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Most of the low-energy effective descriptions of spin-orbit driven Mott insulators consider spin-orbit coupling
(SOC) as a second-order perturbation to electron-electron interactions. However, when SOC is comparable to
anisotropic Hund’s coupling, such as in Ir, the validity of this formally weak SOC approach is not a priori
known. Depending on the relative strength of SOC and anisotropic Hund’s coupling, different descriptions of
the multiplet structure should be employed in the weak and strong SOC limits, viz. LS and jj coupling schemes,
respectively. We investigate the implications of both the coupling schemes on the low-energy effective t-J model
and calculate the angle-resolved photoemission (ARPES) spectra using self-consistent Born approximation. In
particular, we obtain the ARPES spectra of quasi-two-dimensional square-lattice iridate Sr2IrO4 in both weak
and strong SOC limits. The differences in the limiting cases are understood in terms of the composition and
relative energy splittings of the multiplet structure. Our results indicate that the LS coupling scheme yields better
agreement with the experiment, thus providing an indirect evidence for the validity of LS coupling scheme for
iridates. We also discuss the implications for other metal ions with strong SOC.
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I. INTRODUCTION

Competition between on-site spin-orbit coupling (SOC),
Coulomb repulsion, and crystal field interactions in iridates
gives rise to a plethora of unusual features. For one of the most
studied iridium-based compounds, Sr2IrO4, localized transport
[1–3], absence of metallization at high pressures [4,5], and
emergence of an odd-parity hidden order in Rh-doped Sr2IrO4

[6,7] were observed experimentally but are still debated from
a theoretical standpoint. On the other hand, despite many
experimental indications of possible superconductivity in
doped Sr2IrO4, including observation of Fermi arcs and a
d-wave gap in electron-doped Sr2IrO4 [8–10], no direct
signatures of the superconducting state, such as zero electrical
resistance and/or Meissner effect, have been observed in these
systems yet.

The ground state of Sr2IrO4 is believed to be an antifer-
romagnet (AFM) of pseudospin jeff = 1/2. The experimental
low-energy magnon dispersion is described well by the Heisen-
berg model with up to third neighbor [11]. On the theoretical
side, such Heisenberg model is derived by projecting the
superexchange Kugel-Khomskii model [12] onto the spin-orbit
(SO) basis [13]. However, this is a valid approach only if the
virtual intermediate doubly occupied states considered in the
second-order perturbation theory can be well approximated
by the 3T1, 1T2, 1E, and 1A1 basis set. Such a basis set is an
eigenbasis of the full Coulomb Hamiltonian, which includes
the 10Dq crystal field as well as the Hund’s coupling, but not
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SOC. In other words, this approach is, strictly speaking, valid
only in the limit of crystal field and Hund’s coupling much
larger than SOC. In that case, the multiplet structure of d4

configuration is well described by the LS coupling scheme.
This is indeed the assumption made in many of the earlier
works [14–17], for instance in Ref. [18] while deriving the
t-J-like model of Sr2IrO4 to calculate the PES spectra. The
PES spectra, thus obtained, reproduces the low-energy features
of the experimental spectra remarkably well, which is both
interesting and intriguing.

For materials with the large atomic number Z, such as Ir,
SOC is expected to be large since it scales proportionally to
Z4. The SO splitting in the 5d shell of 5d transition metals is
∼0.5 eV. In comparison, for transition-metal (TM) atoms with
partially filled 3d shells, such as Fe, Ni, and Co, it is one order of
magnitude smaller (∼0.05 eV). For such cases, the LS coupling
scheme describes the multiplet structure well [19]. For atoms
with partially filled 4d shells, such as Ru, Rh, and Pd, the SO
splitting is ∼0.1 eV and there are increasing deviations from
the LS coupling scheme [19]. For even heavier atoms, such as
Bi and Pb, where SO splitting is ∼2 eV, the LS coupling is
expected to fail. In such cases, the jj coupling scheme would
be an appropriate choice to describe the multiplet structure.

Quantitatively, the relative strength of SOC and electron
correlation is measured in terms of the ratio [20],

χ = ξ

F2
, (1)

where ξ is the (single-particle) on-site SOC strength and F2 is
a Slater integral connected to the Slater parameter F (2) as F2 =
F (2)/49 for d2 configuration [21]. Using the Racah parameters
B = 420 cm−1 and C = 2100 cm−1 for Ir4+ ion [22] leads
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to F2 = 720 cm−1. Substituting ξ = 0.4 eV ≈ 3226 cm−1,
we get

χ ≈ 4.5. (2)

The LS coupling scheme is known to be a good approximation
for χ � 1 [20]. Therefore, for the case of iridium the choice
of the LS coupling scheme is questionable.

4d and 5d TM oxides with J = 0 ground state has attracted
a lot of attention as it can lead to interesting effects such
as excitonic magnetism in Van-Vleck-type Mott insulators
[23], or even triplon condensation and triplet superconductivity
[24–27]. Here, caution must be exercised in the choice of the
coupling scheme. For example, the authors of Ref. [26] claim
that 4d and 5d transition-metal ions with the t4

2g configuration

such as Re3+, Ru4+, Os4+, and Ir5+ realize a low-spin S = 1
state because of relatively large Hund’s coupling and, there-
fore, the multiplet structure should be calculated within the
LS coupling scheme. While this is likely to be true for Ru4+

as a 4d element, which is, in fact, the only element discussed
in detail in Refs. [25–27], the validity of the statement for
heavier transition-metal ions with partially filled 5d shell is
not a priori known. In fact, recent analysis of resonant inelastic
x-ray scattering data on double-perovskite iridium oxides with
a formal valency of Ir5+ yields SOC strength λ = 0.42 eV and
Hund’s coupling JH = 0.25 eV, suggesting the jj coupling
scheme to be appropriate for Ir5+ [28].

One of the most prominent differences in the weak and
strong SOC strengths is the multiparticle multiplet structure,
which, in turn, affects the experimentally observed features
such as the PES spectra. A clear understanding of how the
low-energy description of SOC driven insulators modifies in
the weak and strong SOC limits is fundamental in developing
a satisfactory theoretical description for these systems.

In this paper, therefore, we investigate the implication of the
two coupling schemes in the effective low-energy description
of the ARPES spectra. We discuss the multiplet structures of 5d

TM ions with the t4
2g configuration in the weak and strong SOC

limits, defined by the LS and jj coupling scheme, respectively.
We, then, construct an effective low-energy t-J Hamiltonian
used to describe the ARPES spectra. For brevity, we focus
on Sr2IrO4 to calculate the theoretical spectra within the
self-consistent Born approximation (SCBA) in the jj coupling
scheme and make explicit comparison with the corresponding
results obtained earlier within the LS coupling scheme [18] as
well as the experimental results. This is particularly relevant
in view of the fact that, despite consensus, the validity of
the LS coupling for Sr2IrO4 has not been established. Also,
a satisfactory theoretical description of Sr2IrO4 is still being
developed [11,29].

The present work provides an indirect evidence of the
validity of the LS coupling scheme for Sr2IrO4. More im-
portantly, we explicitly show the particular manifestation of
the coupling schemes on the kinetic part of a generalized
t-J-like Hamiltonian and discuss its ramifications. This further
allows us to speculate and discuss other scenarios where such
implications could be drastic.

This paper is organized as follows. First, in Sec. II, we
discuss the LS and the jj coupling schemes within the perturba-
tion theory calculation of the multiplet structure. In particular,

for the case of two holes on t2g shell relevant for theoretical
modeling of the ARPES spectra of iridates. In Sec. III, we
discuss how the choice of the coupling scheme manifests itself
in the t-J model. In Sec. IV, the relevance of all these results to
the calculation of ARPES spectra on Sr2IrO4 will be discussed.
Finally, we discuss some of the subtle issues and conclude in
Secs. V and VI, respectively.

II. COUPLING SCHEMES

Calculating the ARPES spectral function for Sr2IrO4

amounts to calculating the Green’s function for the hole intro-
duced into the AF j = 1/2 ground state in the photoemission
process [18]. In the octahedral crystal field, the d levels split
into t2g and eg manifolds. There are five electrons per Ir, so
effectively there is one hole residing on the lower t2g manifold.
While the t2g manifold is composed of dxy , dxz, and dyz orbitals,
the hole carries an effective orbital momentum l = 1 and a spin
s = 1/2 due to orbital moment quenching [30]. Due to strong
on-site SOC, the t2g levels further split into j = 1/2 doublet
and j = 3/2 quartet and the hole occupies the lower energy
doublet [2,13].

Adding a hole to the Ir4+ ion leads to the 5d4 configuration.
Since each hole has effective orbital momentum l = 1 per
hole [30], the d4 configuration effectively mimics the p2

configuration and we focus on the multiplet structure of the
latter. The multiplet structure depends on the coupling scheme,
as shown in Fig. 1 and discussed in the following.

It is important to note that the need for considering either LS
or jj coupling scheme arises only for the cases when there are
more than one fermion per site. In such cases, the multiparticle
multiplet structure differs in the weak and strong SOC limits.
For undoped Sr2IrO4, with only one hole per site, both SOC
and correlation effects can be treated on equal footing [31,32].

We begin with the full Hamiltonian of a system

H = HCen + Hres + HSOC. (3)

Here, HCen is the central field Hamiltonian and includes
kinetic energy of all electrons, nucleus-electron Coulomb
interaction and central-symmetric part S(ri ) of the Coulomb

FIG. 1. Schematic representation of the multiplet structure for a
p2 configuration in the LS coupling scheme (left) and the jj coupling
scheme (right). The singlet-triplet splitting λ = ξ/2 where ξ is the
(single-particle) on-site SOC strength and � is splitting between J =
1 and J = 2 states that depends on Coulomb interactions and Hunds
coupling. The mixing between 3P0 and 1S0 multiplets is schematically
shown by the dotted line. For comparison, the energy reference has
been chosen to be equal in both coupling schemes.
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electron-electron repulsion:

HCen =
N∑

i=1

(
−1

2
∇2

ri
− Z

ri

+ S(ri )

)
, (4)

where Z is the atomic number of the nucleus and N is the
total amount of electrons in the system. The residual Coulomb
Hamiltonian describes the angular part of the Coulomb inter-
action between electrons:

Hres =
N∑

i>j

1

rij

−
N∑

i=1

S(ri ), (5)

and HSOC describes the sum of all the on-site spin-orbit
interactions

HSOC = λL · S =
N∑

i=1

ξi li · si . (6)

Equation (3) can be solved perturbatively, taking HCen to
be the unperturbed part of the Hamiltonian. The eigenstates of
this unperturbed system are described by ψcen:

HCen|ψCen〉 = ECen|ψCen〉, (7)
and define the electronic configuration ψCen = |n1 l1,

n2 l2, . . . , nNlN〉 where ni is a principal quantum number of
the ith particle.

Relative strengths of Hres and HSOC dictates the order
of perturbation and leads to two different coupling schemes
in the limiting cases. If Hres > HSOC, then the strongest
perturbation to the eigenstates of HCen can be calculated
as 〈ψCen|Hres|ψCen〉. Electronic configurations then split into
multiplet terms

ψLS = |S MS L ML〉, (8)
characterized by the total orbital L and spin S momenta. SOC
further splits these levels and each level is now described by
the total momenta J = L + S, as can be seen in Fig. 1.

On the other hand, the jj coupling scheme is applicable if
HSOC > Hres, implying thatHSOC is the strongest perturbation
to HCen. In practice, this means that L and S are not good
quantum numbers anymore [i.e., they do not even form good
first-order approximation to the (unknown) eigenbasis of the
total Hamiltonian Eq. (3)] and the total J momentum has to
be calculated as a sum of individual j momenta characterizing
each particle.

In order to obtain the multiplet structure in the LS (jj )
coupling scheme, an unambiguous link between the product
states |ζσ 〉|ζ ′σ ′〉 (for two holes) and the final multiplet set
|S,MS,L,ML〉 (|j,mj , j

′,mj ′ 〉) should be established, where
ζ, ζ ′ = xy, yz, xz indicate the orbitals occupied by the holes,
and σ, σ ′ =↑,↓. This is followed by another basis transfor-
mation to obtain the states in the total J momenta. In the
end, the correspondence between different J states in the two
coupling schemes can be obtained. This involves working with
all possible configurations and could be tedious (for details, see
Appendix A).

If, however, the multiplet structure in one of the coupling
schemes is known, the multiplet structure in the other scheme
can be obtained easily: the correspondence between the mul-
tiplets ψLS

S L J MJ
and ψ

jj

j j ′ J MJ
obtained within the LS and jj

coupling schemes can, in general, be described as [19]

ψ
jj

j j ′ J MJ
=

∑
L,S

(ss ′[S]ll′[L]J |sl[j ]s ′l′[j ′]J )ψLS
S L J MJ

. (9)

Since the transition between LS and the jj coupling scheme is a
change of the scheme of summation of four angular momenta,
the transformation coefficients in (9) can be expressed in terms
of 9j symbols [19]:

(ss ′[S]ll′[L]J |sl[j ]s ′l′[j ′]J )

=
√

(2S + 1)(2L + 1)(2j + 1)(2j ′ + 1)

⎧⎪⎨
⎪⎩

l l′ L

j j ′ J
1
2

1
2 S

⎫⎪⎬
⎪⎭.

(10)

The values of the factor⎧⎪⎨
⎪⎩

l l′ L

j j ′ J
1
2

1
2 S

⎫⎪⎬
⎪⎭ = A

(
SLJ ; jj ′J

)
(11)

are given, for example, in Table 5.23 of Ref. [19] or in Ref. [33].
Let us explicitly calculate how ψ

jj
1
2

1
2 0 0

transforms into the

ψLS
S L 0 0.

ψ
jj
1
2

1
2 0 0

=
∑
L,S

√
(2S + 1)(2L + 1)

(
2 · 1

2
+ 1

)(
2 · 1

2
+ 1

)

×A

(
S L 0;

1

2

1

2
0

)
ψLS

S L 0 0. (12)

Using Table 5.23 of Ref. [19] we calculate the values of
A(S L 0; 1

2
1
2 0) and arrive at

ψ
jj
1
2

1
2 0 0

= 1√
3
ψLS

0 0 0 0 +
√

2

3
ψLS

1 1 0 0

= 1√
3
ψ (1S0,MJ =0) +

√
2

3
ψ (3P0,MJ =0). (13)

On the other hand, composition of the J = 1 state remains
unchanged in the two coupling schemes. Similar to the J = 0
states, there will also be a mixing between higher-energy states,
such as the two J = 2 states, 1D2 and 3P2. However, the mixing
between J = 2 states is omitted from Fig. 1 for clarity.

Using Eq. (9), it is, therefore, possible to obtain the rel-
ative composition of the multiplets in the different coupling
schemes. This has interesting consequences for the low-energy
effective t-J Hamiltonian and the ARPES spectra. More
importantly, this already provides an estimate of the relative
redistribution of the spectral weight in the ARPES spectra.

III. MANIFESTATION OF THE COUPLING
SCHEME IN THE t- J MODEL

Time evolution in the Green’s function of the hole intro-
duced into Sr2IrO4 in the photoemission process is determined
by the Hamiltonian

H = Hmag + HSOC + Ht, (14)

where Hmag is Heisenberg Hamiltonian describing the ground
state of the system, which depends on first-, second-, and third-
neighbor exchange parameters J1, J2, and J3, HSOC describes
the on-site energy of the triplet states, and Ht represents the
kinetic energy of the hole [18].
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As we are interested in the low-energy description, in the
following, we will consider only the low-energy sector of
the multiplet structure consisting of J = 0 and J = 1 states.
The J = 2 states lie at much higher energies, approximately
twice as large as the singlet-triplet splitting [30,32], and are
expected to have a small contribution to the low-energy model.
We note, however, that the resulting reduced Hilbert space is
not complete. As a result, a basis transformation between the
product state basis and the multiplet basis (see Appendix A)
in this reduced Hilbert space is not proper and leads to issues
with normalization. Therefore, we consider the full set of 15
configurations (microstates) formed by two holes residing on
the t2g orbitals while deriving the correspondence between
the multiplet structures in the two coupling schemes. The
(physical) cutoff is to be imposed only after arriving at the final
basis set which is a good approximation to the eigenstates of
the full Hamiltonian.

Detailed knowledge of the multiplet composition in terms
of the product states is also required for deriving the t-J
Hamiltonian. Therefore, in the following, we have used the
explicit transformations in the jj coupling scheme, discussed
in Appendix A 2 [Eqs. (A11) and (A14)]. Nevertheless, for
completeness and for pedagogical reasons, we provide and
discuss both the schemes in detail in Appendix A.

We consider the kinetic energy part of the effective t-J
model Ht in the two coupling schemes. The derivation within
the jj coupling scheme closely follows that in the LS coupling
scheme [18] and consists of two main steps. We start with
the application of basis transformations Eqs. (A11) and (A14)
to the hopping term of t-J model 〈5d4

i 5d5
j |Ht|5d5

i 5d4
j 〉 where

Ht is a general one-particle tight-binding (TB) Hamiltonian
adopted from Ref. [18]. Subsequently, we apply the slave-
fermion, Holstein-Primakoff, Fourier, and Bogoliubov trans-
formations, leading to:

Hjj
t =

∑
k

(
h†

kAŴ 0
k hkA+h†

kBŴ 0
k hkB

)

+
∑
k,q

(
h†

k−qBŴ α
k,qhkBα†

q+h†
k−qAŴ

β

k,qhkBβ†
q+H.c.

)
,

(15)

where h† (h) represents the hole creation (annihilation) oper-
ator written in the low-energy multiplet basis comprising of
singlet (SA/B) and triplet states (TmA/B) with m = 0,±1 at
spin-sublattices A and B:

Ĵ = {SA, T1A, T0A, T−1A, SB, T1B, T0B, T−1B}. (16)

A/B represent the spin sublattice index accounting for the
AF order and α†(α)/β†(β) represents the magnon creation
(annihilation) operator on the two sublattices.

For a realistic description of the motion of charge excitation
in the AF background of j = 1/2 pseudospins in Sr2IrO4,
we consider tight-binding parameters obtained from density-
functional theory [18] and exchange couplings up to third
neighbor that fit the experimental magnon dispersion. Hopping
parameters are described by 8 × 8 matrices due to charge
excitation’s internal degree of freedom and have been denoted
by W . The terms Ŵ 0

k describe the nearest, next-nearest, and
third-neighbor free hopping of the polaron (i.e., not coupled
to magnons) and the vertices Ŵ α

k,q and Ŵ
β

k,q describe the
polaronic hopping. They are given by

Ŵ 0
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2F1 0 −

√
3
2F2 0 0

√
3
2P2 0 −

√
3
2P1

0 F4 0 0
√

3
2P1 0 Q1 0

−
√

3
2F2 0 F3 0 0 Q2 0 Q1

0 0 0 0 −
√

3
2P2 0 Q2 0

0
√

3
2P1 0 −

√
3
2P2

3
2F1 0

√
3
2F2 0√

3
2P2 0 Q2 0 0 0 0 0

0 Q1 0 Q2

√
3
2F2 0 F3 0

−
√

3
2P1 0 Q1 0 0 0 0 F4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

for the free hopping matrix while the matrices containing vertices are

Ŵα
k,q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

3
2L3 0 −

√
3
2L3

3
2Y1 0 −

√
3
2W2 0√

3
2L3 0 L1 0 0 Y4 0 W1

0 L1 0 L1 −
√

3
2W2 0 Y2 0

−
√

3
2L3 0 L1 0 0 W1 0 Y3

0 0 0 0 0
√

3
2L4 0 −

√
3
2L4

0 0 0 0
√

3
2L4 0 L2 0

0 0 0 0 0 L2 0 L2

0 0 0 0 −
√

3
2L4 0 L2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)
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and

Ŵ
β

k,q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

3
2L4 0 −

√
3
2L4 0 0 0 0√

3
2L4 0 L2 0 0 0 0 0

0 L2 0 L2 0 0 0 0

−
√

3
2L4 0 L2 0 0 0 0 0

3
2Y1 0

√
3
2W2 0 0

√
3
2L3 0 −

√
3
2L3

0 Y3 0 W1

√
3
2L3 0 L1 0√

3
2W2 0 Y2 0 0 L1 0 L1

0 W1 0 Y4 −
√

3
2L3 0 L1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where k-dependent hopping elements Pi , Qi , Fi , and k-, q-
dependent vertices Yi , Wi , and Li are given in Appendix E.

Therefore, by means of Holstein-Primakoff transforma-
tion, we have effectively mapped the complicated many-body
problem onto a simpler one, describing the motion of a
polaronic quasiparticle composed of charge excitations dressed
by the j = 1/2 magnons. This is achieved by projecting
out the interaction of magnons with each other as well as
their renormalization by the quasiparticle propagator. These
approximations comprise the well-known self-consisted Born
approximation [34–39].

A schematic description of these steps and qualitative origin
of W terms is shown in Fig. 2. In the absence of SOC, the
ground state consists of one hole per site, with a spin up or down
and occupying one of the three degenerate t2g orbitals, and a
charge excitation composed of two holes [site i, see Fig. 2(a)].
The charge excitation is a many-body configuration |ζσ 〉|ζ ′σ ′〉,
described by total spin S and orbital moment L. Wave-function
overlap τ between neighboring holes is material specific and
can be obtained from density-functional calculations [18]. In
the presence of SOC [Fig. 2(b)], the ground state with one hole
per site is an antiferromagnet of j = 1/2 pseudospins. The
excited state, previously described by S and L, must now be
described using total J momentum, connected to L and S using
either LS or jj coupling scheme. Hopping parameters t capture
the motion of the charge excitations and their interaction with
the j = 1/2 magnons and are derived from τ ’s using basis
transformations from LS and jj coupling schemes as discussed
in Appendix A.

Within SCBA [Fig. 2(c)], only the noncrossing diagrams
for the fermion-magnon interaction are retained, leading to
quasiparticle dressed with the j = 1/2 magnon (polaron).
The motion of the polaron is now described by the matrices
W , which involves the coupling between the excitation and
magnons and are derived from t’s by application of the
slave-fermion, Holstein-Primakoff, Fourier, and Bogoliubov
transformations (see Appendix B).

The structural similarity between the resulting Hamilto-
nians in the two coupling schemes [see Eq. (15) above and
Eq. (D1)] is evident. However, the W terms describing the free
and polaronic hoppings are different from the corresponding
terms in the LS coupling scheme. Comparing Eqs. (17)–(19)
with Eqs. (D2) – (D4), one finds that changing the coupling

scheme results in renormalization of free-polaron dispersion
Ŵ 0

k and vertices Ŵ α
k,q and Ŵ

β

k,q, in particular for the matrix
elements corresponding to the propagation of the polaron with
a singlet SA,B character.

FIG. 2. Charge excitation on Sr2IrO4: (a) Without on-site spin-
orbit coupling, there is one hole on degenerate xy, yz, and xz orbitals
in the ground state on sites i − 1 and i + 1, and a charge excitation, i.e.,
a many-body state consisting of two holes on site i. (b) With on-site
spin-orbit coupling, the ground state is described by antiferromagnet-
ically ordered j = 1/2 isospins and the charge excitation of a total
momentum J possesses internal multiplet structure, calculated within
LS or jj coupling schemes. (c) Same as (b), but mapped onto the
polaronic problem. Propagation of the charge excitation is described
by polaron dressed by j = 1/2 magnons. Upon hopping, it creates
a broken antiferromagnetic bond of misaligned spins, shown by the
wavy line. Here, τ ’s denote first-, second-, and third-neighbor tight-
binding parameters obtained from density-functional theory [18]
translated into the many-body language in an exact-diagonalization
fashion. t’s stand for same hopping parameters in presence of strong
on-site spin-orbit coupling. W ’s are derived from the t’s upon down
folding the model onto polaronic formalism and describe hopping
parameter of the charge excitation as well as its coupling to magnons.
W ’s are 8 × 8 matrices due to charge excitation’s internal degree of
freedom.
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Thus, in the t-J model, the coupling scheme manifests itself
in the following way: each term of kinetic Hamiltonian (15)
containing h

†
S (A, B) (hS (A, B)) operator gets a renormalization

factor of
√

3
2 while those containing two of singlet creation

(annihilation) operator get a factor of 3
2 . This renormalization

can be explained by the mixing of the two J = 0 states, 3P0

and 1S0, as one goes from the LS to the jj limit. This mixing
is shown schematically in Fig. 1 with dotted lines. Therefore,
although the choice of the coupling scheme can not result in
the change of the number of multiplets or appearance of new
multiplets, it can, however, have interesting consequences for
the low-energy effective model.

As evident from Eq. (13), part of the spectral weight
of 3P0 configuration in LS coupling scheme is transferred
to higher energies in jj coupling scheme, whereas some
spectral weight from higher 1S0 state is transferred to lower
energies. In other words, the singlet state in the jj coupling
scheme gets some admixture of previously excited states and

only
√

2
3 of the spectral weight of the singlet derived in the

LS coupling scheme. This results in renormalization of the

hopping amplitudes and vertices by a factor of
√

3
2 , seen in

Eqs. (17)–(19). The physical consequences of this renormaliza-
tion will be discussed in the next section where the theoretical
ARPES spectrum for Sr2IrO4 in both coupling schemes will be
compared.

IV. INFLUENCE OF THE COUPLING SCHEME
ON THE SPECTRAL FUNCTION OF Sr2IrO4

Having obtained the vertices [Eqs. (17)–(19)] describing
the propagation of the polaron in Sr2IrO4, we calculate the
Green’s functions of the polaron and plot its spectral function
within self-consistent Born approximation (SCBA) [18]. Since
we do not know the exact value of splitting � between ψ

jj

1 M 1
2

3
2

and ψ
jj

2 M′ 1
2

3
2

(see Fig. 1), which also depends on the Hund’s

coupling JH, we consider � as a free parameter and perform
calculations for three values of � such that the singlet-triplet
splitting1λ − 5/8� takes values between λ/2 and λ/4 (see
Fig. 3).

There are many recent ARPES experiments revealing the
shape of the iridate spectral functions, [2,10,40,42–47] one of
which [40] is shown on the Fig. 3(d). The salient features of
the spectral function are (i) lowest-energy quasiparticle peak at
(π, 0) or (0,π ) (X point), followed by an energy gap of �0.4 eV,
(ii) well-defined peak at (0,0) (� point), and (iii) a plateau
around (π/2, π/2) (M point). While the qualitative features
in all the experiments are same, there are some quantitative
differences. For instance, the splitting between the peaks at the
X point and the � point varies in the range 0.15–0.25 eV, a
feature crucial for explicit comparison with the experimental
data.

1The factor of 5/8 originates from the fact that the (1/2, 3/2) state
splits into a quintet (J = 2) and a singlet (J = 1).

FIG. 3. PES spectral function of the low-energy (polaronic)
model developed for the quasi-two-dimensional iridates within the jj

coupling scheme and solved using the self-consistent Born approxi-
mation. The value of Coulomb splitting � varies so that singlet-triplet
splitting: λ − 5/8� is (a) λ/2, (b) λ/3, (c) λ/4. ARPES experimental
data (reproduced from Ref. [40]) and spectral function calculated
within the LS coupling scheme (reproduced from Ref. [18]) are
shown for comparison in (d) and (e) respectively. Here spin-orbit
coupling λ = ξ/2 where one-particle SOC ξ = 0.382 eV following
Ref. [41]; hopping integrals calculated as the best fit to the density-
functional theory (DFT) band structure as discussed in Ref. [18]:
t1 = −0.2239 eV, t2 = −0.373 eV, t ′ = −0.1154 eV, t3 = −0.0592
eV, t ′′ = −0.0595 eV; spectra offset by (a)–(c) E = −0.97 eV, (e)
E = −0.77 eV; broadening δ = 0.01 eV.

Comparing Fig. 3(a) and Fig. 3(d), one can see that the low-
energy peaks at M and � points are present in the theoretical
ARPES spectra obtained within both the coupling schemes.
However, as opposed to the LS coupling scheme, for the
jj coupling scheme, the peak at the � point is significantly
softened in the theoretical spectra. Furthermore, the energy gap
between the peak positions at the � point and the quasiparticle
peak at M is much larger for any value of singlet-triplet
splitting.

As Coulomb � is varied, the most prominent change in
the spectral function calculated within the jj coupling scheme
is the change in the energy gap between the peak at the �

point and the quasiparticle peak. Although the size of this
gap depends on the value of the singlet-triplet splitting, it
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FIG. 4. Free and polaronic contributions to the spectrum in
Fig. 3(a). (a) Theoretical photoemission spectral function with only
propagation of the hole not coupled to magnons allowed as achieved
by setting Ŵ α

k = Ŵ
β

k ≡ 0. (b) Theoretical photoemission spectral
function with only polaronic propagation via coupling to magnons
allowed (i.e., no free dispersion) as achieved by setting Ŵ 0

k ≡ 0.
Parameters as in Fig. 3. However, note the different energy scale.

is not fully determined by it. This shift of the quasiparti-
cle peak is understood as an effect of the renormalization
of the polaronic coupling discussed earlier. Relatively good
qualitative and quantitative agreement with the experiment is
obtained only with a small gap of λ/4 [Fig. 3(c)], which implies
� ∼ λ. However, as � becomes comparable to λ, the LS
coupling scheme should be used, which indeed shows a good
qualitative and quantitative agreement with the experiments
[Fig. 3(e)].

It is interesting to note that in both LS and jj coupling
schemes, there is a reasonably sharp peak at (π/2, π/2) as
compared to a plateau in the experimental data. Although the
peak at (π/2, π/2) is suppressed in the theoretical spectra
too, owing to charge excitation scattering on magnons, clearly,
this effect is not pronounced enough. This could arise due to
overestimation of the quasiparticle spectral weight in SCBA
[34]. Other possibilities include effects beyond the approx-
imations made in the present study, such as hybridization
of the TM d orbitals with the O 2p orbitals. Such effects
are known to be important in cuprates where depending on
the photon energy O 2p or Cu 3d weights are observed
in the ARPES spectra. However, for quasi-two-dimensional
(quasi-2D) iridium oxides, both ab initio quantum chemistry
calculation, as well as ARPES experiments, suggest that the
charge gap is of the order of 0.5 eV, while the Ir-O charge
transfer gap is approximately 2–3 eV [48,49]. Moreover, the
charge gap in the iridates is believed to be a Mott gap [50]
that is much smaller than the charge transfer gap, putting the
iridates in the Mott-Hubbard regime.

Yet another possibility is the role of higher-lying states in
the multiplet structure. However, since a realistic description
of all the other low-energy features of the ARPES spectra
is obtained for the singlet-triplet splitting λ − 5�/8 = 0.25λ

or in the LS coupling scheme, the relative energy difference
between the J = 1 and the J = 2 states is �λ. Therefore, they
are expected to have an insignificant contribution to the low-
energy features. Nevertheless, such effects can not be ruled out
completely.

Figure 4 shows the relative contributions of the free and
the polaronic part of the spectra in the jj coupling scheme
for the singlet-triplet gap equal to λ. Comparison with the

FIG. 5. J -resolved theoretical photoemission spectral function of
Fig. 3(a), with (a) showing the J = 0 contribution (motion of a singlet
hole) and (b) the J = 1 contribution (motion of a triplet hole).

corresponding results in the LS coupling [18] indicates
a stronger influence on the polaronic part of the spectra
[Fig. 4(b)] rather than on the free part [Fig. 4(a)]. Indeed,
the hole of a singlet character has the largest contribution to
the low-energy band (see Fig. 5) and when the strength of its
coupling to magnons is increased by a factor of 3

2 , the band
gets additionally renormalized, thus indicating the importance
of the polaronic processes.

V. DISCUSSIONS

Most of the SO driven strongly correlated materials lie
in the intermediate spin-orbit coupling regime rather than in
the extreme well defined by the LS or jj coupling schemes
[19]. In fact, knowledge of the composition of the low-energy
states and the relative energy splittings unambiguously dic-
tates which coupling scheme is appropriate. In the absence
of quantum chemistry results for Ir-d4 configuration, one
needs to resort to indirect verification of a suitable theoretical
model.

For ions with intermediate SOC, ground-state multiplets are
in general much better captured by the LS coupling scheme than
the excited states [20]. For example, even for some rare-earth
compounds, which have χ ≈ 1 − 10, LS coupling usually
describes the experimentally measured lowest multiplet quite
well, which is, however, not the case for higher excited states.
For example, for Er+3 ion, which has a value of χ ≈ 5.53 close
to Ir, the ground-state wave function is given by [20]

|ψGS〉 = 0, 982|4I 〉 − 0, 186|2K〉 ≈ |4I15/2〉 . (20)

i.e., the ground state is indeed well described by the LS coupling
scheme. However, already for the highest exited multiplet in
the same term we have

|ψ1〉 = 0, 627|4I 〉 − 0, 416|2K〉 − 0, 342|2G〉
− 0, 219|2H 〉 + 0, 276|2G′〉 + 0.438|2H ′〉. (21)

We see that the multiplet 4I , which according to the LS coupling
scheme should describe |ψ1〉, has in fact only 39% contribution
in the corresponding excited wave function [20].

It is also important to note that, in the case of Ir, the first
excited state 3P1 is not affected by the coupling scheme choice
as there exist a unique J = 1 state. However, this is not the case
for, i.e., p3 and p4 configurations. In p3 configuration, two
lowest multiplets, 4S 3

2
and 4D 3

2
, can in general mix with each

other as well as with higher-lying 3P 3
2
. In the p4 configuration,
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where the order of some states is inverted as compared to the
p2 configuration, the first two excited multiplets 3P0 and 3P2

do change places upon going from one coupling scheme to
another [19], probably rendering more pronounced effects in
the theoretical description. One can, in general, expect much
bigger ramifications of the coupling scheme choice in the cases
where the composition of the excited states are different as
well since under the same values of SOC they usually do get
renormalized much more than the ground state, as exemplified
by Eqs. (20)–(21).

Naturally, the same renormalization effect discussed in
the present work would also be observed for an electron in
the material with t1

2g configuration in the ground state and
strong on-site SOC for any geometry and choice of hopping
parameters. For example, deriving a t-J model for a honeycomb
iridates with one hole, which forms the many-body d4 config-
urations as well, one would get the same renormalization of
the kinetic Hamiltonian when going from LS to jj limit, even
though the motion of free charge on the honeycomb lattice is
described by a completely different TB model: the hoppings
between different orbitals are much larger than the hoppings
between the same ones and they are moreover strongly bond
dependent [51].

For the present case, employing the DFT-based TB pa-
rameters accounts for the crystal field effects and distortions
such as octahedra rotation. We note, However, considerable
differences from the present case are expected in strong
distortions, e.g., under pressure, due to additional mixing of the
states [52], and, even more importantly, the renormalization of
the Clebsch-Gordan coefficients [13].

Furthermore, the fact that multiplet structure of Ir5+ can
be so well described by LS coupling scheme also suggests that
the superexchange model for Sr2IrO4 can be derived by simply
projecting the Kugel-Khomskii model [12] onto the spin-orbit
coupled basis as done in, e.g., Ref. [13].

VI. CONCLUSIONS

In conclusion, we have studied the ARPES spectra for
quasi-2D square lattice iridates in weak and strong SOC
strengths where the multiplet structures are well defined by
different coupling schemes. Specifically, we have studied how
the choice of the coupling scheme can influence the multiplet
structure and consequently the low-energy effective model
for Sr2IrO4, effectively described by p2 configuration. We
have shown that for a t-J-like model for Sr2IrO4, the jj

coupling scheme induces renormalization of the vertices in
the kinetic part of the Hamiltonian and prominent changes
in the spectral function calculated within SCBA. We have
compared the spectra calculated in both coupling schemes
to the experimental ARPES data. Interestingly, despite large
SOC, we find much better agreement to the experiment for
the model derived within the LS coupling scheme. We argue
that just as well as for many rare-earth compounds, which
have comparable SOC strength, the spin-orbit coupling, albeit
strong, is yet weak enough to allow for a successful description
of the ground state in the framework of the LS coupling
scheme.

For other electronic configurations, such as p3 or p4,
where all of the low-energy multiplets are renormalized as
we go from LS to jj coupling scheme [53], more dra-
matic consequences are expected in the theoretical ARPES
spectra.

Although, the choice of the coupling scheme and the
effective low-energy model can be guided by the knowl-
edge of the composition and relative energy splittings of
the multiplets, in the absence of such experimental and/or
quantum chemistry studies, the validity of the same must be
ascertained.
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APPENDIX A: MULTIPLET STRUCTURE

1. LS coupling scheme

To calculate the multiplet structure of p2 configuration
in the LS coupling scheme as used in Ref. [18], one has
to establish an unambiguous link between the single-particle
states |ζσ 〉, |ζ ′σ ′〉 (for two holes) and the final multiplet set
|S,MS,L,ML〉 where ζ, ζ ′ = xy, yz, xz indicate the orbitals
occupied by the holes, and σ, σ ′ =↑,↓. This is done in the
following way.

First, one has to make a basis transformation from the
real space basis |ζσ 〉 to the single-particle states in the Ylm

basis |lsmlms〉 [13]. Second, for multiparticle configurations,
one must construct the basis transformation from the product
states to states described by total L and S. In principle,
one can use Clebsch-Gordan coefficients (CGCs). However,
there is a caveat: Clebsch-Gordan tables are formulated for
summation of momenta of two inequivalent electrons. So, if
we want to sum spins s1 and s2 of two electrons, they must
be distinguishable. If they were on two different sites, then
the position would suffice. However, if they are on the same
site, as in our case, the multiparticle state can be obtained
correctly by CGCs only if they reside on different orbitals.
Bearing this in mind we avoid using CGCs for two-particle
configurations and instead perform moment summation using
the high weight decomposition method, discussed in detail in
Appendix C.

As a result, we can construct the matrix U1 that trans-
forms the Hamiltonian Hls from the product state basis
|l s ml ms〉|l′ s ′ m′

l m′
s〉 to the total spin and orbital momentum

basis |L S ML MS〉:

HLS
LS−basis = U

†
1Hls−basisU1 , (A1)
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where

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1√

2
0 0 1√

2
0 0 0 0 0 0 0 0 0

0 0 0 0 1√
2

0 0 1√
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1√
2

1√
2

0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1√

2
0 0 − 1√

2
0 0 0 0 0 0 0 0 0

0 0 0 0 1√
6

0 0 − 1√
6

0
√

2
3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1√
2

− 1√
2

0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1√

3
0 0 − 1√

3
0 − 1√

3
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the product state basis |l s ml ms〉|l′ s ′ m′
l m′

s〉 is defined as

â = {|1 1 0 0 0 0〉, |1 0 1 0 0 0〉, |1 0 0 1 0 0〉, |1 0 0 0 1 0〉,
|1 0 0 0 0 1〉, |0 1 1 0 0 0〉, |0 1 0 1 0 0〉, |0 1 0 0 1 0〉,
|0 1 0 0 0 1〉, |0 0 1 1 0 0〉, |0 0 1 0 1 0〉, |0 0 1 0 0 1〉,
|0 0 0 1 1 0〉, |0 0 0 1 0 1〉, |0 0 0 0 1 1〉}ᵀ, (A2)

where 1(0) represents the (un)occupied single-particle
state of the Hilbert space spanned by |mlms〉 =
{|1 ↑〉, |1 ↓〉, |0 ↑〉, |0 ↓〉, |−1 ↑〉, |−1 ↓〉}ᵀ. The multiplet
basis |S MS L ML〉 is defined as

Â = {|1 1 1 1〉, |1 1 1 0〉, |1 1 1 −1〉, |1 0 1 1〉, |1 0 1 0〉,
|1 0 1 −1〉, |1 −1 1 1〉, |1 −1 1 0〉, |1 −1 1 −1〉,
|0 0 2 2〉, |0 0 2 1〉, |0 0 2 0〉, |0 0 2 −1〉, |0 0 2 −2〉,
| 0 0 0 0〉}ᵀ, (A3)

so that

Â = U1â. (A4)

Upon employing this transformation, we have effectively taken
Hamiltonian (5) that defines the first-order corrections to the
eigenstates of the system into account.

According to the Hund’s rules, the state with the lowest
energy is the one with the highest multiplicity and the highest
possible L, i.e., in the first approximation the ground state
is ninefold degenerate 3P multiplet. To account for further
perturbation on the system induced by the strong on-site spin-
orbit coupling [Eq. (6)], we perform a basis transformation to
obtain the total J momenta. To build a low-energy effective
model, we truncate the Hilbert space down to the high spin 3P

states only. Since total spin S = 1 and orbital momenta L = 1
are distinguishable by their nature, we can simply use the CG
coefficients to sum them up, leading to

HLS
J−basis = U

†
2HLS

LS−basisU2 , (A5)

where, U2 is

U2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1√
3

0 − 1√
3

0 1√
3

0 0

0 1√
2

0 − 1√
2

0 0 0 0 0

0 0 1√
2

0 0 0 − 1√
2

0 0

0 0 0 0 0 1√
2

0 − 1√
2

0
1 0 0 0 0 0 0 0 0
0 1√

2
0 1√

2
0 0 0 0 0

0 0 1√
6

0
√

2
3 0 1√

6
0 0

0 0 0 0 0 1√
2

0 1√
2

0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A6)

HLS
J−basis is written in the spin-orbit coupled basis

Ĵ = {S, T1, T0, T−1,M2,M1,M0,M−1,M−2}ᵀ, (A7)

which consists of the lowest J = 0 singlet S, the higher J = 1
triplets Tm (m = −1, 0, 1, split by energy λ from the singlet
state) and J = 2 quintets [18].

To arrive at the final effective low-energy model we further
truncate the Hilbert space and reduce the basis set to the two
lowest multiplets 3P0 and 3P1 (see Fig. 1):

Ĵ = {S, T1, T0, T−1}ᵀ. (A8)

2. j j coupling scheme

The jj coupling scheme is applicable if HSOC > Hres,
implying that HSOC is the strongest perturbation to HCen.
In practice, this means that L and S are not good quantum
numbers anymore [i.e., they do not even form a good first-
order approximation to the (unknown) eigenbasis of the total
Hamiltonian Eq. (3)] and the total J momentum has to be
calculated as a sum of individual j momenta characterizing
each particle.

We now derive the basis transformation connecting Hamil-
tonian in the |mlms〉 |m′

lm
′
s〉 independent particle basis to the

Hamiltonian defined in the basis of the total momenta J. In the
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jj coupling scheme, we first use CGCs to sum up the total momenta on each site

c
†
0↑c

†
1↑|0〉 → (√

2
3

∣∣ 3
2

1
2

〉 − √
1
3

∣∣ 1
2

1
2

〉)(∣∣ 3
2

3
2

〉)
, (A9)

where the latter is written in the spin-orbit coupled single-particle basis |j mj 〉. Since we perform CG summation here
independently for both electrons, we have to take Pauli principle into account manually by projecting out forbidden states
by hand. In the end, we arrive at:

U3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
√

2
3 − 2

3 0 − 1
3

√
2

3 0 0 0 0

−
√

2
3

1√
3

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 − 1√
3

√
2
3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1
3

√
2

3 0 −
√

2
3

2
3 0 0 0 0

0 0 0 0 0 0 2
3

√
2

3 0 −
√

2
3 − 1

3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0
√

2
3 0 0 − 1√

3
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1√
3

−
√

2
3

1√
3

√
2
3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
√

2
3

1√
3

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
√

2
3

1
3 0 2

3

√
2

3 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1√
3

0 0
√

2
3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
√

2
3

1√
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A10)

which is needed for

Hjj

jj−basis = U
†
3H

jj

ls−basisU3 (A11)

to transform the Hamiltonian from the basis (A2) into the individual j basis |j mj j ′ mj ′ 〉:

ĵ = {∣∣ 1
2 − 1

2
1
2

1
2

〉
,
∣∣ 3

2
3
2

1
2

1
2

〉
,
∣∣ 3

2
3
2

1
2− 1

2

〉
,
∣∣ 3

2
1
2

1
2

1
2

〉
,
∣∣ 3

2
1
2

1
2− 1

2

〉
,
∣∣ 3

2 − 1
2

1
2

1
2

〉
,
∣∣ 3

2 − 1
2

1
2− 1

2

〉
,
∣∣ 3

2 − 3
2

1
2

1
2

〉
,∣∣ 3

2 − 3
2

1
2− 1

2

〉
,
∣∣ 3

2
1
2

3
2

3
2

〉
,
∣∣ 3

2 − 1
2

3
2

3
2

〉
,
∣∣ 3

2 − 1
2

3
2

1
2

〉
,
∣∣ 3

2 − 3
2

3
2

3
2

〉
,
∣∣ 3

2 − 3
2

3
2

1
2

〉
,
∣∣ 3

2 − 3
2

3
2− 1

2

〉}ᵀ
. (A12)

Now, we employ the high weight decomposition method to obtain Hamiltonian [Eq. (A11)] in the total J basis (see Appendix
C 2 for details):

Ĵ = {
S

( 1
2 , 1

2 )
, T

( 3
2 , 1

2 )
1 , T

( 3
2 , 1

2 )
0 , T

( 3
2 , 1

2 )
−1 ,M

( 3
2 , 1

2 )
2 , M

( 3
2 , 1

2 )
1 ,M

( 3
2 , 1

2 )
0 ,M

( 3
2 , 1

2 )
−1 M

( 3
2 , 1

2 )
−2 , S

( 3
2 , 3

2 )
,

M
( 3

2 , 3
2 )

2 ,M
( 3

2 , 3
2 )

1 ,M
( 3

2 , 3
2 )

0 ,M
( 3

2 , 3
2 )

−1 ,M
( 3

2 , 3
2 )

−2

}ᵀ
, (A13)

where S is singlet state, Tm represents a triplet state with J = 1, Jz = m, Mm signifies a quintet state with J = 2, Jz = m and
the superscript stands for (j1, j2). Basis (A13) is equivalent to (A7) when cut down to the lowest nine states and to (A8) upon
further truncation to lowest four states.

In the end, we arrive at the final Hamiltonian

Hjj

JJ−basis = U
†
4H

jj

jj−basisU4 , (A14)

064422-10
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where, the basis transformation is

U4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
√

3
2 − 1

2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1√

2
− 1√

2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2 −

√
3

2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2

√
3

2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1√

2
1√
2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
√

3
2

1
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 − 1√

2
1√
2

0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1√

2
1√
2

0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A15)

The correspondence between the two coupling schemes is
obtained by matrix manipulation of the above matrices U1,
U2, U3, and U4, leading to results of Eq. (13).

APPENDIX B: DERIVATION OF W TERMS

To illustrate the renormalization of different elements of W
terms, we consider a NNN hopping between the sites i and j ,
which involves only hopping between orbitals ζ = xy at each
site:

H =
∑

ij ,σ=↑,↓
t ′ci ζ σ cj ζ σ . (B1)

We transform this Hamiltonian into a basis that spans the full
Hilbert space of two NNN sites |l s ml ms〉i |l′ s ′ m′

l m′
s〉i ⊗

|l s ml ms〉j + H.c. We do not explicitly show this transformed
Hamiltonian H ′ here because of the size of the matrix (180 ×
180). The Hamiltonian in spin-orbit coupled basis within jj

coupling scheme is then calculated as

Hjj = [(U3 × U4) ⊗ U5]† H ′ [(U3 × U4) ⊗ U5], (B2)

where U5 describes transformation of multiplet structure of
a single hole/electron in three t2g orbitals into total j basis.
This transformation is independent of the coupling scheme and
can be obtained easily (see, e.g., Refs. [13,31]). Hamiltonian
H then produces another 180 × 180 matrix with quite a few
nonzero entries. For instance, the (1,12)th matrix element is

[Hjj ]1,12 = −
∑
〈i,j〉

t ′

6
√

2
S
†
i di↓d

†
j↑Tj1, (B3)

whered
†
iσ stands for creating an electron on site i in the j = 1/2

doublet with jz = σ , and Si and Ti m, respectively, represent
the creation of a charge excitation with singlet (S) and triplet
(Tm, m = 0,±1) character on site i. The resulting Hamiltonian
is then mapped onto a polaronic model as described in detail in,
e.g., the Supplemental Material of Ref. [54]. We subsequently
introduce two antiferromagnetic sublattices A and B, and

perform the Holstein-Primakoff transformation:

[Hjj ]1,12 = −
∑
〈i,j〉

t ′

6
√

2
(S†

iATj1Aai + S
†
iBTj1Bb

†
i ), (B4)

where a
†
i (b†i ) stands for creating a magnon on sublattice A(B).

Then, we translate it into k space using Bogoliubov and Fourier
transforms and obtain

[Hjj ]1,12 = t ′

3

√
1

N
[T1Ak cos(kx − ky )S†

Ak−q (α−quq + β†
qvq )

+ T1BkS
†
Bk−q cos(kx − ky − qx + qy )

× (βq†uq + α−qvq )]. (B5)

Here, α† (α)/β† (β) represents the magnon creation (annihi-
lation) operator on the two sublattices A/B after the Bogoli-
ubov transformation, and uq and vq are the corresponding
Bogoliubov coefficients [18]. After this transformation has

been performed for all the terms of Hamiltonian, the t ′
3

√
1
N

coefficients would enter the W expressions.
In the LS coupling scheme, the corresponding (1,12)th

element of the above hopping Hamiltonian (B1) yields

[HLS]1,12 = −
∑
〈i,j〉

t ′

6
√

3
S
†
i di↓d

†
j↑Tj1, (B6)

rendering the renormalization of the elements of W terms by
a factor of

√
2/3 compared to the hopping Hamiltonian (B3),

as discussed in Sec. III.

APPENDIX C: HIGH WEIGHT
DECOMPOSITION METHOD

1. LS coupling scheme

We start with the high spin state with the largest possible
total spin S = 1 and highest possible L for this S. Obviously,
there are nine states with S = 1 and L = 1, which form the 3P

multiplet. From them we choose the one with the maximum
projections ML and MS : ψLS

1 = |S MS L ML〉 = |1 1 1 1〉. In

064422-11
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terms of single-particle second quantization operators there is
only one way this state can possibly be constructed:

ψLS
1 = |1, 1, 1, 1〉 = c

†
0↑c

†
1↑|0〉, (C1)

where c†ασ is an operator creating an electron on the leff = 1
orbital with ml = α and spin σ , and the vacuum state |0〉 is
defined as empty t2g shell. To construct the next possible state
we employ a ladder operator L̂−:

ψLS
2 = L̂−ψLS

1 . (C2)

Using formula for the ladder operator known from textbooks
(see, for example, Landau and Lifshitz [55])

〈L,ML−1|L̂−|L,ML〉 =
√

(L + ML)(L − ML + 1), (C3)

and normalizing (C2) we get

ψLS
2 = |1 1 1 0〉 = c

†
−1↑c

†
1↑|0〉. (C4)

Now we can either apply L̂− once more or employ spin
ladder Ŝ− operator instead. Let us look at the effect of the
latter:

|1 0 1 0〉 = Ŝ−ψLS
2 = 1√

2
(c†−1↓c

†
1↑ + c

†
−1↑c

†
1↓)|0〉. (C5)

For a particular electronic configuration containing indistin-
guishable electrons according to the empirical Hund’s rule
the ground state is the one with the largest possible for this
configuration value of the total spin S and the largest possible
for this S value of the total orbital momentum L. So, having
obtained all nine states of the 3P multiplet in this way we
proceed by searching for a state with the highest possible total
orbital momentum. Since one has to place two electrons on the
same orbital to get total orbital momentum L = 2, they must
have opposite spins in order to obey Pauli’s principle. This
state thus has L = 2, S = 0 and belongs to 1D quintet. Again,
for the state with the highest possible momentum, be it orbital
or spin, there is always one unique way to construct it:

ψLS
10 = |0 0 2 2〉 = c

†
1↓c

†
1↑|0〉. (C6)

It is important on this step to keep operator ordering
convention consistent with that used in (C1). After we have
obtained all five states of 1D multiplet using ladder operators,
we only need to find the last missing state: singlet 1S (full list
of multiplets forming for a particular electronic configuration
can be found in many atomic physics book, see, e.g., Table
2.1 in Ref. [19]). We know that 1S state will have MS = 0
and ML = 0, but we do not know what the quantum numbers
L, S are. What we, however, know is that 1S state has to be
orthogonal to the other two states with MS = 0 and ML = 0,
which are written as

|1 0 1 0〉 = 1√
2

(c†−1↓c
†
1↑ + c

†
−1↑c

†
1↓)|0〉,

|0 0 2 0〉 = 1√
6

(c†−1↓c
†
1↑ − c

†
−1↑c

†
1↓ + 2c

†
0↓c

†
0↑)|0〉. (C7)

Since there can be no other combination of two creation
operators creating a state with both MS = 0 and ML = 0 other
than the three used in (C7) the missing state has to be a
combination of them as well and simultaneously orthogonal

to the two states in (C7). Employing trivial linear algebra we
get that the 1S multiplet is written as

ψLS
15 = |0 0 0 0〉 = 1√

3
(c†−1↓c

†
1↑ − c

†
−1↑c

†
1↓ − c

†
0↓c

†
0↑)|0〉.

(C8)

2. j j coupling scheme

We start from the state with highest possible MJ = 2. The
state with the highest total momenta J = 2 can be constructed
either by placing one electron on the j = 3

2 state with energy
λ = ξ/2 and one electron on the 1

2 state or by placing two
electrons on j = 3

2 quartets both having energy λ = ξ/2 so
that a two-particle state has energy λ = ξ . Let us start with a
state that is lower in energy

ψ
jj

5 = |J = 2 MJ = 2〉( 3
2 , 1

2 ) = ∣∣ 3
2

3
2

1
2

1
2

〉
. (C9)

Applying ladder operator J− and normalizing the result we
obtain the next state

ψ
jj

6 = |J = 2 MJ = 1〉( 3
2 , 1

2 ) (C10)

=
√

3

2

∣∣ 3
2

1
2

1
2

1
2

〉 + 1
2

∣∣ 3
2

3
2

1
2 − 1

2

〉
. (C11)

Once we have obtained five possible J = 2 states we consider
the other |J = 2 MJ = 1〉 configuration formed by two elec-
trons in the j = 3

2 quartet:

ψ
jj

11 = |J = 2 MJ = 2〉( 3
2 , 3

2 ) = ∣∣ 3
2

1
2

3
2

1
2

〉
. (C12)

Note that once chosen, the ordering convention has to be fol-
lowed since fermionic operators anticommute. The rest of the
derivation is performed analogously to that in Appendix C 1.

APPENDIX D: t- J MODEL WITHIN THE
LS COUPLING SCHEME

The kinetic part of the t − J in the LS coupling scheme is

Hh
t =

∑
k

(
h†

kAV̂ 0
k hkA+h†

kBV̂ 0
k hkB

)

+
∑
k,q

(h†
k−qBV̂ α

k,qhkBα†
q+h†

k−qAV̂
β

k,qhkBβ†
q+H.c.).

(D1)

where the free hopping matrix is defined as

V̂ 0
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1 0 −F2 0 0 P2 0 −P1

0 F4 0 0 P1 0 Q1 0

−F2 0 F3 0 0 Q2 0 Q1

0 0 0 0 −P2 0 Q2 0

0 P1 0 −P2 F1 0 F2 0

P2 0 Q2 0 0 0 0 0

0 Q1 0 Q2 F2 0 F3 0

−P1 0 Q1 0 0 0 0 F4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(D2)
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and the matrices containing vertices are

V̂ α
k,q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 L3 0 −L3 Y1 0 −W2 0
L3 0 L1 0 0 Y4 0 W1

0 L1 0 L1 −W2 0 Y2 0
−L3 0 L1 0 0 W1 0 Y3

0 0 0 0 0 L4 0 −L4

0 0 0 0 L4 0 L2 0
0 0 0 0 0 L2 0 L2

0 0 0 0 −L4 0 L2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(D3)

V̂
β

k,q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 L4 0 −L4 0 0 0 0
L4 0 L2 0 0 0 0 0
0 L2 0 L2 0 0 0 0

−L4 0 L2 0 0 0 0 0
Y1 0 W2 0 0 L3 0 −L3

0 Y3 0 W1 L3 0 L1 0
W2 0 Y2 0 0 L1 0 L1

0 W1 0 Y4 −L3 0 L1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(D4)

APPENDIX E: FREE HOPPING AND VERTEX ELEMENTS

The nearest-neighbor free hopping P (k), Q(k) and the
polaronic diagonal Y (k, q) and nondiagonal W (k, q) vertex
elements are

P1(k) = 2(2t1 − t2)

3
√

3
γk − 2t3

3
√

3
γk, (E1)

P2(k) = 2t2√
3
γ̃k − 2t3√

3
γ̃k, (E2)

Q1(k) = (4t1 + t2)

3
√

2
γk + t3

3
√

2
γk, (E3)

Q2(k) = t2√
2
γ̃k − t3√

2
γ̃k, (E4)

W1(k, q) = t3 − t2√
2N

(γ̃k−quq + γ̃kvq), (E5)

W2(k, q) = −4(2t1 − t2 − t3)

3
√

3N
(γk−quq − γkvq), (E6)

Y1(k, q) = −16(t1 + t2 + t3)

9
√

2N
(γk−quq + γkvq), (E7)

Y2(k, q) = −2(4t1 + t2 + t3)

3
√

2N

(
γk−quq + γkvq

)
, (E8)

Y3(k, q) = −4t1 + t2 + t3

3
√

2N
γkvq − 3(t2 + t3)√

2N
γk−quq, (E9)

Y4(k, q) = −4t1 + t2 + t3

3
√

2N
γk−quq − 3(t2 + t3)√

2N
γkvq, (E10)

with γk = 1/2(cos kx + cos ky ) and γ̃k = 1/2(cos kx −
cos ky ), where N is the number of sites, and uq and vq are the
Bogoliubov coefficients [18].

The free hopping elements arising from the next-nearest and
third-neighbor hoppings are

F1(k) = −4t ′γ ′
k

9
− 4t ′′γ ′′

k

9
, (E11)

F2(k) = −8t ′γ ′
k

3
√

6
− 8t ′′γ ′′

k

3
√

6
, (E12)

F3(k) = −2t ′γ ′
k

3
− 2t ′′γ ′′

k

3
, (E13)

F4(k) = − t ′γ ′
k

3
− t ′′γ ′′

k

3
, (E14)

where γ ′
k = cos kx cos ky . The polaronic next-nearest and

third-neighbor vertex elements are

L1(k, q) = 4t ′

3
√

N
γ ′

k−quq + 4t ′′

3
√

N
γ ′′

k−quq, (E15)

L2(k, q) = 4t ′

3
√

N
γ ′

kvq + 4t ′′

3
√

N
γ ′′

k vq, (E16)

L3(k, q) = 8t ′

3
√

6N
γ ′

k−quq + 8t ′′

3
√

6N
γ ′′

k−quq, (E17)

L4(k, q) = 8t ′

3
√

6N
γ ′

kvq + 8t ′′

3
√

6N
γ ′′

k vq (E18)

with γ ′′
k = 1/2(cos 2kx + cos 2ky ).
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