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Phase diagram of dipolar-coupled XY moments on disordered square lattices
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The effects of dilution disorder and random-displacement disorder are analyzed for dipolar-coupled magnetic
moments confined in a plane, which were originally placed on the square lattice. In order to distinguish the
different phases, new order parameters are derived and parallel tempering Monte Carlo simulations are performed
for a truncated dipolar Hamiltonian to obtain the phase diagrams for both types of disorder. We find that both
dilution disorder and random-displacement disorder give similar phase diagrams, namely, disorder at small enough
temperatures favors a so-called microvortex phase. This can be understood in terms of the flux closure present in
dipolar-coupled systems.
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I. INTRODUCTION

In frustrated magnetic systems, there are a variety of
interesting phenomena including the inhibition of long-range
order [1], highly degenerate ground states [2], incommensurate
phases [3–5], spin-glass physics [6,7], and emergent rules on
local fluctuations [8,9]. In many of these systems, including the
pyrochlores [8,10], dipolar contributions are important. More-
over, the dipolar interaction itself may be understood in terms
of frustration. Here, the ferromagnetic and antiferromagnetic
components compete, resulting in its anisotropic behavior.

In recent years, artificial spin systems, manufactured by
assembling single-domain nanoscale magnets, have been in-
vestigated [11–13]. These nanomagnets interact purely via
magnetostatic coupling that, to lowest order, can be described
by dipolar coupling only. In many of these artificial spin
systems, the nanomagnets have Ising-type degrees of freedom
[11,14–18]. In addition, a modification of the interaction
energies was recently demonstrated by combining Ising-type
nanomagnets with nanomagnets featuring continuous in-plane
moments placed at the vertices [19].

Systems entirely built out of dipolar-coupled moments that
rotate freely in the plane are predicted to exhibit interesting
physics such as continuously degenerate ground states [20]
and order-by-disorder mechanisms [21]. Their experimental
investigation is, however, still in its infancy [22–25]. Such a
system will henceforth be denoted as a dXY system, where
the XY is in analogy to the XY model and the d refers to the
dipolar coupling.

Without any assumptions about the geometry of a dXY
system, the only symmetry supported by the Hamiltonian is
time reversal. If the moments are placed on a regular lattice, the
symmetry group of the Hamiltonian is enhanced by the point
group of the lattice as a result of the anisotropy of the dipolar
interaction. Therefore, different geometries will give rise to
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additional phases and universality classes for the transitions
involved.

If the dXY system is placed on the square lattice, the
system is known to have a continuously degenerate ground
state, despite the symmetry group of the Hamiltonian being
finite rather than continuous [20]. In previous work, the so-
called order-by-disorder transition was demonstrated [21].
Here, finite temperature leads to an effective selection of
certain states of the ground-state manifold due to different
spin-wave stiffnesses along certain directions that follow the
fourfold symmetry of the square lattice. This results in a
low-temperature long-range-ordered striped phase. A similar
selection effect is seen with the introduction of disorder in the
form of vacancies. Here, a long-range-ordered microvortex
state emerges, that also respects the finite symmetry of the
Hamiltonian [21].

For the nondisordered dXY system on the square lattice, the
resulting phase transition to a high-temperature paramagnetic
regime has been studied numerically, revealing either an
Ising [26] or an XYh4 [27–29] universality class transition.
The critical exponents obtained by numerical investigations
lie within the numerical error at the values expected for the
Ising model. But, since the XYh4 has a marginal operator,
which means that the critical exponents can be tuned to the
critical exponents of the Ising universality class in one of
the limiting cases [30], it is not clear if the dXY system
on the square lattice saturates this limit and therefore belongs
to the Ising universality class, or is just close to saturation and
is therefore only properly described by an XYh4 universality
class. Consequently, numerical investigations of this transition
are to a certain degree inconclusive.

It can, however, conclusively be argued that the value of h4

is large [27–29], such that the system has a strong effective
anisotropy, that follows the fourfold anisotropy of the square
lattice. This drives the dXY system on the square lattice away
from the Berezinskii-Kosterlitz-Thouless transition [31,32]
towards a clear second-order phase transition.
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The dilution-disordered system, where vacancies are in-
troduced, was previously studied using a temperature-sweep
Monte Carlo approach and an observable, which consisted
of fourth powers of the spin components [27,33,34]. Various
values of dilution were examined and well-converged results
were obtained up to a dilution rate of approximately 6%. In
addition, the results qualitatively agreed with the predictions
from the spin-wave analysis [21].

The dXY system on the square lattice with random dis-
placement of the sites was studied using a parallel tempering
approach [35]. Here, the spin-glass overlap observable was
considered and it was concluded that no spin-glass phase is
observed even for the highest amounts of disorder. In addition,
fully random placement of dipolar-coupled XY spins, as well
as random-displacement disorder applied to the square lattice,
was studied by means of a saddle-point analysis [36]. Here,
it was demonstrated that a spatial localization of magnetic
excitations occurs in systems with strong disorder. To the
best of our knowledge, however, no phase diagram has been
determined for a random-displacement disordered dXY system
on the square lattice.

In this paper, the full phase diagrams for both the dilution-
disordered as well as the random-displacement disordered case
are obtained numerically. Both diagrams display a pocket at
low temperature and moderate disorder where the microvortex
phase dominates. Furthermore, there is a striped phase region
for smaller disorder and higher temperature. Starting from
either phase, the paramagnetic regime is obtained if either
temperature or disorder are increased sufficiently. The structure
of the phase diagram can be understood by considering the
magnetic flux closure present in dipolar systems. If the full
symmetry of the square lattice is present, the flux closure can
occur globally and the striped phase will dominate over the
microvortex phase due to a smaller spin-wave stiffness. If the
point-group symmetries are broken by introduction of disorder,
magnetic flux closure will occur locally and the microvortex
phase will dominate at low temperatures.

The remainder of the paper is organized as follows. The
model and the order parameters are introduced in Sec. II.
The methods are specified in Sec. III and numerical data are
reported for the nondisordered case in Sec. III A. Our results for
the dilution-disordered dXY system are presented in Sec. III B
and for random displacement in Sec. III C. A Binder cumulant
analysis is introduced and consequently applied to the data in
order to give a system-size-independent phase diagram. The
limitations and the applicability of the order parameters are
then discussed in Sec. IV, where it is shown that, for the
disorder range dealt with in this paper, the order parameters
are still well defined. Finally, similarities between the phase
diagrams for the two types of disorder are highlighted in Sec. V
and a possible interpretation of these similarities in terms of
magnetic flux closure is provided.

II. MODEL AND ORDER PARAMETERS

The (classical) Hamiltonian of the dXY system is given by

H = D

2

∑
i �=j

pipj

r3
ij

[�Si · �Sj − 3(�Si · r̂ij )(�Sj · r̂ij )], (1)

(a) (b)

FIG. 1. (a) The degenerate ground state of the square-lattice dXY
system is defined within a 2×2 magnetic unit cell via an angle-
degeneracy parameter φ. (b) Possible vectors �M are shown as given
in Eq. (2). The black solid circle indicates | �M| = 1, which is fulfilled
for the ground-state manifold depicted in (a). The arrows correspond
to the four striped phases (light blue) and the four microvortex phases
(dark blue). A pictograph is given to associate the vectors with their
respective phases. The light blue dot in the middle corresponds to the
paramagnetic phase.

where the spins, as well as their positions, are confined to the xy

plane. D denotes the dipolar-interaction strength and without
loss of generality is set to 1. The dilution parameters pi are
either 1 or 0, and are 0 if the ith moment is removed and
1 otherwise. In the nondisordered system, all pi are 1. The
difference vector between the positions at the sites i and j is
denoted by �rij , its length by rij , and the normalization of this
vector to unit length is denoted as r̂ij . For a nondisordered
system, all sites lie on a regular square lattice in the xy

plane, and the nearest-neighbor distance is set to 1. For the
introduction of random displacements, the position of each site
is randomly displaced in the xy plane according to a Gaussian
distribution.

For the remainder of the paper, a cutoff radius will be
applied to the evaluation of Eq. (1) in order to speed up the
calculations. Therefore, instead of a summation of all sites
i �= j , we will only consider contributions of sites with 1 �
|�rij | � rcut, where rcut is the cutoff radius. The cutoff chosen
for the simulations in Sec. III was rcut = 2, which included
the 12 closest lattice sites. In what follows, we will abbreviate
the studied system with tdXY for truncated dipolar XY . The
rather small value for rcut was chosen since we expect that
the qualitative features in the phase diagram will already be
captured correctly, while the Hamiltonian can still be evaluated
quickly so that extensive simulations can be performed. Note,
however, that a larger value of rcut would result in more
frustration, so that quantitative features such as the critical
temperature Tc are expected to decrease with larger rcut.

Irrespective of a truncation of the summation in Eq. (1),
the ground state of the dXY system on the square lattice
is continuously degenerate and is defined in the magnetic
unit cell, which is a 2×2 plaquette. The ground-state spin
configuration is parametrized by a global angle-degeneracy
parameter φ, as depicted in Fig. 1(a) [20]. This continuous
degeneracy is broken by finite temperature or dilution disorder
as shown in Ref. [21]. Namely, thermal excitations favor striped
phases, where φ = nπ

2 for n ∈ Z, due to different spin-wave

064420-2



PHASE DIAGRAM OF DIPOLAR-COUPLED XY MOMENTS … PHYSICAL REVIEW B 98, 064420 (2018)

stiffnesses along different directions. In contrast to thermal
excitations, dilution disorder is known to select the so-called
microvortex phase, where φ = π

4 + nπ
2 again with n ∈ Z. The

microvortex phase ensures magnetic flux closure at the scale
of each plaquette, whereas magnetic flux closure happens in
the striped phase at infinity.

Up to now [26–29,37], any type of long range order in
the dXY or the tdXY systems on the square lattice has been
described with the magnitude of the order parameter

| �M| = 1

N

∣∣∣∣∣
∑

i

((−1)yi cos θi, (−1)xi sin θi )

∣∣∣∣∣, (2)

where θi is the angle of the ith spin with, for example, the x

axis. The sites are enumerated with xi and yi along x̂ and ŷ.
In the nondisordered case, under the assumption of a nearest-
neighbor distance of 1, the enumeration indices xi and yi are
also the x and y coordinates, respectively. The order parameter
is normalized to be 1 for the ground states by dividing by the
total number of spins N . The vector �M lies on the unit circle for
the ground state configurations. Possible values for the vector
�M are depicted in Fig. 1(b) and example ground states are given

as pictographs, which represent the character of the phase given
by each vector. As an example, the point (1, 0) corresponds to
a striped order along x̂, whereas (−1, 0) also corresponds to a
striped order along x̂ shifted by half a magnetic unit cell along
the ŷ direction. Analogously, striped orders along ŷ correspond
to the two vectors (0,±1). The microvortex phases correspond
to the four points at 1√

2
(±1,±1) and the paramagnetic phase

corresponds to (0,0).
Since the vector �M lies on the circle described by | �M| = 1

for all ground-state phases, it is not possible to distinguish the
microvortex phase from the striped phase by the magnitude
| �M|. However, it is possible to differentiate between the para-
magnetic phase and long-range order in either the microvortex
phase or the striped phase.

In order to differentiate the ground-state phases, we can
consider the polar representation of the order parameter �M =
(Mx,My ) = | �M|(cos φ, sin φ). The vector with doubled angle
[| �M|(cos 2φ, sin 2φ)] is introduced since this vector assigns
the striped phases to vectors along the x axis and the microvor-
tex phases to vectors along the y axis. This gives

| �M| cos

[
2 arctan

(
My

Mx

)]
= M2

x − M2
y

| �M| , (3a)

| �M| sin

[
2 arctan

(
My

Mx

)]
= 2MxMy

| �M| , (3b)

which describe the projections of a state onto its striped
phase components and its microvortex phase components,
respectively.

Equations (3) therefore give possible order parameters for
(a) the striped and (b) the microvortex phase. These order
parameters are, however, numerically unfavorable at high
temperature since they are divided by the length of the vector
| �M|. Group theory can therefore be considered in order to
find order parameters with the same transformation proper-
ties. Such order parameters have to transform as irreducible
representations of the symmetry group of the underlying

TABLE I. Character table for C4v , the point group of the square
lattice.

C4v E 2C4 C2 2σv 2σd

A1 1 1 1 1 1 x2 + y2

A2 1 1 1 1 1
B1 1 1 1 1 1 x2 − y2

B2 1 1 1 1 1 xy

E 2 0 2 0 0 (x, y )

system. For the dXY model on the square lattice, the symmetry
group is given by time-reversal symmetry enhanced by the
corresponding point group of the lattice, which is C4v for the
square lattice. The character table for this point group is given
in Table I. In the last column of the table, the simplest functions
are indicated, which transform according to the irreducible
representations. These functions are the symmetry-allowed
combinations of the components of the vector �M used to
construct the order parameters.

The vector �M itself transforms according to the irreducible
representation E, and therefore serves as an order parameter.
The length of the vector transforms according to the trivial
representation A1 that, due to its transformation property, can
only be used to distinguish between long-range order and the
paramagnetic phase. Inspection of Table I reveals that the two
projections derived in Eqs. (3a) and (3b) transform according
to the irreducible representations B1 and B2, respectively, and
therefore serve as valid order parameters.

Thus,

Ms =
√∣∣M2

x − M2
y

∣∣ and Mmv = √|2MxMy | (4)

are also valid order parameters for the striped phase and the
microvortex phase since they transform according to B1 and
B2, respectively. Furthermore, Ms and Mmv are numerically
more stable as they do not contain a division by the magnitude
| �M|. These two quantities as well as | �M| are determined in the
subsequent Monte Carlo simulations in order to distinguish
between the different phases.

III. MONTE CARLO SIMULATIONS

Monte Carlo simulations are now performed for the tdXY
system on the square lattice in order to construct the phase
diagrams for both the dilution-disordered system as well as the
random-displacement disordered system. The code1 is based
on the ALPS project [38–40]. It uses a parallel tempering
algorithm [41–43] (also known as replica-exchange Monte
Carlo) in order to thermalize even quite heavily frustrated
systems. Parallel tempering refers to the simulation of the same
system at several temperatures in parallel, with regular ex-
change of the temperatures between the simulations according
to a detailed-balance condition. All figures are generated with
matplotlib [44].

1Source code available under http://github.com/domischi/mcpp.
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In the following simulations, periodic boundary conditions
were used. We thermalized the system with 2×105 lattice
sweeps. Subsequently, 104 measurements were made while,
between two successive measurements, 15 lattice sweeps were
carried out. For the disordered cases, a total of 40 different tem-
peratures were used, which were linearly distributed between
T = 0.1 and 1.6. The simulations performed for this work took
a total of approximately 105 CPU hours, with the majority
of time spent on simulating the disordered systems, where
the disorder average over several realizations had to be taken.
Before considering the simulations for the disordered systems,
the nondisordered case is first simulated to gain further insight
into this simpler situation where no disorder average has to be
taken.

A. No disorder

The simulation for the nondisordered system was performed
in order to validate the order parameters derived in Sec. II.
In total, 220 temperatures were implemented, which were
uniformly spaced at higher temperatures and logarithmically
spaced at lower temperatures. The three order parameters are
plotted versus the temperature in Fig. 2(a). As expected, the
magnitude | �M| indicates the appearance of long-range order as
the temperature decreases [obtained from the Binder cumulant
crossing: Tc(rcut = 2) = 0.996 ± 0.017]. A similar trend is
visible for Ms . Furthermore, fluctuations away from the striped
phase have a contribution to Mmv , so that Mmv rises around
the phase transition between the paramagnetic phase and the
striped phase and then slowly decays.

In the inset of Fig. 2(a), we show the same data with a
logarithmic temperature axis. The value of Mmv appears to
saturate at around 0.4. Comparing, however, with Fig. 2(b),
where the data for Mmv are shown for three different system
sizes it can be seen that there is a steep increase of Mmv ,
which indicates the transition to the angle degenerate ground
state [21]. This transition is driven by the Goldstone mode,
which is a result of the angle degenerate ground state, trans-
forming in this caseφ → φ + δφ in Fig. 1(a) over a large length
scale. This Goldstone mode can be seen in Fig. 2(c), whereMmv

is distributed very homogeneously across the system. Note that
the Goldstone mode makes all angles φ in Fig. 1(a) equally
accessible, so that the saturation value for Mmv in the limit
T → 0 can be computed as an average with respect to φ. Doing
so gives Mmv ≈ 0.7628 for T → 0, which is consistent with
the trend seen in the inset of Fig. 2(b) for the largest system
size considered.

To conclude the results of this section, the order parameters
Ms and Mmv introduced in Eq. (4) give a measure of the striped
phase and the microvortex phase, respectively. Therefore, they
can be used in the subsequent simulations in the two disordered
cases to obtain the phase diagrams of the tdXY systems.

B. Dilution

We now consider dilution disorder through the introduction
of vacancies. Starting with the nondisordered square lattice,
moments are removed with a probability p, which will be
referred to as the dilution rate.

(a)

(b)

(c)

FIG. 2. (a) The temperature dependence of the three order pa-
rameters discussed in Sec. II are shown. These are obtained with
parallel tempering Monte Carlo simulations for the nondisordered
tdXY system with a system size of L = 16 averaged over four
independent runs. The same data plotted on a logarithmic temperature
scale is shown in the inset. (b) The microvortex order parameter is
shown for the three system sizes studied. The same data are plotted on
a logarithmic temperature scale in the inset to highlight the transition
at T = 0. (c) A configuration is shown, which was obtained by our
simulations at temperature 1.8×10−6. Since the microvortex order
parameter is very homogeneous across the system, it is likely to
originate from the Goldstone mode.

The diluted square-lattice dXY was previously treated using
a spin-wave calculation in order to obtain the phase diagram
[21]. In this spin-wave calculation, a truncation of rcut = 1 was
applied. For small but finite p at T = 0, the microvortex phase
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FIG. 3. Each of the order parameters for the dilution-disordered
tdXY system on the square lattice as a function of dilution rate p

and temperature T for three different system sizes (L = 16, 32, 48)
obtained via parallel tempering Monte Carlo simulations averaged
over 32 disorder realizations.

is preferred and for small but finite T at p = 0, the striped
phase is preferred. For any value of p at sufficiently high T ,
the paramagnetic phase is expected. With temperature-sweep
Monte Carlo simulations, a first quantitative phase diagram
was constructed [27,33,34]. Here, the measured observable
consisted of fourth powers of the spin components and
essentially was a measure of the likelihood that spins point
along diagonals rather than along axes. This gave an indication
of the selected phase, but did not serve as an order parameter.
This led to well-converged results for small values of p.
However, due to the frustration and the disorder at higher values
of the dilution rate, a temperature-sweep algorithm is prone to
get stuck in metastable states, so that no conclusive statement
was possible above a dilution rate of approximately 6%.

The order parameters determined by our Monte Carlo
simulations as a function of temperature and dilution rate are
summarized in Fig. 3. There is good convergence of the data for
all system sizes, temperatures, and dilution rates since there is
no visible noise. The previously proposed phase diagram [21]
is in qualitative agreement with the results for Ms and Mmv .
Namely, there is a pocket at low temperatures and finite dilution
rate where the microvortex phase is predominant (region with
strong signal in the panels for Mmv , which is more visible at
larger system sizes). In addition, for small dilution rates and
high enough temperatures, the striped phase dominates (region
with a strong signal in the panels for Ms). Nonetheless, in
regions where one phase dominates, there is still some signal
of the order parameter for the other phase visible. This occurs
because fluctuations from one phase appear as an increase in
the order parameter of the other phase.

Previously, it was predicted for a nearest-neighbor truncated
dipolar Hamiltonian [21] that any long-range order disappears
close to the percolation limit of the square lattice at 1 − p

perc
c =

40.7%. This is in agreement with the general expectation
for nearest-neighbor only Hamiltonians, that no long-range
order can be seen above the percolation threshold. However,
inspection of | �M| in Fig. 3 reveals that there is no longer a

FIG. 4. The phase diagram for the diluted square lattice tdXY
system as a function of dilution rate and temperature derived via
Binder cumulant crossings, superimposed on the corresponding Mmv

data of Fig. 3 for L = 48. The filled (open) markers give Tc (pc) with
red dots for | �M|, orange triangles forMs , and violet diamonds forMmv ,
respectively. Region “mv” corresponds to the microvortex phase,
region “s” to the striped phase, and region “para” to the paramagnetic
phase.

sizable contribution to the long-range order parameter already
at a dilution rate of pc(rcut = 2) ≈ 15%. Note that this value is
dependent on the cutoff and that the inclusion of more lattice
sites leads to a reduction of both Tc as well as pc due to the
increase in frustration present in the system. This is in contrast
to percolation theory, which predicts an increase of pc as rcut

is increased.
All of the data presented in Fig. 3 are system-size dependent.

In order to give a system-size-independent phase diagram,
another method needs to be implemented. Even though the
data are not good enough to attempt a scaling collapse, a Binder
cumulant analysis can be applied. Crossings of the cumulants
for different system sizes at a fixed dilution rate can, up to
corrections to scaling, precisely locate the critical temperatures
for the involved transitions.

Making use of the binning analysis implemented in ALPS,
we obtain the Binder cumulants with their statistical error.
Through a resampling procedure, such error information can
be used to obtain possible realizations of the Binder cumulant
curves. In particular, the mean value of the Binder cumulants
as a function of T at a fixed value of p was perturbed with
uncorrelated Gaussian noise according to the statistical error
at each sampling point. Through the analysis of many such
curves, statistics on the crossings can be obtained and, from
this, an estimate for Tc and its uncertainty at every value of p

can be determined. We refer to this method as the fixed dilution
rate analysis. Analogously, the same procedure can be applied
for the Binder cumulants at a fixed temperature as a function
of p in order to obtain an estimate for pc at every value of T .
We refer to this as the fixed-temperature analysis.

The system-size-independent phase diagram is shown in
Fig. 4. Filled markers denote the procedure where the data were
analyzed for a fixed dilution rate to obtain Tc, whereas open
markers are the data for pc obtained with the fixed-temperature
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analysis. The Binder cumulant estimate for Tc (pc) are shown
with red dots, violet diamonds, and orange triangles for | �M|,
Mmv , and Ms , respectively. For comparison, the microvorticity
heat map (Mmv) for L = 48 is shown in the background.

A few remarkable features can be identified in Fig. 4. At
the critical line separating the paramagnetic phase and the
striped phase, Tc predicted by the Binder cumulant analysis
of Ms and | �M| agree well and have small error bars. These
data also agree well with the data for pc, which was obtained
by the fixed-temperature analysis. Furthermore, the fixed-
temperature analysis yielded the boundary between the striped
phase and the paramagnetic phase at pc(T = 0, rcut = 2) ≈
11%, a value which is system size independent, in contrast to
the earlier estimate of 15%. Note that pc is cutoff dependent.
Since a larger rcut increases the frustration, we expect that
pc(T = 0, rcut = ∞) � pc(T = 0, rcut = 2), so that our result
for pc serves as an upper bound to pc(rcut = ∞). In fact, the
frustration could even lead to pc(rcut → ∞) → 0.

At p > 11%, our fixed dilution rate analysis could no longer
provide quantitative data. This is due to the fact that the
phase boundary is close to vertical, so that Tc in this area
is very sensitive to p. At the lower critical line, separating
the microvortex phase (region “mv”) from the striped phase
(region “s”), there is again good agreement between the data for
the Binder cumulants of Mmv and Ms . However, here the error
bars are substantially larger. This is due to the Binder cumulants
being flatter as a function of temperature, resulting in poorly
defined crossings. The fixed-temperature analysis did not
perform well for the phase boundary between the microvortex
phase and the striped phase since it was noise dominated.
Therefore, these data are not shown. At p � 12%, the analysis
could no longer be performed, as there were no more crossings.
This corresponds to the onset of paramagnetism in the region
labeled “para”.

C. Random displacement

We now introduce random displacement. Starting with
the nondisordered square lattice, every site is relocated by a
random displacement in the xy plane, taken from a Gaussian
random distribution with standard deviation σ .

To the best of our knowledge, no attempt has been made
to provide a phase diagram with respect to the strength of
the random displacement, even though simulations have been
performed for both medium disorder [35] and strong disorder
given by random placement of the moments [36]. For the
work on medium disorder [35], the starting point was the
square lattice and random displacements taken from a Gaussian
distribution were introduced. This paper was mainly concerned
with the disappearance of long-range order with the appearance
of a possible spin-glass phase for higher values of disorder.
The random placement of moments [36] resulted in a spatial
localization of magnetic excitations as well as low-energy
states incorporating microvortex like structures. The scope of
this work was, however, mainly the low-energy excitations and
not the construction of the phase diagram.

Our results for the three order parameters are shown in
Fig. 5(a). Similar to the dilution-disordered case, for random-
displacement disorder, the system also favors the microvortex
phase at low temperatures with a pocket of large values of

(a)

(b)

FIG. 5. (a) Each of the order parameters for random-displacement
disordered tdXY systems on the square lattice as a function of
the width of the random displacement σ and temperature T for
three different system sizes (L = 16, 32, 48) obtained via parallel
tempering Monte Carlo simulations averaged over 32 realizations.
(b) The phase diagram of the same system as (a) as a function of
temperature and width of the random displacement. This is derived
via Binder cumulant crossing and superimposed on the corresponding
Mmv data for L = 48 of (a). The assignment of colors, markers, and
regions is the same as in Fig. 4. The region “fs” not present in the
dilution case denotes region dominated by finite-size effects.

the microvortex order parameter for small T and intermediate
σ . Likewise, a high enough temperature results in the striped
phase (small σ and intermediate T ). Analogous to the dilution-
disordered case presented in Sec. III B, the heat maps for | �M|
indicate where no sizable contribution to long-range order is
expected, which occurs at approximately σ > 0.12.

While the phase diagrams in Figs. 4 and 5 are for two
different types of disorder, they should agree at p = 0 and
σ = 0 since here both simulations are nondisordered. At first
glance, this does not appear to be the case, but looking closely at
the phase diagram of the random-displacement disordered sys-
tem at small σ , the data do indeed agree with the nondisordered
system and behave continuously with σ . However, even small
values of σ � 0.01 are sufficient to stabilize the microvortex
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phase up to considerably high temperatures, which explains
the apparent mismatch between the two figures.

As carried out for the dilution-disordered system, a Binder
cumulant analysis was performed for the random-displacement
disordered system. The results are displayed in Fig. 5(b),
where again the microvorticity order parameter for L = 48
is displayed in the background to serve as a reference. The
definitions of the marker colors, forms, and fillings for the
data points of the Binder cumulant crossings are the same
as for the dilution-disordered case. Again, the regions in
the figure correspond to the microvortex phase (mv), the
striped phase (s), and the paramagnetic phase (para). At some
phase boundaries it was not possible to determine the Binder
cumulant crossing for the fixed-temperature analysis due to
statistical noise and data points are only shown where the
analysis could reliably be performed. Once more, a good
agreement between the data for the different order parameters
can be seen. The Binder cumulant analysis at a fixed disorder
strength breaks down at a disorder strength of σc(T = 0, rcut =
2) ≈ 0.06. This is again cutoff dependent. As argued in the
dilution-disordered case, we expect analogously σc(T = 0,

rcut = ∞) � σc(T = 0, rcut = 2). Note that non-negligible
values of the microvortex parameter persist up to σ ≈ 0.11,
which is much larger than σc(T = 0, rcut = 2). The appearance
of the associated region “fs” can be explained by the finite
size of the simulations. Indeed, this region becomes smaller
as the system size gets bigger as seen in Fig. 5(a), middle
column.

IV. APPLICABILITY OF THE ORDER PARAMETERS

Strictly speaking, the order parameters (| �M|, Ms , Mmv) are
only valid for the nondisordered system since any disorder
will in principle invalidate the symmetry discussion made in
Sec. II. Nevertheless, for small disorder, the derived order
parameters should still be approximately valid. The implicit
assumption made to employ the derived order parameters, even
in disordered systems, is that the enumeration indices xi and
yi in Eq. (2) are approximately valid descriptions of the lattice
positions. Certainly for small disorder the indices specify the
positions well. However, in the highly disordered systems, this
is no longer true.

To test if the enumeration in terms of xi and yi is valid, the
random-displacement disordered system can be considered.
The problem of enumeration becomes apparent when two
moments exchange their relative order. This is formally written
as follows: let us denote the position of the ith moment in
the nondisordered case with �r = (rx

i , r
y

i ) and the position
after applying the disorder with �R = (Rx

i , R
y

i ). To compute
the exchange probability, consider now two sites i and j ,
which respect in the nondisordered case rx

i < rx
j . An exchange

along the x direction has occurred if Rx
i > Rx

j . Analogously
for the y direction, r

y

i < r
y

j but R
y

i > R
y

j . The probability
of an exchange event depends on the width of the random
displacement and can be computed to be

ρex(σ ) = 2
1

2πσ 2

∫ ∞

−∞
dv

∫ ∞

v

du e
− u2

2σ2 e
− (v−1)2

2σ2 . (5)

The factor 2 comes from considering the exchange of sites
along both the x direction as well as the y direction.

As soon as an exchange event occurs, the group-theoretical
symmetry discussion in Sec. II will be invalidated. Therefore,
we need to make sure that the value of ρex(σ ) is small enough,
so that the order parameters obtained from the simulations are
well defined in each region of the phase diagram. For example,
the exchange probability given in Eq. (5) can be computed for
the largest σ used in Sec. III C, namely, a standard deviation of
σ = 0.2, resulting in ρex(σ = 0.2) = 4×10−4. This exchange
probability appears to be relatively high considering that, even
in the L = 16 system, the exchange of two sites is expected to
happen a total of 3 times in 32 disorder realizations. Therefore,
in approximately 10% of the simulations, the definition of the
order parameter breaks down at least locally. However, this is
the highest disorder considered and the system is already in
the paramagnetic phase, so that an error of this size should not
affect the conclusions considering the phase diagram.

For smaller values of σ , the exchange probability dimin-
ishes drastically. To illustrate this, for σ = 0.16, which is
just slightly smaller than the highest disorder considered, the
exchange is expected to only occur once in the 32 disorder
realizations for the largest considered system size (L = 48) and
this is still deep in the paramagnetic phase. Below σ = 0.16,
ρex ≈ 0 so it is not expected that the order parameters
break down at all in the simulations for low σ . There-
fore, we can conclude that the order-parameter definitions in
Eq. (4) are well justified for the construction of the phase
diagrams.

V. CONCLUSIONS

In this work, a truncated version of dipolar-coupled XY
(tdXY) spin system on the square lattice was treated under the
influence of disorder with Monte Carlo simulations. Starting
from the perfect lattice, disorder was introduced in two differ-
ent forms, namely, by introduction of vacancies and by random
displacement of each site. Some features of these systems are
already known from previous work [20,21,26,27,33–36]. This
paper extends these results by first deriving order parameters
for the phases known as the striped phase and the microvortex
phase. The order parameters of the tdXY system were then
determined using parallel tempering Monte Carlo simulations,
first for nondisordered systems down to very low temperatures,
and then for systems with either dilution or random displace-
ment as sources of disorder. The phase diagrams for both cases
of disorder were obtained via a Binder cumulant approach, to
find system-size-independent values for Tc (pc, σc) as well
as to quantify the uncertainty. Finally, it was argued that the
definitions of the order parameters are well defined even in the
disordered systems.

The newly derived order parameters, as well as the use of
parallel tempering Monte Carlo simulations, allowed us to dis-
tinguish the long-range-ordered phases from the paramagnetic
phase, and to determine the character of the long-range-ordered
phases. For both types of disorder, well-converged results for
the order parameters as a function of temperature and disorder
strength were obtained for all system sizes. Furthermore, the
system-size-independent phase diagram could be derived via
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a Binder cumulant analysis, which gave in most regions small
error bars for Tc as well as pc and σc.

In previous work on the dilution-disordered sys-
tem [21,27,33,34], it was speculated that the disappearance of
long-range order would occur close to the percolation threshold
of the square lattice (1 − p

perc
c = 40.7%). In contrast to these

predictions, our simulation result for rcut = 2 showed a much
lower critical dilution rate of pc(T = 0, rcut = 2) ≈ 11%. This
value should serve at least as an upper bound on pc(rcut = ∞).

A full phase diagram for the random-displacement dis-
ordered tdXY system on the square lattice was obtained.
In contrast to the dilution-disordered system, a large region
seemed to be apparent [region “fs” in Fig. 5(b)], where the
system size results in a sizable contribution to the order
parameters. This region “fs” is expected to vanish in the
thermodynamic limit. Also for this system an upper bound
on the critical disorder strength of σc(rcut = 2) ≈ 0.06 was
obtained, above which no long-range order is expected.

Interestingly, in the phase diagrams for both the dilution-
disordered system as well as the random-displacement disor-
dered system, the other regions behave similarly, even though
the notion of disorder in the two systems is quite different. In
particular, the microvortex phase is favored by both types of
disorder. Also, in both systems, at high enough temperature
and small enough disorder, the striped phase is favored, before

ending in the paramagnetic phase at higher temperatures or
disorder strengths.

These similarities in the phase diagrams suggest a general
mechanism for the selection of the microvortex phase, which
is common to both dilution and random displacement. This
can be understood by considering the fact that in disordered
systems, in contrast to the nondisordered system, it is more
difficult for magnetic flux closure to occur at bulk length scales
since disorder breaks locally many of the previously available
symmetries. Therefore, instead of a global magnetic flux
closure obtained by the striped phase, a more local magnetic
flux closure structure as in the microvortex phase is likely to
be favorable. The derivation of this more general mechanism
from an analytic perspective poses an interesting question for
future work.

This research is openly available at CERN [45].
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