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Critical behavior and magnetocaloric effect in Mn3Si2Te6
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The critical properties and magnetocaloric effect of semiconducting ferrimagnet Mn3Si2Te6 single crystals
have been investigated by bulk magnetization and heat capacity around Tc. Critical exponents β = 0.41 ± 0.01
with a critical temperature Tc = 74.18 ± 0.08 K and γ = 1.21 ± 0.02 with Tc = 74.35 ± 0.05 K are deduced
by the Kouvel-Fisher plot, whereas δ = 4.29 ± 0.05(3.40 ± 0.02) is obtained by a critical isotherm analysis
at T = 74(75) K. The magnetic exchange distance is found to decay as J (r ) ≈ r−4.79, which lies between the
mean-field and 3D Heisenberg models. Moreover, the magnetic entropy change −�SM features a maximum at Tc,
i.e., −�Smax

M ∼ 2.53(1.67) J kg−1 K−1 with in-plane (out-of-plane) field change of 5 T, confirming large magnetic
anisotropy. The heat capacity measurement further gives −�Smax

M ∼ 2.94 J kg−1 K−1 and the corresponding
adiabatic temperature change �Tad ∼ 1.14 K with out-of-plane field change of 9 T.

DOI: 10.1103/PhysRevB.98.064423

I. INTRODUCTION

Layered intrinsically ferromagnetic (FM) semiconductors
hold great promise for both fundamental physics and applica-
tions in spintronic devices [1–5]. CrI3 has recently attracted
much attention since the long-range magnetism persists in
monolayer with Tc of 45 K [3]. Intriguingly, the magnetism in
CrI3 is layer dependent, from FM in monolayer, to antiferro-
magnetic (AFM) in bilayer, and back to FM in trilayer [3]. It can
further be controlled by electrostatic doping, providing great
opportunities for designing magneto-optoelectronic devices
[6,7].

Ternary Cr2X2Te6 (X = Si, Ge) exhibit FM order below Tc

of 32 K for Cr2Si2Te6 and 61 K for Cr2Ge2Te6, respectively
[8–12], and also promising candidates for long-range mag-
netism in nanosheets [4,13,14]. Many efforts have been de-
voted to shed light on the nature of FM in this system [15–21].
Multiple domain structure types, self-fitting disks, and fine
ladder structure within the Y-connected walls were observed by
magnetic force microscopy [22], confirming two-dimensional
(2D) long-range magnetism with non-negligible interlayer
coupling [21]. Mn3Si2Te6 is a little-studied three-dimensional
(3D) analog of Cr2Si2Te6 [23–25]. The Mn2Si2Te6 layer is
composed of MnTe6 octahedra that are edge sharing within the
ab plane (Mn1 site) and along with Si-Si dimers [Fig. 1(a)],
similar to Cr2Si2Te6. However, the layers are connected by
filling one third of Mn atoms at the Mn2 site within interlayer,
yielding a composition of Mn3Si2Te6 [25]. Recent neutron
diffraction experiment gives that Mn3Si2Te6 is a ferrimag-
net below Tc ≈ 78 K and the moments lie within the ab

plane [25].
In the present work we investigated the critical behavior

of Mn3Si2Te6 single crystal by using modified Arrott plot,
Kouvel-Fisher plot, and critical isotherm analysis, as well as
its magnetocaloric effect. Critical exponents β = 0.41(1) with
Tc = 74.18(8) K, γ = 1.21(2) with Tc = 74.35(5) K, and δ =
4.29(5) at T = 74 K. The magnetic exchange distance is found
to decay as J (r ) ≈ r−4.79, which lies between mean-field and

3D Heisenberg models. The rescaled −�SM (T ,H ) curves can
well collapse onto a universal curve, confirming its nature of
second order.

II. METHODS

A. Experimental details

Single crystals of Mn3Si2Te6 were fabricated by melting
stoichiometric mixture of Mn (3N, Alfa Aesar) chip, Si (5N,
Alfa Aesar) lump and Te (5N, Alfa Aesar) shot. Starting
materials were vacuum sealed in a quartz tube, heated to
1100 ◦C over 20 h and then cooled to 850 ◦C at a rate
of 1 ◦C/h. X-ray diffraction (XRD) data were taken with
Cu Kα (λ = 0.15418 nm) radiation of a Rigaku Miniflex
powder diffractometer. The magnetization and heat capacity
were collected in Quantum Design MPMS-XL5 and PPMS-
9 systems. The magnetic entropy change −�SM from the
magnetization data was estimated using a Maxwell relation.

B. Scaling analysis

According to the scaling hypothesis, the second-order phase
transition around the Curie point Tc is characterized by a set of
interrelated critical exponents α, β, γ , δ, η, ν and a magnetic
equation of state [26]. The exponent α can be obtained from
specific heat and β and γ from spontaneous magnetization
Ms and inverse initial susceptibility χ−1

0 , below and above
Tc, respectively, while δ is the critical isotherm exponent. The
mathematical definitions of the exponents from magnetization
measurement are given below:

Ms (T ) = M0(−ε)β, ε < 0, T < Tc, (1)

χ−1
0 (T ) = (h0/m0)εγ , ε > 0, T > Tc, (2)

M = DH 1/δ, T = Tc, (3)

where ε = (T − Tc )/Tc is the reduced temperature, and M0,
h0/m0, and D are the critical amplitudes [27].
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FIG. 1. (a) Crystal structure and (b) representative single crystal
of Mn3Si2Te6. (c) Powder x-ray diffraction (XRD) and (d) single-
crystal XRD patterns of Mn3Si2Te6 at room temperature. The vertical
tick marks represent Bragg reflections of the P 3̄1c space group.

The magnetic equation of state in the critical region is
expressed as

M (H, ε) = εβf±(H/εβ+γ ), (4)

where f+ for T > Tc and f− for T < Tc, respectively, are the
regular functions. Equation (4) can be further written in terms
of scaled magnetization m ≡ ε−βM (H, ε) and scaled field h ≡
ε−(β+γ )H as

m = f±(h). (5)

This suggests that for true scaling relations and the right choice
of β, γ , and δ values, scaled m and h will fall on universal
curves above Tc and below Tc, respectively.

III. RESULTS AND DISCUSSIONS

The powder XRD pattern of Mn3Si2Te6 confirms high
purity of the single crystals, in which the observed peaks
can be well fitted with the P 3̄1c space group [Fig. 1(c)].
The determined lattice parameters a = 7.046(2) Å and c =
14.278(2) Å are very close to the reported values [24,25]. In the
single-crystal XRD [Fig. 1(d)], only (00l) peaks are detected,
indicating that the crystal surface is parallel to the ab plane
and perpendicular to the c axis.

Figure 2 presents the temperature dependence of magnetiza-
tion measured in H = 1 and 50 kOe applied in the ab plane and
parallel to the c axis, respectively. The magnetization is nearly
isotropic in 50 kOe, however, significant magnetic anisotropy
is observed in 1 kOe at low temperatures. The ordered moments
lie primarily within the ab plane. An additional upturn well
above Tc up to 300 K is clearly seen in the zero-field-
cooling (ZFC) curve for H//ab, which may be associated
with short-range order or the presence of correlated excitations
in the paramagnetic region [25]. Isothermal magnetization
at T = 5 K (insets in Fig. 2) shows saturation moment of
Ms ≈ 1.6 μB/Mn for H//ab and a small FM component for

FIG. 2. Temperature dependence of dc magnetic susceptibility χ

and corresponding dχ/dT for Mn3Si2Te6 measured in the magnetic
field H = 1 and 50 kOe applied (a),(c) in the ab plane and (b),(d)
along the c axis, respectively. Insets: field dependence of magnetiza-
tion measured at T = 5 K.

H//c. No remanent moment for either orientation confirms the
crystal of high quality. The Tc can be roughly determined by the
minimum of dχ/dT [Figs. 2(c) and 2(d)], i.e., Tc = 75 K for
in-plane field and Tc = 77 K for out-of-plane field of 1 kOe,
which shifts to Tc = 80 K in an increase field of 50 kOe [25].

From the Landau theory of phase transition, the Gibbs
free energy G for FM-paramagnetic (PM) transition can be
expressed as

G(T ,M ) = G0 + aM2 + bM4 − MH, (6)

where the equilibrium magnetization M is the order parameter,
and the coefficients a and b are the temperature-dependent
parameters. At equilibrium ∂G/∂M = 0 (i.e., energy mini-
mization) and the magnetic equation of state can be expressed
as

H/M = 2a + 4bM2. (7)

Thus, the Arrott plot of M2 vs H/M should appear as parallel
straight lines for different temperatures above and below Tc

in the high field region [28]. The intercepts of M2 on the
H/M axis is negative or positive depending on phenomena
below or above Tc and the line at Tc passes through the
origin. In order to properly determine the Tc as well as the
critical exponents β, γ , and δ, the modified Arrott plot with
a self-consistent method was used [29,30]. Figure 3 presents
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FIG. 3. (a) Typical initial isothermal magnetization curves mea-
sured in H//ab from 5 to 90 K for Mn3Si2Te6. (b) the modified Arrott
Plot around Tc for the optimum fitting with β = 0.41 and γ = 1.21.

the initial isotherms ranging from 5 to 90 K and the modified
Arrott plot of M1/β vs (H/M )1/γ around Tc for Mn3Si2Te6.
This gives χ−1

0 (T ) and Ms (T ) as the intercepts on the H/M

axis and positive M2 axis, respectively.
Figure 4(a) exhibits the final Ms (T ) and χ−1

0 (T ) as a
function of temperature. According to Eqs. (1) and (2), the
critical exponents β = 0.41(1) with Tc = 74.21(1) K, and γ =
1.25(1) with Tc = 74.25(3) K, are obtained. In addition, there
is also the Kouvel-Fisher (KF) relation [31],

Ms (T )[dMs (T )/dT ]−1 = (T − Tc )/β, (8)

χ−1
0 (T )

[
dχ−1

0 (T )/dT
]−1 = (T − Tc )/γ. (9)

Linear fittings to the plots of Ms (T )[dMs (T )/dT ]−1 and
χ−1

0 (T )[dχ−1
0 (T )/dT ]−1 vs T in Fig. 4(b) yield β = 0.41(1)

withTc = 74.18(8) K, andγ = 1.21(2) withTc = 74.35(5) K.
The third exponent δ can be calculated from the Widom
scaling relation δ = 1 + γ /β. From β and γ obtained with the
modified Arrott plot and the Kouvel-Fisher plot, δ = 4.05(5)
and 3.95(2) are obtained, respectively, which are close to the
direct fits of δ taking into account that M = DH 1/δ near
Tc [δ = 4.29(5) at 74 K and 3.40(2) at 75 K, inset in Fig. 4(a)].

FIG. 4. (a) Temperature dependence of the spontaneous magneti-
zation Ms (left) and the inverse initial susceptibility χ−1

0 (right) with
solid fitting curves. Inset shows logM vs logH collected at 74 and 75 K
with linear fitting curves. (b) Kouvel-Fisher plots of Ms (dMs/dT )−1

(left) and χ−1
0 (dχ−1

0 /dT )−1 (right) with solid fitting curves.

Scaling analysis can be used to estimate the reliability of
the obtained critical exponents and Tc. From Eq. (5), scaled
m vs scaled h, all the data collapse on two separate branches
below and above Tc, as depicted in Fig. 5. The scaling equation
of state takes another form,

H

Mδ
= k

( ε

H 1/β

)
, (10)

where k(x) is the scaling function. From Eq. (10), all the data
should also fall into a single curve. This is indeed seen (inset
in Fig. 5); the MH−1/δ vs εH−1/(βδ) experimental data for
Mn3Si2Te6 collapse into a single curve and the Tc locates
at the zero point of the horizontal axis. The well-rescaled
curves further confirm the reliability of the obtained critical
exponents.

Next, it is important to understand the nature as well as the
range of interaction in this material. In a homogeneous magnet
the universality class of the magnetic phase transition depends
on the exchange distance J (r ). In renormalization group theory
analysis the interaction decays with distance r as

J (r ) ≈ r−(3+σ ), (11)

064423-3



YU LIU AND C. PETROVIC PHYSICAL REVIEW B 98, 064423 (2018)

FIG. 5. Scaled magnetization m vs scaled field h below and above
Tc for Mn3Si2Te6. Inset: the rescaling of the M (H ) curves by MH−1/δ

vs εH−1/(βδ).

where σ is a positive constant [32]. Moreover, the susceptibility
exponent γ is predicted as

γ = 1 + 4

d

(
n + 2

n + 8

)
�σ + 8(n + 2)(n − 4)

d2(n + 8)2

×
[

1 + 2G
(

d
2

)
(7n + 20)

(n − 4)(n + 8)

]
�σ 2, (12)

where �σ = (σ − d
2 ) and G( d

2 ) = 3 − 1
4 ( d

2 )2, n is the spin
dimensionality [33]. When σ > 2, the Heisenberg model is
valid for 3D isotropic magnet, where J (r ) decreases faster
than r−5. When σ � 3/2, the mean-field model is satisfied,
expecting that J (r ) decreases slower than r−4.5. In the present
case, σ = 1.79, then the correlation length critical exponent
ν = 0.676 (ν = γ /σ ), and α = −0.028 (α = 2 − νd). It is
found that the magnetic exchange distance decays as J (r ) ≈
r−4.79, which lies between that of the 3D Heisenberg model
and mean-field model.

Then we estimate its magnetic entropy change

�SM (T ,H ) =
∫ H

0

[
∂S(T ,H )

∂H

]
T

dH. (13)

With the Maxwell’s relation [ ∂S(T ,H )
∂H

]
T

= [ ∂M (T ,H )
∂T

]
H

, it can
be further written as [34]:

�SM (T ,H ) =
∫ H

0

[
∂M (T ,H )

∂T

]
H

dH. (14)

In the case of magnetization measured at small discrete mag-
netic field and temperature intervals [Fig. 3(a)], �SM (T ,H )
could be practically approximated as,

�SM (Ti,H ) =
∫ H

0 M (Ti,H )dH − ∫ H

0 M (Ti+1,H )dH

Ti − Ti+1
.

(15)

Figure 6(a) gives the calculated −�SM as a function of tem-
perature. All the −�SM (T ,H ) curves present a pronounced
peak at Tc, and the peak broads asymmetrically on both sides
with increasing field. The maximum value of −�SM reaches

FIG. 6. (a) The magnetic entropy change −�SM obtained from
magnetization at various magnetic fields change in the ab plane.
(b) Normalized �SM as a function of the rescaled temperature θ .
Inset: magnetic field dependence of the maximum magnetic entropy
change −�Smax

M with power law fitting in red solid line.

2.53 J kg−1 K−1 with in-plane field change of 5 T. This is com-
parable to Mn2−xCrxSb but smaller than in MnFeP0.45As0.55

or Gd5Ge2Si2 magnetic refrigerant materials [35,36].
Scaling analysis of −�SM can be built by normalizing all

the −�SM curves against the respective maximum −�Smax
M ,

namely, �SM/�Smax
M by rescaling the temperature θ as defined

in the following equations [37],

θ− = (Tpeak − T )/(Tr1 − Tpeak ), T < Tpeak, (16)

θ+ = (T − Tpeak )/(Tr2 − Tpeak ), T > Tpeak, (17)

where Tr1 and Tr2 are the temperatures of the two refer-
ence points that have been selected as those correspond-
ing to �SM (Tr1, Tr2) = 1

2�Smax
M . Following this method,

all the −�SM (T ,H ) curves in various fields collapse
into a single curve in the vicinity of Tc [Fig. 6(b)].
In the framework of the mean-field theory, −�Smax

M =
−1.07qR(gμBJH/kBTc )2/3 ∝ H 2/3, where q is the number
of magnetic ions, R is the gas constant, and g is the Lande factor
[38]. In fact, more universally, it should follow a power law
relation, −�Smax

M = aHn, where n depends on the magnetic
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FIG. 7. Temperature dependences of (a) the specific heat change
�Cp , (b) the magnetic entropy change −�SM , and (c) the adiabatic
temperature change �Tad for Mn3Si2Te6 at the indicated fields. Inset
shows the temperature dependence of specific heat Cp .

state of the sample. Fitting of the field dependence of −�Smax
M

with H//ab gives n = 0.665(2) [inset in Fig. 6(b)], close to
the typical value of 2/3 within the mean-field model.

Finally, we also estimate the −�SM from heat capacity
measurement with out-of-plane fields up to 9 T. The λ peak
observed at Tc = 74.7 K in zero field [inset in Fig. 7(a)],
corresponding well to the PM-FM transition, is gradually
suppressed in fields. Figure 7(a) shows the calculated heat
capacity change �Cp = Cp(T ,H ) − Cp(T , 0) as a function
of temperature in various fields. Obviously, �Cp < 0 for
T < Tc and �Cp > 0 for T > Tc, while it changes sharply
from negative to positive at Tc, corresponding to the change
from FM to PM. The entropy S(T ,H ) can be deduced by

S(T ,H ) =
∫ T

0

Cp(T ,H )

T
dT . (18)

Assuming the electronic and lattice contributions are not
field dependent and in an adiabatic process of changing the
field, the magnetic entropy change −�SM can be straightly
obtained −�SM (T ,H ) = SM (T ,H ) − SM (T , 0). The adia-
batic temperature change �Tad caused by the field change
can be obtained by �Tad (T ,H ) = T (S,H ) − T (S, 0), where
T (S,H ) and T (S, 0) are the temperatures in the field H �= 0
and H = 0, respectively, at constant total entropy S(T ,H ).
Figures 7(b) and 7(c) exhibit the temperature dependence of
−�SM and �Tad estimated from heat capacity with out-of-
plane field. The maxima of −�SM and �Tad increase with
increase field and reach the values of 2.94 J kg−1 K−1 and
1.14 K, respectively, with the field change of 9 T.

IV. CONCLUSIONS

In summary, we have studied the critical behavior and mag-
netocaloric effect around the FM-PM transition in Mn3Si2Te6

single crystal. The ferrimagnetic transition in Mn3Si2Te6 is
identified to be second order in nature. The critical exponentsβ,
γ , and δ estimated from various techniques match reasonably
well and follow the scaling equation, suggesting a long-range
magnetic interaction with the exchange distance decaying as
J (r ) ≈ r−4.79. Magnetocaloric effect is about one order of
magnitude smaller when compared to other magnetorefriger-
ant candidate materials.

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy,
Office of Basic Energy Sciences as part of the Computational
Material Science Program.

[1] M. A. McGuire, G. Clark, S. KC, W. M. Chance, G. E. Jellison,
Jr., V. R. Cooper, X. D. Xu, and B. C. Sales, Phys. Rev. Materials
1, 014001 (2017).

[2] M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Chem.
Mater. 27, 612 (2015).

[3] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R.
Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire,

D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. D.
Xu, Nature (London) 546, 270 (2017).

[4] C. Gong, L. Li, Z. L. Li, H. W. Ji, A. Stern, Y. Xia, T. Cao,
W. Bao, C. Z. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G.
Louie, J. Xia, and X. Zhang, Nature (London) 546, 265 (2017).

[5] K. L. Seyler, D. Zhong, D. R. Klein, S. Guo, X. Zhang, B. Huang,
E. Navarro-Moratalla, L. Yang, D. H. Cobden, M. A. McGuire,

064423-5

https://doi.org/10.1103/PhysRevMaterials.1.014001
https://doi.org/10.1103/PhysRevMaterials.1.014001
https://doi.org/10.1103/PhysRevMaterials.1.014001
https://doi.org/10.1103/PhysRevMaterials.1.014001
https://doi.org/10.1021/cm504242t
https://doi.org/10.1021/cm504242t
https://doi.org/10.1021/cm504242t
https://doi.org/10.1021/cm504242t
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/nature22060


YU LIU AND C. PETROVIC PHYSICAL REVIEW B 98, 064423 (2018)

W. Yao, D. Xiao, P. Jarillo-Herrero, and X. D. Xu, Nat. Phys.
14, 277 (2018).

[6] S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Nat. Nanotech.
13, 549 (2018).

[7] B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-
Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H.
Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, and X. D. Xu, Nat.
Nanotech. 13, 544 (2018).

[8] G. Ouvrard, E. Sandre, and R. Brec, J. Solid State Chem. 73, 27
(1988).

[9] V. Carteaux, G. Ouvrard, J. C. Grenier, and Y. Laligant, J. Magn.
Magn. Mater. 94, 127 (1991).

[10] V. Carteaux, D. Brunet, G. Ouvrard, and G. André, J. Phys.:
Condens. Matter 7, 69 (1995).

[11] L. D. Casto, A. J. Clune, M. O. Yokosuk, J. L. Musfeldt, T. J.
Williams, H. L. Zhuang, M. W. Lin, K. Xiao, R. G. Hennig, B. C.
Sales, J. Q. Yan, and D. Mandrus, APL Mater. 3, 041515 (2015).

[12] X. Zhang, Y. L. Zhao, Q. Song, S. Jia, J. Shi, and W. Han, Jpn.
J. Appl. Phys. 55, 033001 (2016).

[13] H. L. Zhuang, Y. Xie, P. R. C. Kent, and P. Ganesh, Phys. Rev.
B 92, 035407 (2015).

[14] M. W. Lin, H. L. Zhuang, J. Q. Yan, T. Z. Ward, A. A. Puretzky,
C. M. Rouleau, Z. Gai, L. B. Liang, V. Meunier, B. G. Sumpter,
P. Ganesh, P. R. C. Kent, D. B. Geohegan, D. G. Mandrus, and
K. Xiao, J. Mater. Chem. C 4, 315 (2016).

[15] X. X. Li, and J. L. Yang, J. Mater. Chem. C 2, 7071 (2014).
[16] X. F. Chen, J. S. Qi, and D. N. Shi, Phys. Lett. A 379, 60 (2015).
[17] N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and

D. Xiao, Phys. Rev. B 91, 235425 (2015).
[18] J. P. Liu, S. Y. Park, K. F. Garrity, and D. Vanderbilt, Phys. Rev.

Lett. 117, 257201 (2016).
[19] B. J. Liu, Y. M. Zou, L. Zhang, S. M. Zhou, Z. Wang,

W. K. Wang, Z. Qu, and Y. H. Zhang, Sci. Rep. 6, 33873
(2016).

[20] G. T. Lin, H. L. Zhuang, X. Luo, B. J. Liu, F. C. Chen, J. Yan, Y.
Sun, J. Zhou, W. J. Lu, P. Tong, Z. G. Sheng, Z. Qu, W. H. Song,
X. B. Zhu, and Y. P. Sun, Phys. Rev. B 95, 245212 (2017).

[21] Y. Liu and C. Petrovic, Phys. Rev. B 96, 054406 (2017).
[22] T. F. Guo, Z. W. Ma, G. T. Lin, X. Luo, Y. B. Hou, Y. P. Sun,

Z. G. Sheng, and Q. Y. Lu, arXiv:1803.06113.
[23] R. Rimet, C. Schlenker, and H. Vincent, J. Magn. Magn. Mater.

25, 7 (1981).
[24] H. Vincent, D. Leroux, D. Bijaoui, R. Rimet, and C. Schlenker,

J. Solid State Chem. 63, 349 (1986).
[25] A. F. May, Y. Liu, S. Calder, D. S. Parker, T. Pandey, E. Cakmak,

H. Cao, J. Yan, and M. A. McGuire, Phys. Rev. B 95, 174440
(2017).

[26] H. E. Stanley, Introduction to Phase Transitions and Critical
Phenomena (Oxford University Press, London, New York,
1971).

[27] M. E. Fisher, Rep. Prog. Phys. 30, 615 (1967).
[28] A. Arrott, Phys. Rev. 108, 1394 (1957).
[29] W. Kellner, M. Fähnle, H. Kronmüller, and S. N. Kaul, Phys.

Status Solidi B 144, 387 (1987).
[30] A. K. Pramanik and A. Banerjee, Phys. Rev. B 79, 214426

(2009).
[31] J. S. Kouvel and M. E. Fisher, Phys. Rev. 136, A1626 (1964).
[32] M. E. Fisher, S. K. Ma, and B. G. Nickel, Phys. Rev. Lett. 29,

917 (1972).
[33] S. F. Fischer, S. N. Kaul, and H. Kronmuller, Phys. Rev. B 65,

064443 (2002).
[34] J. Amaral, M. Reis, V. Amaral, T. Mendonc, J. Araujo, M. Sa,

P. Tavares, and J. Vieira, J. Magn. Magn. Mater. 290, 686 (2005).
[35] L. Caron, F. Miao, J. C. P. Klaasse, S. Gama, and E. Brück, Appl.

Phys. Lett. 103, 112404 (2013).
[36] O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, Nature

(London) 415, 150 (2002).
[37] V. Franco and A. Conde, Int. J. Refrig. 33, 465 (2010).
[38] H. Oesterreicher and F. T. Parker, J. Appl. Phys. 55, 4334 (1984).

Correction: Missing support information in the Acknowledg-
ment section has been inserted.

Second Correction: Some statements in the Acknowledgment
section have been updated.

064423-6

https://doi.org/10.1038/s41567-017-0006-7
https://doi.org/10.1038/s41567-017-0006-7
https://doi.org/10.1038/s41567-017-0006-7
https://doi.org/10.1038/s41567-017-0006-7
https://doi.org/10.1038/s41565-018-0135-x
https://doi.org/10.1038/s41565-018-0135-x
https://doi.org/10.1038/s41565-018-0135-x
https://doi.org/10.1038/s41565-018-0135-x
https://doi.org/10.1038/s41565-018-0121-3
https://doi.org/10.1038/s41565-018-0121-3
https://doi.org/10.1038/s41565-018-0121-3
https://doi.org/10.1038/s41565-018-0121-3
https://doi.org/10.1016/0022-4596(88)90049-7
https://doi.org/10.1016/0022-4596(88)90049-7
https://doi.org/10.1016/0022-4596(88)90049-7
https://doi.org/10.1016/0022-4596(88)90049-7
https://doi.org/10.1016/0304-8853(91)90121-P
https://doi.org/10.1016/0304-8853(91)90121-P
https://doi.org/10.1016/0304-8853(91)90121-P
https://doi.org/10.1016/0304-8853(91)90121-P
https://doi.org/10.1088/0953-8984/7/1/008
https://doi.org/10.1088/0953-8984/7/1/008
https://doi.org/10.1088/0953-8984/7/1/008
https://doi.org/10.1088/0953-8984/7/1/008
https://doi.org/10.1063/1.4914134
https://doi.org/10.1063/1.4914134
https://doi.org/10.1063/1.4914134
https://doi.org/10.1063/1.4914134
https://doi.org/10.7567/JJAP.55.033001
https://doi.org/10.7567/JJAP.55.033001
https://doi.org/10.7567/JJAP.55.033001
https://doi.org/10.7567/JJAP.55.033001
https://doi.org/10.1103/PhysRevB.92.035407
https://doi.org/10.1103/PhysRevB.92.035407
https://doi.org/10.1103/PhysRevB.92.035407
https://doi.org/10.1103/PhysRevB.92.035407
https://doi.org/10.1039/C5TC03463A
https://doi.org/10.1039/C5TC03463A
https://doi.org/10.1039/C5TC03463A
https://doi.org/10.1039/C5TC03463A
https://doi.org/10.1039/C4TC01193G
https://doi.org/10.1039/C4TC01193G
https://doi.org/10.1039/C4TC01193G
https://doi.org/10.1039/C4TC01193G
https://doi.org/10.1016/j.physleta.2014.10.042
https://doi.org/10.1016/j.physleta.2014.10.042
https://doi.org/10.1016/j.physleta.2014.10.042
https://doi.org/10.1016/j.physleta.2014.10.042
https://doi.org/10.1103/PhysRevB.91.235425
https://doi.org/10.1103/PhysRevB.91.235425
https://doi.org/10.1103/PhysRevB.91.235425
https://doi.org/10.1103/PhysRevB.91.235425
https://doi.org/10.1103/PhysRevLett.117.257201
https://doi.org/10.1103/PhysRevLett.117.257201
https://doi.org/10.1103/PhysRevLett.117.257201
https://doi.org/10.1103/PhysRevLett.117.257201
https://doi.org/10.1038/srep33873
https://doi.org/10.1038/srep33873
https://doi.org/10.1038/srep33873
https://doi.org/10.1038/srep33873
https://doi.org/10.1103/PhysRevB.95.245212
https://doi.org/10.1103/PhysRevB.95.245212
https://doi.org/10.1103/PhysRevB.95.245212
https://doi.org/10.1103/PhysRevB.95.245212
https://doi.org/10.1103/PhysRevB.96.054406
https://doi.org/10.1103/PhysRevB.96.054406
https://doi.org/10.1103/PhysRevB.96.054406
https://doi.org/10.1103/PhysRevB.96.054406
http://arxiv.org/abs/arXiv:1803.06113
https://doi.org/10.1016/0304-8853(81)90141-4
https://doi.org/10.1016/0304-8853(81)90141-4
https://doi.org/10.1016/0304-8853(81)90141-4
https://doi.org/10.1016/0304-8853(81)90141-4
https://doi.org/10.1016/0022-4596(86)90190-8
https://doi.org/10.1016/0022-4596(86)90190-8
https://doi.org/10.1016/0022-4596(86)90190-8
https://doi.org/10.1016/0022-4596(86)90190-8
https://doi.org/10.1103/PhysRevB.95.174440
https://doi.org/10.1103/PhysRevB.95.174440
https://doi.org/10.1103/PhysRevB.95.174440
https://doi.org/10.1103/PhysRevB.95.174440
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.1103/PhysRev.108.1394
https://doi.org/10.1103/PhysRev.108.1394
https://doi.org/10.1103/PhysRev.108.1394
https://doi.org/10.1103/PhysRev.108.1394
https://doi.org/10.1002/pssb.2221440135
https://doi.org/10.1002/pssb.2221440135
https://doi.org/10.1002/pssb.2221440135
https://doi.org/10.1002/pssb.2221440135
https://doi.org/10.1103/PhysRevB.79.214426
https://doi.org/10.1103/PhysRevB.79.214426
https://doi.org/10.1103/PhysRevB.79.214426
https://doi.org/10.1103/PhysRevB.79.214426
https://doi.org/10.1103/PhysRev.136.A1626
https://doi.org/10.1103/PhysRev.136.A1626
https://doi.org/10.1103/PhysRev.136.A1626
https://doi.org/10.1103/PhysRev.136.A1626
https://doi.org/10.1103/PhysRevLett.29.917
https://doi.org/10.1103/PhysRevLett.29.917
https://doi.org/10.1103/PhysRevLett.29.917
https://doi.org/10.1103/PhysRevLett.29.917
https://doi.org/10.1103/PhysRevB.65.064443
https://doi.org/10.1103/PhysRevB.65.064443
https://doi.org/10.1103/PhysRevB.65.064443
https://doi.org/10.1103/PhysRevB.65.064443
https://doi.org/10.1016/j.jmmm.2004.11.337
https://doi.org/10.1016/j.jmmm.2004.11.337
https://doi.org/10.1016/j.jmmm.2004.11.337
https://doi.org/10.1016/j.jmmm.2004.11.337
https://doi.org/10.1063/1.4821197
https://doi.org/10.1063/1.4821197
https://doi.org/10.1063/1.4821197
https://doi.org/10.1063/1.4821197
https://doi.org/10.1038/415150a
https://doi.org/10.1038/415150a
https://doi.org/10.1038/415150a
https://doi.org/10.1038/415150a
https://doi.org/10.1016/j.ijrefrig.2009.12.019
https://doi.org/10.1016/j.ijrefrig.2009.12.019
https://doi.org/10.1016/j.ijrefrig.2009.12.019
https://doi.org/10.1016/j.ijrefrig.2009.12.019
https://doi.org/10.1063/1.333046
https://doi.org/10.1063/1.333046
https://doi.org/10.1063/1.333046
https://doi.org/10.1063/1.333046

