tops of the valance bands near the
K and K′ points consist predominantly of the |±2〉 orbitals,
showing considerably large spin splitting. In contrast, the
top of the valence bands near the � point is almost spin
degenerate, which arises mainly from the |0〉 orbital. Moreover,
the effective mass of the latter is considerably larger than those
of the former. Reflecting the difference of the effective masses,
the DOS of the |0〉 orbital is much larger than those of the |±2〉
orbitals.

The characteristic features of the valence bands lead to
doubly stepwise behavior in the doping dependence of the
DOS at the Fermi level, as shown in Fig. 2(c), where the doping
x is defined as x = 2 − n, with n being the electron density.
It is natural to expect that the coupled orbital-spin degrees
of freedom of the valence bands will give rise to a variety
of superconducting states in the hole doping. The doubly
stepwise changes in the pairing states in the hole doping are
also expected depending on the changes in the Fermi-surface
topology, as shown in Figs. 2(e)–2(g).

B. BCS interactions

Next, let us introduce the effective interactions leading
to superconductivity. The effective interactions may arise
predominantly from the electron-phonon interactions among
orbitals. The Coulomb repulsion may also be important,
especially in the exchange interactions. In the present study,
we assume that the local interactions are spin independent and
spherically symmetric. With these assumptions, the pairing
interactions are expressed in the form

Hint = 1

2N0

∑
kk′σσ ′

∑
m1m2m3m4

Vm1m2,m3m4

× c
†
km1σ

c
†
−km2σ ′c−k′m4σ ′ck′m3σ

, (12)

where N0 is the number of unit cells. The matrix elements are fi-
nite for at least m1 + m2 = m3 + m4, and they satisfy the rela-
tion Vm1m2m3m4 = Vm3m4m1m2 = Vm2m1m4m3 = V−m1−m2−m3−m4 .
Due to the spherical symmetry, they are parameterized as

V±2∓2±2∓2 = U − J2, V±2∓2∓2±2 = 2J2,

V0000 = U, V±2∓200 = J0 (m1 + m2 = 0), (13)

V±2±2±2±2 = U − J2 (m1 + m2 = ±4), (14)

V0±20±2 = V±20±20 = U − 2J0,

V0±2±20 = V±200±2 = J0 (m1 + m2 = ±2). (15)

U is the direct interaction, while J0 and J2 are the exchange
interactions between the |0〉 and |±2〉 orbitals and among the
|±2〉 orbitals, respectively. In contrast to the 1/r Coulomb
interaction, the positiveness of U , J0, and J2 is not guaran-
teed [49]. In this paper, we assume that U < 0 is the leading
attractive interaction for superconductivity and J0 = J2 ≡ J

for simplicity. Since the Coulomb repulsions may contribute
to the exchange interactions in addition to the electron-phonon
attractions, both cases, J > 0 (ferromagnetic) and J < 0
(antiferromagnetic), are discussed.
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Finally, the BCS Hamiltonian to be solved in this paper is
given by

HBCS = Hkin + HSOC + Hint. (16)

C. Gap equations

In order to discuss superconducting symmetry in the hole
doping, let us introduce the isotropic (s-wave) gap function,

�σσ ′
mm′ = − 1

N0

∑
k

∑
m′′m′′′

Vmm′m′′m′′′ 〈ckm′′σ c−km′′′σ ′ 〉. (17)

Since the Fermi surfaces are mainly composed of the |0〉
orbital near the � point and the |±2〉 orbitals near the K and
K′ points, we consider the Cooper pairs within the |0〉 orbital
and the |±2〉 orbitals. Thus, the interactions in Eq. (15) are
irrelevant. The spin state of the pair in the |0〉 orbital must
be spin singlet due to the anticommutation relation, while the
pairs in the |±2〉 orbitals are either spin-singlet, orbital-triplet
or spin-triplet, orbital-singlet.

To decompose the gap function into each component, we
introduce the following matrices for the orbital sectors:

τ x =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, τ y =

⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠,

τ z =
⎛
⎝0 0 0

0 1 0
0 0 −1

⎞
⎠,

τ 0 =
⎛
⎝

√
2 0 0

0 0 0
0 0 0

⎞
⎠, τ 2 =

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠. (18)

Then, the spin-singlet (SS) pair in the |0〉 orbital is given by

ψ
1√
2
τ 0(iσy ), (SS). (19)

Similarly, the spin-singlet, orbital-triplet (SS-OT) and spin-
triplet, orbital-singlet (ST-OS) pairs in the |±2〉 orbitals are
given, respectively, by

D · (iττ y )(iσy ), (SS-OT), (20)

d · (iτ y )(iσσy ), (ST-OS). (21)

Introducing the seven-component d vector,

D = [ψ/
√

2, Dz, dz, dx, dy, Dx, Dy], (22)

and the corresponding seven-component expansion basis,

X = [τ 0(iσy ), (iτ zτ y )(iσy ), (iτ y )(iσzσy ),

(iτ y )(iσxσy ), (iτ y )(iσyσy ),

(iτ xτ y )(iσy ), (iτ yτ y )(iσy )], (23)

we express compactly the decomposition as

�σσ ′
mm′ = D · Xσσ ′

mm′ . (24)

Using the orthonormal relation

Tr(XiXj†) = 4δij , (25)

TABLE I. Symmetry of the Cooper pairs in the D3h point group.
Here, “irrep.” (“o-irrep.”) represents the irreducible representation of
the spin-orbital (orbital) space. In the presence of the Ising-type SOC,
the components are classified by irrep., while in the absence of the
Ising-type SOC, the symmetry operations are defined separately in the
orbital and spin spaces, and the components are classified by o-irrep.
and the spin magnitude S.

i Type irrep. o-irrep. S Component Basis Xi

1 SS A′
1 A′

1 0 ψ iτ 0σy

2 SS-OT Dz iτ xσy

3 ST-OS A′
2 1 dz iτ yσx

4, 5 ST-OS E′′ A′
2 1 (dx, dy ) (−iτ yσz, −τ yσ0 )

6, 7 SS-OT E′ E′ 0 (Dx, Dy ) (−iτ zσy,−τ 2σy )

we obtain Di = Tr(�Xi†)/4. All the Cooper-pair components
and their symmetry in the D3h point group are summarized in
Table I.

A similar decomposition is also made for the pairing
interaction as

Vm1m2,m3m4δσ1σ3δσ2σ4 =
∑
ij

vij (Xi )σ1σ2
m1m2

(Xj†)σ4σ3
m4m3

, (26)

and the finite components are given by

v11 = U

4
, v22 = 1

4
(U + J2), v12 = v21 = J0

2
√

2
, (27)

v33 = v44 = v55 = 1

4
(U − 3J2), (28)

v66 = v77 = 1

4
(U − J2), (29)

which tell us the strength of the interaction for each pairing
state. It is clearly shown that when the exchange interaction is
ferromagnetic J > 0 (antiferromagnetic J < 0), the dz paring
is enhanced (suppressed), while the Dz paring is suppressed
(enhanced).

With these preliminaries, let us discuss the linearized gap
equations. To this end, we introduce the Matsubara Green’s
function matrix as

[G(k, iωn)]σσ ′
mm′ = −

∫ β

0
dτ eiωnτ 〈Tτ ckmσ (τ )c†km′σ ′ 〉, (30)

where ωn = (2n + 1)π/β is the fermionic Matsubara fre-
quency and it implicitly depends on the gap function. Then, the
pair wave function in the gap function, Eq. (17), is expressed
as

〈ckmσ c−km′σ ′ 〉 = T
∑

n

[G(0)(k, iωn)�GT(−k,−iωn)]σσ ′
mm′ ,

(31)

where the superscript (0) means that G is evaluated in the
normal state, � = 0. It is explicitly given by

G(0)(k, iωn) = [iωn + μ − ε(k) − λτzσz]
−1. (32)

Note that G(0)(k, iωn) is diagonal in spin indices.
By approximating G with G(0) in the pair wave function

(31), we obtain the linearized gap equation.
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Using the decompositions for the gap function, Eq. (24),
and the interaction, Eq. (26), we finally obtain the linearized
gap equations as

Di =
∑

j

χ
(0)
ij Dj , χ

(0)
ij = −

∑
k

vikK
(0)
kj , (33)

with

K
(0)
ij = T

N0

∑
kn

Tr[Xi†G(0)(k, iωn)XjG(0)T(−k,−iωn)], (34)

where T represents the transpose of G(0)(k, iωn) with respect
to indices (m, σ ).

Using the eigenstate of H0 = Hkin + HSOC and the unitary
matrix which diagonalizes H0, i.e., H0 |kασ 〉 = ξkασ |kασ 〉,
and |kmσ 〉 = ∑

α[U ∗
σ (k)]mα |kασ 〉, the Matsubara summation

can be carried out, and we obtain

K
(0)
ij = 1

N0

∑
kσ1σ2αβ

I
σ1σ2
αβ (k)

∑
m1m2m3m4

× (Xi†)σ2σ1
m1m2

[Uσ1 (k)]m2α[U ∗
σ1

(k)]m3α

× (Xj )σ1σ2
m3m4

[U ∗
σ2

(−k)]m4β[Uσ2 (−k)]m1β, (35)

with

I
σ1σ2
αβ (k) = T

∑
n

G(0)
ασ1

(k, iωn)G(0)
βσ2

(−k,−iωn)

= tanh(βξkασ1/2) + tanh(βξ−kβσ2/2)

2(ξkασ1 + ξ−kβσ2 )
, (36)

where G(0)
ασ (k, iωn) = 1/(iωn − ξkασ ).

The linearized gap equations are explicitly given by⎛
⎝ ψ

Dz

dz

⎞
⎠ = −

⎛
⎝M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎠

⎛
⎝ ψ

Dz

dz

⎞
⎠, (37)

M11 = 1

2

(
UK

(0)
11 + J0K

(0)
21

)
, (38)

M22 = 1

4
(U + J2)K (0)

22 + 1

2
J0K

(0)
21 , (39)

M33 = 1

4
(U − 3J2)K (0)

33 , (40)

M12 = 1

2

(
J0K

(0)
22 + UK

(0)
21

)
, (41)

M21 = 1

2
J0K

(0)
11 + 1

4
(U + J2)K (0)

21 , (42)

M13 = 1

2

(
UK

(0)
13 + J0K

(0)
23

)
, (43)

M31 = 1

4
(U − 3J2)K (0)

23 , (44)

M23 = 1

2
J0K

(0)
13 + 1

4
(U + J2)K (0)

23 , (45)

M32 = 1

4
(U − 3J2)K (0)

13 , (46)

dx,y = −1

4
(U − 3J2)K (0)

44 dx,y, (47)

Dx,y = −1

4
(U − J2)K (0)

66 Dx,y. (48)

These results are easily understood with the group-theoretical
argument. In the presence of the Ising-type SOC, the symmetry
operations must apply to both the orbital and spin spaces
simultaneously, and the components are classified by the
irreducible representations of the spin-orbital state. As shown
in Table I, ψ , Dz, and dz belong to the same irreducible
representation A′

1 in the D3h point group. Therefore, they
mix with each other as Eq. (37). The other components are
discriminated by the different irreducible representations, E′
and E′′.

When we turn off the Ising-type SOC, the symmetry
operations are defined separately in the orbital and spin spaces.
In other words, the components are classified by the orbital
irreducible representation (o-irrep.) and the spin magnitude
S. As shown in Table I, (ψ,Dz) and dz belong to different
o-irreps., A′

1 and A′
2, and hence, they do not mix with each

other. Moreover, dz and (dx, dy ) must be degenerate since they
constitute the components of the spin-triplet S = 1. These
statements are explicitly confirmed by the facts that K

(0)
13 =

K
(0)
23 = 0 and K

(0)
33 = K

(0)
44 for λ = 0.

These gap equations will be solved with the fixed electron
density n, which is obtained from

n = T

N0

∑
kn

∑
mσ

[G(k, iωn)]σσ
mmeiωn0+ . (49)

III. RESULTS AND DISCUSSION

We elucidate the transition temperature Tc and the ratio of
the pairing components at Tc by solving the linearized gap
equations, Eqs. (37)–(48). Tc is determined by the condition
that the maximum eigenvalue of the kernel in the linearized gap
equation reaches unity, and its eigenvector provides the ratio
of the pairing components at Tc. We fix the leading attractive
interaction U = −0.5 eV, and we use the k mesh as N0 =
900×900.

Figures 3(a)–3(d) show the doping dependences of Tc

and the ratio of the Cooper-pair components for J = −U/5
(ferromagnetic), J = −U/2, J = U/5 (antiferromagentic),
and J = U/2, respectively. In most cases, the conventional
spin-singlet pairing ψ in the � pocket dominates the pairing
since the DOS of the |0〉 orbital near the � point is larger
than those of the |±2〉 orbitals near the K and K′ points. The
(dx, dy ) and (Dx,Dy ) pairings do not appear as Tc is much
lower than that of the A′

1 state. At low dopings in region A,
Tc is exponentially low due to the small DOS of the upper
spin-split |±2〉 bands. Indeed, we estimate Tc according to the
BCS formula for the critical temperature, and Tc in region A
is one or two orders of magnitude lower than that in region B.
Note that the exchange interaction J0 enhances Tc of the A′

1
state by the pair scattering between the |0〉 and |±2〉 pockets,
which is a common mechanism of enhancing Tc in multigap
superconductivity [50–52]. However, the antiferromagnetic
exchange interaction itself suppresses the attractive interaction
for dz and enhances it for Dz, as was mentioned [see also
Eqs. (27) and (28)]. Therefore, the detailed balance of the
parameters gives the highest Tc for the A′

1 state. The relative
sign between (ψ,Dz) and dz depends on the sign of U − 3J ,
as implied by M32 in Eq. (46).
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FIG. 3. Doping dependences of Tc and the Cooper-pair compo-
nents for U =−0.5 eV. (a) J =−U/5 (ferromagnetic), (b) J =−U/2,
(c) J = U/5 (antiferromagnetic), and (d) J = U/2. The black line
(left axis) represents Tc, and the red, blue, and green lines (right axis)
represent the components, ψ (SS), Dz (SS-OT), and dz (ST-OS),
respectively. The pairing states (dx, dy ) and (Dx,Dy ) have much
lower Tc (not shown). The vertical dotted lines indicate the doping
level at which the Fermi-surface topology changes. Note that dz

changes sign at x ∼ 0.06 in B for (a) and at the boundary between B
and C for (b).

As doping increases, Tc monotonously increases. Espe-
cially, in the case of Fig. 3(b), Tc is remarkably enhanced in
region C, where the Fermi surfaces of the lower split bands
around the K and K′ points appear. This is because the strongest
attraction of the dz pairing works efficiently when both the
spin-split bands are involved.

Schematic illustrations of the representative pairing states
in the case of Fig. 3(b) are shown in Fig. 4. In region A, the dz

(ST-OS) pairing within the upper split bands around the K and
K′ points occurs with very small Tc. In region B, the ψ (SS)
pairing in almost nonsplit bands with a relatively large DOS
around the � point dominates over the dz and Dz pairings.
The small but finite weights of dz and Dz are favorable for
gaining the Cooper-pair hopping energy similar to the multigap
superconductivity. In region C, the weights of ψ and dz become
comparable, and the latter dominates over the former as x

increases further. This is because both the upper and lower
split bands near the K and K′ points contribute to the dz pairing,
which has the strongest attraction.

So far, no superconducting states have been observed in
the hole-doped monolayer MoS2, in contrast to the case of the
electron doping. The smallness of the DOS of the upper split
bands around the K and K′ points at small doping rates may be
one of the reasons why the hole-doped superconductivity does
not emerge. If it were the main reason, further doping would
bring about the superconducting state of the A′

1 symmetry. The
resulting pairing states have a mixture of the spin singlet and

FIG. 4. Schematic illustrations of the representative pairing states
for U = −0.5 eV and J = −U/2 corresponding to the case in
Fig. 3(b) (a) in region A, (b) in region B, and (c) in region C. The red,
green, and blue colored areas indicate the spin-split hole pockets of
the |0〉, |+2〉, and |−2〉 orbitals, respectively. The size of the arrows
roughly indicates the magnitude of the pairing components.

triplet, in which the predominant components depend on the
sign of the exchange interactions.

IV. SUMMARY

We have investigated the Cooper-pair symmetry of the hole-
doped monolayer MoS2. The electronic structure of the valence
band edge of monolayer MoS2 is characterized predominantly
by Mo dz2 , dx2−y2 , and dxy orbitals. The hole pocket near the
� point is characterized by the almost spin degenerate dz2

orbital, while the pockets near the K and K′ points consist
of the spin-split dx2−y2 and dxy orbitals due to the Ising-type
SOC. As the doping rate increases, the hole pockets appear
first in the upper split bands near the K and K′ points and
subsequently appear in the degenerate band near the � point,
and the lower split bands appear near the K and K′ points. The
DOS of the degenerate band is larger than those of the split
bands.

We have found the dominant SS pairing ψ in the whole
doping range with the � pocket, reflecting the above electronic
structure. For the lower doping where the � pocket disappears,
Tc is found to be too low due to the small DOS of the upper
split bands. For a higher doping rate where several Fermi
pockets appear, the SS pairing has a mixture of the SS-OT
(Dz) and ST-OS (dz) pairings belonging to A′

1 symmetry. The
mixing is caused by the exchange interactions, which usually
enhance Tc by the interband proximity effect. Moreover, the
ferromagnetic exchange interactions considerably increase the
weight of the ST-OS pairing. It even dominates over the SS
pairing for moderately large exchange interactions at a high
doping rate.

In spite of these fascinating characteristics, so far no
superconducting states have been realized in hole-doped
monolayer MoS2. However, a series of compounds such
as TaS2 and NbSe2, which has a band structure similar to
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that of MoS2, exhibits superconductivity, and their in-plane
Hc2 are much higher than the Pauli limit [28,29]. Thus,
it is interesting to discuss the connection between these
observations and the present work, which is left for future
investigation.
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