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Shedding light on topological superconductors
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We propose an effective optical approach to monitor superconductors in a two-layer superconductor-normal
metal structure. Effectively, such a hybrid system represents a resonator, where electrons are strongly coupled
with light. We show that the interaction of light with the superconductor is strongly boosted in the presence of the
neighboring metal and, as a result, the electromagnetic power absorption of the system is dramatically enhanced.
It manifests itself in a giant Fano-type resonance which can uniquely characterize the elementary excitations
of the system. Our approach is especially promising for topological superconductors, where Majorana fermions
could be revealed and controlled by light.

DOI: 10.1103/PhysRevB.98.064502

I. INTRODUCTION

Superconductivity is conventionally considered to be a
material property difficult to characterize with light, due
to weak light-matter interaction in superconducting conden-
sates. To test whether materials are superconductors, electric
(resistivity-based) and magnetic (Meissner effect-based) tech-
niques are routinely used. However, optics would be very help-
ful if we want to monitor hybrids of such fascinating classes
of materials as topological insulators (TI) [1–5] and Weyl
semimetals (WM) [6–13]. In this framework, superconductors
should be considered as candidates to reveal new topological
properties, thus fostering a revisit of existing experimental
techniques.

Topological superconductors behaving metallic on the sur-
face and superconducting in the bulk naturally combine the
properties of both metal and superconductor, which is the key
problem for their discovery. On one hand, electrical conductiv-
ity measurements used to study conventional superconductors
have proved to be challenging due to a mutual influence of
the free electrons associated with the metallic surface and the
Cooper pairs of the superconducting bulk. On the other hand,
diamagnetic Meissner magnetization measurements require a
minimal volume, which is an issue for surface topological
superconductivity.

In this paper, we propose an optical approach to monitor
the behavior of superconductors. As an important ingredient,
it requires coupling of the superconductor to a metallic layer
with plasmonic gapless excitations. Their hybridization with
flat bands and superconducting excitations leads to a giant
light absorption due to a high density of states. As a result,
a film of topological material deposited on the thin metallic
layer will have hybrid elementary excitations. The significant
result that we demonstrate below is that these excitations
are highly optically active; they display strong resonances in

optical absorption measurements, thereby characterizing the
material under study.

Various hybrid normal-metal–superconductor or semi-
conductor-superconductor systems, in which a two-
dimensional electron gas (2DEG) is in contact with Cooper
pairs, have been broadly considered in literature. Examples of
the widespread implementation of such hybrid systems include
a Josephson junction or a Josephson tunnel junction [14]
aimed at cooling (as a heat sink), observation of Majorana
fermions [15,16] and zero modes [17,18], and an enhancement
of the degree of photon pair entanglement [19]. Furthermore,
recent studies show that there are advantages in using optical
scattering and surface plasmons especially in the context of
plasmon-based refractive index sensing [20]. It was shown
that graphene-based plasmonic sensors have higher surface
sensitivity than conventional ones and, further, the light
scattering of plasmons can be controlled by a dc current and
external bias voltage [21]. Moreover, the method developed
in these papers has been demonstrated to be effective to study
nonlocal response to detect the presence of adatoms and
impurities [22–24].

Recently, it was shown that hybrid systems also allow new
mechanisms of superconductivity itself using interaction with
excitons [25] or exciton polaritons [26,27] in semiconductor
structures, where the latter can serve as an auxiliary to increase
Tc. From an application-oriented perspective, semiconductor-
based hybrid structures can be employed in such devices
as tunnel diodes [28] and optoelectronic circuits for high-
bandwidth information processing [29,30]. Furthermore, the
most recent advances in molecular beam epitaxial heterostruc-
ture growth techniques suggest a route to create high-quality
hybrid structures [31].

We show here that a metallic layer located in the vicin-
ity of a superconductor can dramatically enhance light-
superconductor coupling, such that the superconducting
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properties can ultimately be well characterized by the ab-
sorption spectrum of the hybrid system. Specifically, we
demonstrate that the system reveals a giant hybrid Fano
resonance [32,33], which arises in both normal and supercon-
ducting hybrid subsystems due to their mutual influence. The
shape and positions of the peaks (and the dip) of the Fano
resonance may uniquely characterize both the superconducting
and metallic subsystems, especially the value of the supercon-
ducting gap and therefore the order parameter, its symmetry,
and critical temperature. Thus, our findings open a prospective
method, being optical and noninvasive, for the characterization
and testing of materials for superconductivity.

II. SYSTEM SCHEMATIC AND HYBRID EIGENMODES

Let us consider a system with two parallel layers of a
normal metal and a superconductor, as illustrated in Fig. 1(a).
The two layers are assumed to be sufficiently well separated
(10−6–10−5 cm) so that tunneling and proximity effects can be
safely disregarded. The electrons in the normal metal interact
via Coulomb interaction, which has the Fourier image given by
vk = 2πe2/k, where k is in-plane momentum (lying in the xy

plane). The electrons between the two layers are also Coulomb
coupled, and the Fourier image of the interlayer interaction
reads as uk = 2πe2 exp(−ak)/k, where a is the separation
between the layers. The electromagnetic wave is polarized
along the x axis, E(r, t ) = x̂E0e

−i(k⊥z+k‖·r+ωt ) where k‖, ω,
and r are the in-plane wave vector of the field, frequency, and
coordinate, respectively.

Using the polarization functions of the 2DEG and super-
conductor [see Appendix A, Eqs. (A2) and (A3) and [34,35]],
we solve the eigenvalue problem and find two branches of
dispersion of the hybrid modes (assuming a topologically
trivial case of constant �):

ω2
±(k) = 2�2 + e2k

(
p2

NF

mN

+ p2
SF

mS

)

± 1

2

√
ξ−ξ+ − 4β2

k , where

ξ± =
⎡
⎣(2� ± epNF

√
k

mN

)2

+ e2

mS

p2
SF k

⎤
⎦,

β2
k = e4p2

NF p2
SF

mNmS

k2(1 − e−2ka ). (1)

Here, 2� is the superconducting gap, e > 0 is elementary
charge, pSF and pNF are the Fermi momenta in the super-
conductor and normal layer, respectively, and mS and mN are
effective electron masses. Figure 1(b) shows the hybrid modes
for mN = mS (with bare modes presented for comparison).

III. ELECTROMAGNETIC POWER
ABSORPTION BY 2DEG

Further, assuming a linear response of the system, the
Fourier component of the current in the 2DEG layer can
be written as jk‖,ω. Both the wave vector and frequency of
current density have specific values fixed by the external
electromagnetic field; the following formula can therefore be
used to compute the time-averaged power absorbed by the
hybrid system as a function of frequency ω:

P (ω) = 1

2

〈
Re
∫

d2r J(r, t ) · E∗(r, t )

〉
,

where the integration is over the plane of the normal metal
sample and 〈. . .〉 denotes time averaging. Normalizing P (ω)
by
∫

d2r = l2 and utilizing the continuity equation kjk,ω =
−eωδnk,ω, where δnk,ω describes fluctuations of the electron
density in the 2DEG (see the explicit formula in Appendix A 1),
we obtain the specific power absorption coefficient (hereafter
simply referred to as power absorption):

P1(ω) = 1

2

eω

k
|Re(δnk,ω )|E0. (2)

This formula accounts for the electron-electron and electron-
Cooper pair interaction as well as the coupling of both the
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FIG. 1. System schematic. (a) Hybrid normal-metal–superconductor structure exposed to an electromagnetic field of incident light. (b)
Dispersions of hybrid eigenmodes of the system: ω as a function of k for mN = mS = 1 (green and blue solid curves). The dashed curves of
the corresponding colors show the individual modes of each layer when the interlayer interaction is switched off. (c) Schematic of in-layer,
interlayer, and light-matter interactions in the system manifesting itself in fluctuations of electron and Cooper pair densities, δn and δN , and
polarization operators Fkω, Gkω, and �kω. (d) Spectrum of electromagnetic power absorption demonstrating the Fano resonance profile.
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FIG. 2. Spectra. Power absorption monitored in 2DEG [(a), (b)] and superconductor [(c), (d)] as a function of ω for � = 1.0 meV. Vertical
dashed lines stand for the corresponding locations of the hybrid modes [within Eq. (1)]. (a) k = 1.0 × 10−3 (red curve), 1.0 × 10−2 (green
curve), and 1.0 × 10−1 meV (blue curve). Inset shows the range 0 � ω < 2�, contributions to P1(ω) due to single-particle excitations. To
render these contributions visible, larger k’s were used: k = 5.0 × 101 (red curve), 5.0 × 102 (green curve), and 1.0 × 103 (blue curve). (b)
k = 1.0 × 101 (red curve), 1.0 × 102 (green curve), and 1.0 × 103 meV (blue curve). Inset shows the case with no interlayer interaction. (c)
Both layers are exposed to the EMF. Inset: zoom-in for small ω’s showing peaks caused by the lower hybrid modes. (d) No external field on
the normal layer. Inset shows the log plot of the corresponding blue curve, manifesting the two peaks and the dip of the Fano resonance. In (c)
and (d), k = 1.0 × 101 (red curves), 1.0 × 102 (green curves), 1.0 × 103 meV (blue curves). Dashed black curves in (d) show the case when
interlayer coupling is turned off.

2DEG and superconductor to light [see the schematic descrip-
tion of corresponding processes in Fig. 1(c)].

The resulting power absorption by the hybrid system is
presented in Fig. 1(d), where due to the interplay of different
interaction mechanisms, we observe a Fano resonance. Let
us consider the spectrum in detail. Figure 2 shows the power
absorption as a function of ω for different wave vectors k when
the hybrid structure is exposed to the EMF. In Fig. 2(a), the
lower hybrid modes are below 2� and their contribution to
the power absorption is suppressed, as can be seen by the lack
of visible peaks in the vicinity of the three leftmost dashed
lines. The inset shows the contribution of the single-particle
excitations. As can be seen, this contribution is negligible
compared to the contribution of the hybrid modes (three
peaks of the main plot). The locations of the peaks at higher
frequencies nearly coincide with the corresponding dashed
lines, showing that these peaks are primarily due to the upper
hybrid modes. As k increases, we observe a broadening (from
red to blue curves).

Figure 2(b) shows the power absorption for larger values of
k. The lower hybrid modes now have significant contributions,
as can be seen by the existence of three sharp peaks, since

they are now located above the gap. For comparison, the inset
shows the power absorption when the interlayer coupling is
switched off. It shows a disappearance of the contribution from
the upper hybrid modes primarily due to the superconductor.
Comparison of the lower-mode contributions shows that the
presence of the superconductor enhances the power absorption
of the hybrid system by six to eight orders of magnitude.
Otherwise, the presence of the external EMF and the 2DEG
does not dramatically influence the superconductor itself, and
thus may serve as an auxiliary to monitor its behavior.

IV. ELECTROMAGNETIC POWER ABSORPTION
BY SUPERCONDUCTOR

We can follow a similar procedure to calculate Cooper pair
current in the superconductor. The power absorption then reads
as (see derivations in Appendix A 2)

P2(ω) = 1

2

2eω

k
|Re(δNkω )|E0, (3)

where δNkω are Cooper pair density fluctuations in the super-
conducting layer.
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FIG. 3. Spectrum in topologically nontrivial case. Power absorp-
tion (in log scale) monitored in superconductor as a function of ω at
k = 0.5 × 10−1 meV (red) and k = 1.0 × 10−1 meV (green).

Figure 2(c) shows the power absorption spectrum for
different k’s when both the 2DEG and superconductor are
exposed to EMF. We observe a celebrated Fano resonance
structure of the spectrum (inset). Figure 2(d) shows the power
absorption when the external EMF at the normal layer is turned
off. We immediately note that the contribution of the upper
hybrid modes to the absorption spectrum is not significantly
affected by switching off the field at the normal layer, as can
be seen by comparing Figs. 2(c) and 2(d). This behavior is
quite expected. Surprisingly, though, the contribution of the
lower hybrid modes shows significant increase compared to
the situation when the external field in the normal layer is
switched on. Thus, we realize that the electronic layer must be
very sensitive to the behavior of the superconductor, whereas
the latter does not pay much attention to either the 2DEG or
the light field. Indeed, switching off the interlayer interaction
removes the contribution of the lower modes, as expected
[dashed black curves in Fig. 2(d)]. We see that the second
peak, which is mostly determined by the superconductor,
remains nearly the same. Inset shows that in log scale, we
observe both the two peaks of the Fano-type resonance and
the dip.

Now, let us consider the nontrivial topology (p-wave pair-
ing). Then, the superconducting gap reads as �k = f (k)(kx −
iky ) = f (k)ke−iφ , where φ is the polar angle measured with
respect to the kx axis in k space and the function f (k)
depends on the concrete p-wave superconductor; it should be
finite for all k ∈ [0,∞) and vanish as k → ∞ (see all the
calculations in Appendices B 3 and B 4). The dependence of
the superconducting gap 2�k on k makes calculations more
tricky but leads to qualitatively similar results. Figure 3 shows
the resulting P2 [compare with Fig. 2(c), green curve]. It should
be noted that here the Fano-type dip is shifted to the frequency
range below the first (lower hybrid mode) peak.

V. DISCUSSION

Herewith, we suggest a way to prepare samples of various
hybrid-structured materials to test them for being supercon-
ductors via optics. That is, the proposed effect of the giant
hybrid Fano resonance can be observed by measuring the
optical response of two-layer metal-superconductor systems
composed of, for example, superconducting niobium film

deposited on a thin metallic layer of copper, gold, silver,
or tin. The proposed effect can be used to design various
sensors and diagnostics of superconducting magnets with
light.

It should be noted that strong inhomogeneity and impuri-
ties can significantly modify the conductivity and plasmonic
properties of 2DEG and may even produce a level splitting
with the plasmon mode, resulting in two plasmon branches.
It is similar to the effect of adatoms in graphene (for a detail,
see [22]). The impurities are, in general, expected to modify
the electromagnetic response and plasmon excitations and may
generate new phenomena. Similar effects were investigated
in graphene [20,22,23]. The microscopic treatment developed
in these papers has shown that graphene plasmonic spectra
are highly sensitive to impurities, that highlighted their strong
potential for sensing purposes. Although these effects are
interesting and might be important to investigate in hybrid
systems, we leave it for the future works.

Our results also open the possibility of an alternative
optical method of detecting Majorana fermions in topological
superconductors. As shown in Ref. [36], Majorana fermions
may induce resonant Andreev reflection from the lead to
the grounded superconductor. Indeed, such tunneling zero-
bias peaks have been observed experimentally in supercon-
ducting nanowires and interpreted as signatures of Majorana
fermions [15,36–40]. However, due to the elusiveness of the
Majorana fermions and the lack of control to confirm these
experimental findings, an alternative method is still utmost
required.

In this paper we propose to study the light absorption into
the zero-energy level associated with the Majorana fermions.
To some extent, it is equivalent to the tunneling experi-
ments. However, instead of tunneling, we propose to use
light interaction and plasmons to excite the electrons from
or to the zero mode, where a Majorana must be located.
In [41], Chen et al. proposed a similar (to some extent) optical
method for Majorana detection based on a hybrid quantum dot
nanomechanical resonator. However, in that paper two types of
pump and probe laser fields are required to excite and measure
the complex hybrid system. In contrast to that technique, in our
approach the key element is strong plasmon coupling which
produces a giant hybrid resonance and that should provide a
major advantage over the former approach.

Moreover, the recent discovery of high-temperature light-
induced superconductivity in K2C60 [42] has stimulated an
activity in the scientific community to test materials with
light. Thus, our finding of enhanced light coupling in metal-
superconducting hybrids alongside the possibility of testing is
expected to open a new direction in this activity since it creates
many opportunities for discoveries of condensed states induced
by light.

VI. CONCLUSIONS

We have studied the linear response of a hybrid two-
dimensional electron-gas–superconductor system to an exter-
nal electromagnetic field of light. Such systems have hybrid
excitations that originate from gapless plasmons of the two-
dimensional electron gas of the metallic layer and gapful
Bogoliubov excitations of the bulk superconductor.
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TABLE I. Summary of the power absorption results (in topologically trivial case). Symbols L and R stand for the left-hand-side and
right-hand-side peaks, respectively. The variables ωmax, Pmax, and γ denote the central frequency, the maximum power absorption, and the
width of each peak, respectively. The width is defined as full width at half-maximum Pmax/2.

Wave vector k (meV)

Current monitored in Ext. E present in Peak 1.0 × 102 1.0 × 103 5.0 × 103

2DEG Both layers L ωmax = 7.68 ωmax = 130 ωmax = 594
Pmax = 0.018 Pmax = 0.019 Pmax = 0.028

γ � 10 γ ∼ 50 γ ∼ 100
R ωmax = 223 ωmax = 700 ωmax ∼ 1500

Pmax = 0.054 Pmax = 0.017 Pmax ∼ 0.007
γ ∼ 200 γ ∼ 300 γ ∼ 500

2DEG only L ωmax = 8.77 ωmax = 123 ωmax = 583
Pmax = 4.0 Pmax = 0.45 Pmax = 0.16

γ � 10 γ � 50 γ � 100
R ωmax = 200 ωmax = 600 too broad

Pmax = 0.02 Pmax = 0.01
γ ∼ 100 γ ∼ 200

Wave vector k (meV)

1.0 × 101 1.0 × 102 1.0 × 103

Supercond. Both layers L ωmax = 19 ωmax = 10 ωmax = 125
Pmax = 0.037 Pmax = 0.023 Pmax = 0.022

γ ∼ 30 γ � 10 γ ∼ 20
R ωmax = 96.9 ωmax = 309 ωmax = 1022

Pmax = 0.51 Pmax = 0.16 Pmax = 0.054
γ ∼ 100 γ ∼ 200 γ = 600

Supercond. only L ωmax = 2 ωmax = 10 ωmax = 124
Pmax = 1.3 Pmax > 2 Pmax = 0.40

γ � 10 γ � 10 γ ∼ 50
R ωmax = 101 ωmax = 305 ωmax = 1000

Pmax = 0.42 Pmax = 0.14 Pmax = 0.04
γ ∼ 100 γ ∼ 200 γ ∼ 1000

We have calculated these hybrid eigenmodes of the system
and investigated the electromagnetic power absorption spectra
(see Table I for the summary). We find that these excitations ex-
hibit a very strong coupling with the electromagnetic radiation,
and show that they display giant Fano resonances associated
with a large light absorption. Such results therefore indicate
a way to monitor the behavior of a superconductor exposed
to light by measuring the spectrum of photoabsorption of the
two-dimensional electron gas.
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APPENDIX A: GENERAL FORMALISM

Let us consider a system presented in Fig. 1(a) in the main text, in which an electromagnetic field (EMF) interacts with the
hybrid superconductor–2DEG system. The polarization function of a (topologically trivial) superconductor at zero temperature
can be presented in the form [34] [see also Fig. 1(c) in the main text]

Pkω = 1

2

∑
p

EpEp+k − ξpξp+k − �2

EpEp+k

(
1

ω + iδ − Ep − Ep+k
− 1

ω + iδ + Ep + Ep+k

)
= Gkω + Fkω, (A1)

where 2� is the superconducting gap, εp is the single-particle energy of the electron measured with respect to the chemical

potential μ, and Ep ≡
√

ε2
p + �2 is the quasiparticle excitation energy. The sum in (A1) can be converted into an integral, which

can be evaluated analytically (see Sec. II for details). This gives us the real and imaginary parts (we will use Pkω instead of Pkω

in what follows):

P R
kω = p2

SF k2

2πmS

1

ω2 − 4�2
, P I

kω =
{

0, 0 � ω � 2�

−p2
SF k2

2mSω
1√

ω2−4�2 , 2� < ω
(A2)

where pSF is the Fermi momentum and mS is effective electron mass in the superconductor.
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The calculation of the electron gas polarization is standard [35] and here we simply provide the result:

�R
kω = p2

NF

2πmN

k2

ω2
,

�I
kω =

⎧⎪⎪⎨
⎪⎪⎩

−mN

π

[√
1 − ( mNω

pNF k
− k

2pNF

)2 −
√

1 − ( mN ω

pNF k
+ k

2pNF

)2]
, 0 � ω <

pNF

mN
k − k2

2mN

−mN

π

√
1 − ( mNω

pNF k
− k

2pNF

)2
,

pNF

mN
k − k2

2mN
< ω <

pNF

mN
k + k2

2mN

0,
pNF

mN
k + k2

2mN
< ω

(A3)

where pNF and mN are the Fermi momentum and electron effective mass in the normal metal layer, respectively.
Using the linear response theory, we can represent the electron density fluctuations in the normal layer δnkω and Cooper pair

density fluctuations in superconducting layer δNkω as

δnkω = �kω

(
vkδnkω + ukδNkω + W

(N )
kω

)
, δNkω = Pkω

(
vkδNkω + ukδnkω + W

(S)
kω

)
, (A4)

where W
(N )
kω and W

(S)
kω are the Fourier images of the potential energy caused by the external electric field (see also Appendix C

for details):

W
(N )
kω = gN

eE0

ik
, W

(S)
kω = gS

eE0

ik
, (A5)

where the couplings gN = 0, 1 and gS = 0, 1 allow us to turn off the external field on either of the layers. In matrix form, Eq. (A4)
reads as [

�kωvk − 1 �kωuk

Pkωuk Pkωvk − 1

][
δnkω

δNkω

]
= −
[
�kωW

(N )
kω

PkωW
(S)
kω

]
. (A6)

The eigenmodes of the system can then be found by equating the determinant of the 2 × 2 matrix in (A6) to zero, which yields

1 − vk (�kω + Pkω ) + (v2
k − u2

k

)
�kωPkω = 0. (A7)

In particular, for the real part of this determinant we have

DR
kω ≡ 1 − vk

(
�R

kω + P R
kω

)+ (v2
k − u2

k

)
�R

kωP R
kω + �I

kωP I
kω

(
u2

k − v2
k

) = 0. (A8)

Using Eqs. (A2) and (A3), we find that �I
kω = 0 for ω > 2� while P I

kω = 0 for ω < 2�. Hence, the last term in Eq. (A8) is zero
for all positive ω and we have

1 − vk

(
�R

kω + P R
kω

)+ (v2
k − u2

k

)
�R

kωP R
kω = 0. (A9)

Solving for ω, we find two branches of dispersion of the hybrid modes [see Fig. 1(b) in the main text]

ω2
±(k) = 2�2 + e2k

(
p2

NF

mN

+ p2
SF

mS

)

± 1

2

√√√√√
⎡
⎣(2� − epNF

√
k

mN

)2

+ e2

mS

p2
SF k

⎤
⎦
⎡
⎣(2� + epNF

√
k

mN

)2

+ e2

mS

p2
SF k

⎤
⎦− 4β2

k , (A10)

where β2
k ≡ e4p2

NF p2
SF

mN mS
k2(1 − e−2ka ).

When the interlayer interaction is turned off, by separating them sufficiently far apart, for example, the individual bare modes
of the 2DEG and the superconductor have similar form as Eq. (A10) except that we replace the last term inside the square root

by β2
k,bare ≡ e4p2

NF p2
SF

mN mS
k2.

1. EM power absorption by 2DEG

Further, the matrix equation (A6) can be solved for the density fluctuations which yields

δnkω = eE0

k

(
NR

kω + iNI
kω

)
DR

kω + (NI
kω − iNR

kω

)
DI

kω(
DR

kω

)2 + (DI
kω

)2 , (A11)
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where

NR
kω = (gNuk − gSvk )

(
�I

kωP R
kω + �R

kωP I
kω

)+ gN�I
kω,

NI
kω = −(gNuk − gSvk )�R

kωP R
kω − gN�R

kω, (A12)

DI
kω = (v2

k − u2
k

)(
P I

kω�R
kω − P R

kω�I
kω

)− vk

(
P I

kω + �R
kω

)
.

Here, DR
kω has already been given in Eq. (A8). We are interested in the real part of (A11) only, therefore, we restrict ourselves to

δnkω = eE0

k

NR
kωDR

kω + NI
kωDI

kω(
DR

kω

)2 + (DI
kω )2

. (A13)

Further, under the assumption of linear response of the system, the Fourier component of the current in the 2DEG layer can
be written as

Jk′ω′ = (2π )3δ(2)(k′ − k‖)δ(ω′ − ω)jk′ω. (A14)

The Dirac delta functions in (A14) explicitly implement the linear response assumption. Thus, both ω′ and k′ have specific values
fixed by the external electromagnetic field [the factor (2π )3 is written for notational aesthetics]. Since E(r, t ) and J(r, t ) have
the same wave vector and frequency, the following formula can be used to compute the time-averaged power absorbed by the
hybrid system as a function of frequency ω:

P (ω) = 1

2

〈
Re
∫

d2r J(r, t ) · E∗(r, t )

〉
, (A15)

where the integration is over the plane of the normal metal sample and 〈. . .〉 denotes time averaging. Normalizing Eq. (A15) by∫
d2r = L2, we obtain the specific power absorption coefficient (later simply referred to as power absorption)

P1(ω) ≡ P (ω)

L2
= 1

2
Re(jkωE0). (A16)

Utilizing the continuity equation kjk,ω = −eωδnk,ω together with Eq. (A13), we find

P1(ω) = 1

2

eω

k

∣∣Re(δnk,ω )
∣∣E0

= e2ωE2
0

2k2

∣∣∣∣∣N
R
kωDR

kω + NI
kωDI

kω(
DR

kω

)2 + (DI
kω

)2
∣∣∣∣∣. (A17)

2. EM power absorption by superconductor

We can follow a similar procedure to calculate the current of Cooper pairs in the superconductor (see also Appendix B). The
power absorption then reads as

P2(ω) = 1

2

2eω

k
|Re(δNkω )|E0

= e2ωE2
0

k2

∣∣∣∣∣M
R
kωDR

kω + MI
kωDI

kω(
DR

kω

)2 + (DI
kω

)2
∣∣∣∣∣, (A18)

where

MR
kω = (gNuk − gSvk )

(
P R

kω�I
kω + P I

kω�R
kω

)+ gSP
I
kω, MI

kω = (gSvk − gNuk )P R
kω�R

kω − gSP
R
kω. (A19)

APPENDIX B: EVALUATION OF POLARIZATION FUNCTIONS

We consider the retarded polarization operator of the superconductor at zero temperature. Its general form, up to one-loop
order, is given by

P ret
kω =

∑
p

EpEp+k − ξpξp+k − �∗
p�p+k

EpEp+k

(
1

ω + iδ − Ep − Ep+k
− 1

ω + iδ + Ep + Ep+k

)
. (B1)

Let us evaluate the real P R
kω and imaginary P I

kω parts of this polarization operator (P ret
kω = P R

kω + iP I
kω) separately.
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1. S wave, real part

In the case of s-wave pairing, the gap is independent of the momentum. The real part then reads as

P R
kω =

∑
p

EpEp+k − ξpξp+k − �2

EpEp+k

(
1

ω − Ep − Ep+k
− 1

ω + Ep + Ep+k

)
. (B2)

First, we can convert the sum in Eq. (B2) into an integral by the replacement

∑
p

→ 1

(2π )2

∫
d2p = 1

(2π )2

∫ ∞

0
dp p

∫ 2π

0
dφ. (B3)

Without loss of generality, we choose k to point along the positive x direction, so that φ is the angle between p and k. We then
perform the change of integration variable φ → p1:

p2
1 ≡ |p + k|2 = p2 + 2kp cos φ + k2, dφ = − p1dp1

pk sin φ
, (B4)

where

sin φ = ±
√

1 −
(

p2
1 − p2 − k2

2pk

)2

(B5)

with the positive sign for φ ∈ [0, π ] and negative sign for φ ∈ [π, 2π ]. The integration over φ in Eq. (B3) becomes∫ 2π

0
dφ =

∫ π

0
dφ +

∫ 2π

π

dφ = 4
∫ p+k

p−k

p1dp1√[
(p + k)2 − p2

1

][
p2

1 − (p − k)2
] . (B6)

Next, we can change the integration variables further:

p → ξp = p2

2m
− μ, dp =

√
m

2(ξp + μ)
dξp. (B7)

A similar change of variable is also done for p1 → ξ1 = p2
1

2m
− μ. Equation (B2) now turns into

P R
kω = m2

π2

∫ ∞

−∞
dξp

∫ ξp+k

ξp−k

dξ1
EpE1 − ξpξ1 − �2

EpE1

(
1

ω − Ep − E1
− 1

ω + Ep + E1

)

× 1√
{[√2m(ξp + μ) + k]2 − 2m(ξ1 + μ)}{2m(ξ1 + μ) − [

√
2m(ξp + μ) − k]2}

, (B8)

where Ep =
√

ξ 2
p + �2 and E1 =

√
ξ 2

1 + �2. We should point out some important nuances in the equation above. First, the lower
bound of the integral over ξp is originally −μ. This energy lies deep in the Fermi sea so that we can extend it to negative infinity
without incurring significant error.

The factors inside the radical in the last line of Eq. (B8) can be simplified by using the fact that the significant contribution to
the integral is from a small interval within the Fermi momentum pF so that√

2(ξp + μ)

m
≈ vF , (B9)

and that we are interested in small wave vectors k ≈ 0 so that terms of order k2 can be neglected. These approximations give

(
√

2m(ξp + μ) + k)2 − 2m(ξp + μ) ≈ 2m(ξp − ξ1 + vF k), 2m(ξp + μ) − (
√

2m(ξp + μ) + k)2 ≈ 2m(ξ1 − ξp + vF k).

(B10)

Further, we change the integration variable y ≡ ξ1 − ξp and simplify the factor

EpE1 − ξpξ1 − �2

E1
=
√

ξ 2
p + �2

√
(ξp + y)2 + �2 − ξp(ξp + y) − �2√

(ξp + y)2 + �2
. (B11)

We are interested in the case when the wavelength is much longer than the size of the Cooper pairs, vF k � �. Since |y| < vF k,
we can expand Eq. (B11) in the vicinity of y ≈ 0 and retain only the leading order. We have

EpE1 − ξpξ1 − �2

E1
≈ �2y2

2
(
�2 + ξ 2

p

)3/2 . (B12)
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Collecting all these results, we find that Eq. (B8) turns into

P R
kω = m�2

4π2

∫ ∞

−∞
dξp

∫ vF k

−vF k

dy
y2(

ξ 2
p + �2

)2 1√
(vF k − y)(vF k + y)

×
⎛
⎝ 1

ω −
√

ξ 2
p + �2 −√(ξp + y)2 + �2

− 1

ω +
√

ξ 2
p + �2 +√(ξp + y)2 + �2

⎞
⎠. (B13)

Using the smallness of y, we can similarly expand the second line in Eq. (B13) as

1

ω ∓
√

ξ 2
p + �2 ∓√(ξp + y)2 + �2

≈ 1

ω ∓ 2Ep

. (B14)

Substitution of this expression into Eq. (B13) enables us to evaluate the integral over y by letting x ≡ y/(vF k):∫ vF k

−vF k

y2dy√
(vF k − y)(vF k + y)

= (vF k)2
∫ 1

−1

x2dx√
(1 − x)(1 + x)

= (vF k)2 π

2
. (B15)

Equation (B13) turns into

P R
kω = m�2

8π
(vF k)2

∫ ∞

−∞
dξp

1(
ξ 2
p + �2

)2
⎛
⎝ 1

ω − 2
√

ξ 2
p + �2

− 1

ω + 2
√

ξ 2
p + �2

⎞
⎠

= m�2

8π
(vF k)2

∫ ∞

−∞
dξp

1(
ξ 2
p + �2

)3/2

1
1
4ω2 − �2 − ξ 2

p

. (B16)

We denote α ≡
√

1
4ω2 − �2 and then rewrite P R

kω as

P R
kω = m(vF k�)2

8π

∫ ∞

−∞
dξp

1(
ξ 2
p + �2

)3/2

1

α2 − ξ 2
p

. (B17)

Note that the integrand in Eq. (B17) has vanishing contribution for large ξp. In the high-frequency regime ω � 2
√

2�, α > �

so that the integral has negligible contribution for ξp > α. We can then expand

1

α2 − ξ 2
p

≈ 1

α2
. (B18)

Putting ξp = � sinh t in the integral in Eq. (B17), we find∫ ∞

−∞
dξp

1(
ξ 2
p + �2

)3/2 = 1

�2

∫ ∞

−∞
sech2t dt = 1

�2
tanh t |∞−∞ = 2

�2
, (B19)

and Eq. (B17) then turns into

P R
kω = mv2

F k2

π

1

ω2 − 4�2
, ω � 2

√
2�. (B20)

2. S wave, imaginary part

A similar manipulation can be performed to evaluate the imaginary part of Eq. (B1):

iP I
kω = 1

(2π )2

∫
d2p

EpEp+k − ξpξp+k − �2

EpEp+k
[−iπδ(ω − Ep − Ep+k ) + iπδ(ω + Ep + Ep+k )]. (B21)

Since ω + Ep + Ep+k > 0, the second Dirac delta function gives zero. We then have

P I
kω = − m

2π

∫ vF k

−vF k

dy
1√

(vF k − y)(vF k + y)

∫ +∞

−∞

dξp

2E2
p
δ(ω − Ep − Eq,y ), (B22)

where Eq,y ≡
√

(y +
√

E2
p − �2)2 + �2. Note that since Ep, Ep+k � �, it follows that P I

kω = 0 when ω < 2�. For ω � 2�,
we have

P I
kω = −m

8
(vF k)2

∑
n

∫ ∞

−∞

dξp

E2
p

δ(ξp − ξn)

|f ′(ξn)| , (B23)
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where f (ξp ) ≡ Ep + Eq − ω and the prime means derivative with respect to ξp. The sum is over the zeros of f (ξn) = 0. Since

|y| < vF k � �, it follows that Eq,y ≈ Ep which then gives the zeros of f (ξp ) which are ξn = ±
√

1
4ω2 − �2 . Finally, we find

P I
kω = −m

2
(vF k)2 1√

ω2 − 4�2
. (B24)

3. P wave, real part

For the p-wave pairing, we can write the gap function as

�k = f (k)(kx − iky ) = f (k)ke−iφ, (B25)

where φ is the polar angle measured with respect to the kx axis in k space. The function f (k) can be found for the concrete
p-wave superconductor. Here, we keep its general form, which should satisfy the following requirements: (i) f (k) is finite for
all k ∈ [0,∞) and (ii) f (k) vanishes as k → ∞. In our case, we take f (k) to be Gaussian:

f (k) = Ae−αk2
, (B26)

where A and α are phenomenological parameters. It should be noted that finding the exact shape of f (k) is unnecessary when we
are after the topological properties of the p-wave superconductor only [as long as f (k) satisfies the requirements stated above].

The real part of the polarization can now be written as

P R
kω = 1

(2π )2

∫
d2p

[(
1 − ξpξp+k

EpEp+k
− Re{�∗

p�p+k}
EpEp+k

)(
1

ω − Ep − Ep+k
− 1

ω + Ep + Ep+k

)

+π
Im{�∗

p�p+k}
EpEp+k

(δ(ω + Ep + Ep+k ) − δ(ω − Ep − Ep−k ))

]
. (B27)

At the quantum critical point μ = 0, the argument of the Dirac delta function δ(ω + Ep + Ep+k ) vanishes at k = 0 and ω = 0.
Since we are not interested in this critical case for now, we take μ �= 0 for which ω + Ep + Ep+k > 0 and the mentioned Dirac
delta is dropped.

Furthermore, we evaluate analytically the term involving the other Dirac delta. First, we rewrite

�p+k = f (|p + k|)|p + k|e−iθ . (B28)

Without loss of generality, we can choose k to lie along the px axis. We then find

θ = sin−1(p sin φ), (B29)

where φ is the polar angle and it is simultaneously the angle between k and p.
Following a similar procedure as for the s-wave case, we put p1 ≡ |p + k| so that the Dirac delta term in Eq. (B27) becomes

P ′R
kω = − 1

4π

∫
d2p

Im{�∗
p�p+k}

EpEp+k
δ(ω − Ep − Ep−k )

= − 1

2π

∫ ∞

0

∫ p+k

p−k

dp1
f (p)f (p1)p2

1

kEpEp+k
cos θδ(ω − Ep − Ep−k ), (B30)

where

θ = sin−1

[
1

2p1k

√
4p2k2 − (p2

1 − p2 − k2
)2]

. (B31)

Then, we perform another change of integration variables:

ξp = p2

2m
− μ, ξp1 = p2

1

2m
− μ, (B32)

so that Eq. (B30) now becomes

P ′R
kω = −m

√
2m

2πkvF

∫ ∞

−∞
dξp

∫ ξp+k

ξp−k

dξ1

√
ξ1 + μ

EpE1
f (ξp )f (ξ1) cos θδ(ω − Ep − E1), (B33)
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(b)(a)

FIG. 4. Power absorption spectrum when the interlayer interaction is turned off. (a) Current is monitored in the 2DEG. (b) Current is
monitored in the superconductor.

where f (p) = A exp{−2mα(ξp + μ)} and Ep =
√

ξ 2
p + f 2(p). The upper and lower limits of the ξ1 integration can be

rewritten as

ξp±k = (p ± k)2

2m
− μ

= ξp ± vF k + k2

2m
. (B34)

The relevant contribution from the ξp integration comes from a close neighborhood around the Fermi surface, so that ξp in
Eq. (B9) we can approximate as ξp ≈ 1

2mv2
F − μ. Further, since we are interested in small k, we can drop the k2 term. The ξp

and ξ1 integrations in Eq. (B33) can now be interchanged and the former integral can be evaluated to get

P ′R
kω = −m

√
2m

2πkvF

∑
n=±

∫ vF k

−vF k

dξ1
f (ξn)f (ξ1)

√
ξ1 + μ

E1|g′(ξn)|
√

ξ 2
n + f 2

0

cos θ, (B35)

where g(ξp ) = Ep + E1 − ω and the prime over g(ξp ) denotes derivative with respect to ξp. The roots of g(ξp ) = 0 are

ξ± = −mf 2
0 ± 1

2

√
4m2f 4

0 − 4
[
2mμf 2

0 − (ω − E1)2
]
. (B36)

This last integral in (B35) can be easily evaluated numerically.

4. P wave, imaginary part

The imaginary part of the polarization operator reads as

P I
kω = 1

(2π )2

∫
d2p

[
π

(
1 − ξpξp+k

EpEp+k
− Re{�∗

p�p+k}
EpEp+k

)
(δ(ω + Ep + Ep+k ) − δ(ω + Ep − Ep−k ))

− Im{�∗
p�p+k}

EpEp+k

(
1

ω − Ep − Ep+k
− 1

ω + Ep + Ep+k

)]
. (B37)

Similar steps (as in previous subsection) can be followed to find

P I
kω = − m

2π

∑
n=±

∫ vF k

−vF k

dξ1
1

|g′(ξn)|√(ξn − ξ1 + vF k)(ξ1 − ξn + vF k)

×
(

1 − ξnξ1

EnE1
−

√
m(ξ1 + μ)

2
√

2kEnE1

f (ξn)f (ξ1)[2m(ξ1 − ξn) − k2] cos θ

)
. (B38)

APPENDIX C: EXTERNAL POTENTIAL Wkω

In terms of vector and scalar potentials, a time-dependent
electric field is given by

E(r, t ) = −∂A
∂t

− ∇φ. (C1)

Since the incident electric field is parallel to the plane of the
electron gas sample at z = 0 and the tangential component of
the electric field obeys the boundary condition limz→0+ E|| =
limz→0− E||, we can neglect the effect of free charges on this
field. Lorenz gauge then gives the wave equations

∇2φ − ∂2φ

∂t2
= 0, ∇2A − ∂2A

∂t2
= 0, (C2)
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( )

(
)

FIG. 5. Power absorption as a function of ω when there is no
external EM field on the superconductor layer for k = 1.0 (red),
5.0 × 101 (green), 1.0 × 102 meV (blue). Inset: zoom-in for 50 �
ω < 200 meV and 400 � ω < 800.

where ∇2 is the Laplacian in three-dimensional space R. It can
be verified that

φ(R, t ) = −xE0e
−i(qz+ωt ), (C3)

A(R, t ) = qx

ω
E0e

−i(qz+ωt )k̂ (C4)

obey the wave equations (C2) with ω = q.

Note that Eq. (C3) is similar to the electrostatic case with
uniform electric field along the x axis apart from the plane-
wave factor. Hence, we can still use Wkω = eE0

ik
analogous to

the electrostatic case.

APPENDIX D: PHOTOABSORPTION SPECTRUM IN CASE
IF THE INTERLAYER COUPLING IS SWITCHED OFF

Figure 4 shows the power spectrum when the coupling
between the layers is switched off. The left-hand-side panel
shows the case when the current is monitored in the 2DEG
layer. It reveals a sharp peak contribution from the lower
modes. This is expected since when there is no interlayer
coupling, we have P1(ω) ∝ �I

kω = 0 for ω > 2�. The sharp
peaks occur at the lower hybrid modes where the denominator
in the formula for P1(ω) gives zero. Note the disappearance of
three rightmost peaks (compare with Fig. 2 in the main text).
This confirms that the three broad rightmost peaks in Fig. 2(b)
are primarily due to the superconductor.

The right-hand-side panel similarly shows the case when
the current is monitored in the superconductor layer. It shows
that the three leftmost peaks disappear, which confirms that
they are primarily due to the 2DEG layer.

APPENDIX E: EMF IS EXPOSED TO THE 2DEG ONLY

We now investigate the power absorption in the normal
layer when the external EM field in the superconductor is

(a) (b)

(c) (d)

FIG. 6. Power absorption for mN = me and the effective electron mass in superconducting layer varied: mS = 0.5me (red), mS = me

(green), mS = 10me (blue). Upper panels: current is monitored in the 2DEG with EM field present in (a) both layers and (b) 2DEG layer only.
Lower two panels: current is monitored in the superconductor with EM field present in (c) both layers and (d) 2DEG layer only. Zoom-in for
0 � ω < 14 meV and 200 � ω < 1500.
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(b)(a)

(c) (d)

FIG. 7. Power absorption in the case when the interlayer spacing is varied (in eV−1): 1.0 × 10−2 (red), 5.0 × 10−2 (green), and 1.0 × 10−1

(blue). Upper panels: current monitored in the 2DEG with EM field present in (a) both layers and (b) 2DEG layer only. Lower panels: current
is monitored in the superconductor with EM field present in (c) both layers and (d) 2DEG layer only.

turned off by setting gN = 1 and gS = 0 in Eq. (A12) (see
Fig. 5). It shows that the contribution of the upper hybrid
modes decreases as compared to Fig. 2 in the main text and
the curves in the vicinity of the upper hybrid modes are quite
broad. The opposite is true for the lower hybrid modes: their
contribution is significantly enhanced, as expected, since the
superconductor is not exposed to light.

APPENDIX F: DEPENDENCE OF POWER ABSORPTION
ON ELECTRON EFFECTIVE MASSES IN THE

SUPERCONDUCTOR (mS)

Figure 6 shows the power absorption when the effective
mass of the electron in the superconductor layer mS is varied.
In general, the peak due to the upper hybrid mode becomes
narrower when the mass mS increases. When the current is

monitored in the 2DEG, this peak increases, as can be seen
in Fig. 6(a) while it decreases when the current is monitored
in the superconductor layer [Figs. 6(c) and 6(d)]. The peak
due to the lower hybrid mode in turn follows an opposite
pattern: it decreases and becomes broader as mS is increased,
except when the current is monitored in 2DEG layer [Fig. 6(a),
inset].

APPENDIX G: DEPENDENCE OF PHOTOABSORPTION
ON THE INTERLAYER SPACING (a)

Figure 7 shows the power absorption when the layer spacing
is varied. There is minimal effect on the peaks corresponding
to the upper hybrid modes. In general, the peaks due to the
lower hybrid modes increase with the layer spacing except in
Fig. 7(b).
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