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Static properties and current-induced dynamics of pinned 90◦ magnetic domain walls under applied
fields: An analytic approach
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Magnetic domain walls are pinned strongly by abrupt changes in magnetic anisotropy. When driven into
oscillation by a spin-polarized current, locally pinned domain walls can be exploited as tunable sources of
short-wavelength spin waves. Here, we develop an analytical framework and discrete Heisenberg model to describe
the static and dynamic properties of pinned domain walls with a head-to-tail magnetic structure. We focus on
magnetic domain walls that are pinned by 90◦ rotations of uniaxial magnetic anisotropy. Our model captures the
domain wall response to a spin-transfer torque that is exerted by an electric current. Model predictions of the
domain wall resonance frequency and its evolution with magnetic anisotropy strength and external magnetic field
are compared to micromagnetic simulations.
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I. INTRODUCTION

Magnetic domain walls (DWs) are of great interest for
spintronics [1]. The motion of DWs in magnetic nanowires has
attracted particular attention because of potential applications
in data storage and logic devices [2–4]. Magnetic DWs can
be driven by a magnetic field, an electric current [5–9],
propagating spin waves [10–12], or an electric field [13,14]. On
the other hand, strong DW pinning at specific locations of a fer-
romagnetic film offers attractive prospects for magnonics [15],
where they can be used as spin-wave nanochannels [16–18]
or monochromatic spin-wave sources [19,20]. In unpatterned
films, DW pinning requires a lateral modulation of magnetic
anisotropy. Here, the anisotropy boundaries pin the magnetic
DWs and an external magnetic field tailors their spin structure
instead of moving them. Deterministic switching between
wide and narrow magnetic DWs by a magnetic field has been
demonstrated [21] and the energetics of different DW types can
drastically alter the magnetization reversal process [22,23]. For
spin-wave emission, a pinned magnetic DW needs to be driven
into oscillation by high-frequency actuation. Spin-transfer
torques from an ac spin-polarized current can be used to
achieve this [19]. Magnetic anisotropy boundaries themselves
can also act as local spin-wave sources in a microwave
magnetic field [24]. Thus, even if all magnetic DWs are erased
by an external bias field, spin waves are still emitted from
anisotropy boundaries. In this case, dissimilar magnetization
precessions in neighboring domains trigger the excitation of
spin waves.

Regular modulations of magnetic anisotropy can be induced
by magnetoelectric coupling between a ferromagnetic film and
a ferroelectric layer. In some material systems, the ferroelectric
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domain pattern is completely transferred to the ferromag-
net. Full ferroelectric-ferromagnetic domain correlations have
been demonstrated in bilayers where the ferromagnetic film
is exchange coupled to the canted magnetization of a single-
phase multiferroic film [22,25–27] or strain coupled to the
ferroelastic domains of a ferroelectric crystal [28–31]. In
both material systems, a local uniaxial magnetic anisotropy
is induced in the ferromagnetic film. The in-plane axis of
uniaxial magnetic anisotropy rotates from one domain to
the other. Since ferroelectric domain boundaries in multifer-
roic bilayers are only a few nanometer wide, the magnetic
anisotropy boundaries are nearly abrupt. Magnetic domains
walls are pinned strongly by such sharp rotations of magnetic
anisotropy. Besides multiferroic heterostructures, modulations
of uniaxial magnetic anisotropy can also be realized by local
ion irradiation [18,32] and thermally-assisted scanning probe
lithography [33]. In most of the cited examples, the uniaxial
magnetic anisotropy axis rotates by 90◦. In thin ferromagnetic
films and zero magnetic field, the anisotropy boundaries thus
pin 90◦ magnetic DWs of the Néel type.

In this paper, we provide a theoretical description of a mag-
netic DW that is pinned by a 90◦ uniaxial magnetic anisotropy
boundary. To describe the static and dynamic properties of the
DW, we use a 1D model with continuous spatial variables. The
model allows us to accurately calculate the static deformation
of the DW profile in a perpendicular magnetic field. Dynamic
excitations of the DW are modeled by the inclusion of a
spin-transfer torque from an electric current. Application of
a spin-polarized current moves the DW center away from the
anisotropy boundary and tilts the DW magnetization out of
the film plane. Next, we describe the dynamics of a pinned
magnetic DW by using the center and tilting angle of the
DW as collective coordinates. We derive an expression for
the DW resonance frequency and calculate how it varies as a
function of magnetic anisotropy strength and applied magnetic
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FIG. 1. Collective coordinates of a head-to-tail 90◦ magnetic DW.
The red arrows point in the direction of local magnetization. The left
(L) and right (R) parts of the magnetic layer differ in the direction
of uniaxial magnetic anisotropy axis. The red solid line indicates
the abrupt anisotropy boundary, and the black dashed line marks the
DW center. The displacement of the DW center from the anisotropy
boundary is given by coordinate q while the DW tilting angle from
the film plane is given by ψ . The black arrow indicates the direction
of applied magnetic field (Happ).

field. For consistency, we compare our analytical results with
numerical simulations based on a 1D Heisenberg model and
the Landau-Lifshitz-Gilbert (LLG) equation as well as with
micromagnetic simulations.

The paper is organized as follows. In Sec. II we introduce
the DW models. In Sec. III we provide results for the DW
profile in zero and nonzero magnetic field. Section IV studies
the effect of an applied electric current. First, we develop a
model for current-induced DW oscillations in zero magnetic
field. Then, a model describing the simultaneous action of a
magnetic bias field and a spin-polarized current is presented.
An expression for the DW resonance frequency is derived and
numerically studied. Finally, we discuss our results in Sec. V.

II. MODEL

In our models, we orient the ferromagnetic film in the y-z
plane (see Fig. 1). The DW magnetization changes along the y

axis, and we assume translation symmetry along the z axis. The
magnetic anisotropy boundary is located at y = 0 and the angle
between the uniaxial anisotropy axis in the left (L) and right (R)
domains is set to 90◦. The unit vector along the anisotropy axis
in the domains is expressed as êu = (0, sin ξu, cos ξu), with ξu

differing in the domains

ξu =
{
π/4, in the left domain (y < 0),
3π/4, in the right domain (y > 0). (1)

In this section, we introduce two models that describe the
static and dynamic properties of a pinned magnetic DW. For
analytical calculations, we exploit a continuous 1D model in
which the magnetization direction varies smoothly across the
DW. Numerical simulations are performed using a discrete 1D
Heisenberg model. Here, we consider a finite chain of magnetic
moments along the y axis. Relations between the two models
are explained.

A. Continuous model

In the continuous limit, the volume energy density can be
written as the sum of exchange energy density (wex), shape
anisotropy density (w⊥), Zeeman energy density (wZ), and

uniaxial anisotropy energy density (wu)

w = wex + w⊥ + wZ + wu. (2)

Generally, the terms take the forms

wex = A [(∇mx )2 + (∇my )2 + (∇mz)2], (3a)

w⊥ = K⊥ (m · êx )2, (3b)

wZ = −μ0 Ms m · Happ, (3c)

wu = −Ku (m · êu)2, (3d)

where êx = (1, 0, 0) is a unit vector along the magnetization
direction, m = M/Ms, Ms is the saturation magnetization, A

is the exchange stiffness parameter, K⊥ is the perpendicular
anisotropy, and Ku is the uniaxial in-plane anisotropy. In our
calculations, we always assume K⊥ and Ku to be positive. Happ

is the applied magnetic field.

B. Heisenberg model

To complement our analytical results, we perform simula-
tions using a discrete Heisenberg model. In this model, the con-
tinuously varying parameter m(y) is replaced by ŝn = m(yn),
with yn indicating the position of the nth spin of a 1D chain.
The positional variable can be expressed as yn = (n − 1) a,
where n ∈ {1, 2, . . . , N} and a is the distance between two
adjacent magnetic moments. The Heisenberg Hamiltonian of
a 1D chain of magnetic moments is given by [34]

H = −J
∑

n

ŝn · ŝn+1 − μ0μS Happ ·
∑

n

ŝn

+D⊥
∑

n

(ŝn · êx )2 − Du

∑
n

(ŝn · êu)2, (4)

where J is the exchange coupling parameter, D⊥ > 0 is the
perpendicular magnetic anisotropy, and Du > 0 is the uniaxial
anisotropy in the film plane. The parameters in Eq. (4) are
related to those of the continuous model: J = 2a A, D⊥ =
a3 K⊥, and Du = a3 Ku. Moreover, if we define μS = μBS,
where μB is the Bohr magneton and S is the spin per unit
cell, then the saturated magnetization of one cell is given by
Ms = μS/a

3.

C. Spin dynamics

We will now describe the dynamics of magnetization that is
generated by an effective torque. The torques that we consider
are caused by an effective magnetic field or a spin-polarized
current. The time variation of the magnetization vector is
described by the Landau-Lifshitz-Gilbert (LLG) equation. In
the continuous limit, it reads

dm
dt

− α m × dm
dt

= �, (5)

where t is time, α is the Gilbert damping parameter, and � is
the total torque acting on m. � can be written as

� = −μ0 γ m × Heff + τ , (6)

where γ = |γg| > 0 is the gyromagnetic ratio. � consists
of two terms, one describing the torque that is induced by
the effective magnetic field (Heff ) and another representing
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FIG. 2. Spherical coordinate system used in the analytical model.

the current-induced spin-transfer torque (τ ). The effective
magnetic field is a functional derivative of the volume energy
density (w)

Heff = 1

μ0 Ms

δw

δm
, (7)

where μ0 is the vacuum permeability. The spin-transfer torque
acting on the magnetization is given by [6,35]

τ = −u [( j · ∇) − β m × ( j · ∇)]m, (8)

where j is a unit vector along the current direction and β is
the spin-torque nonadiabaticity. The parameter u is given by

u = μBIP

eMs
, (9)

where I is the charge current density, P is the spin polarization
of the current, and e is the electron charge. If we consider a
current along the y axis, we can write

τ = −u

(
∂

∂y
− β m × ∂

∂y

)
m. (10)

1. Spherical coordinates

For the sake of simplicity, we now express the LLG equation
in local spherical coordinates (θ, φ), as schematically shown in
Fig. 2. In this coordinate system, the magnetization vector can
be written as m = (cos φ sin θ, sin φ sin θ, cos θ ). Moreover,
we define two local base vectors perpendicular to m.

êφ = (êz × m)/ sin θ, (11a)

êθ = êφ × m, (11b)

where êz = (0, 0, 1). Consequently, the LLG equation [Eq. (5)]
takes the form [36,37]

dθ

dt
= − γ

Ms

1

sin θ

δw

δφ
− α sin θ

dφ

dt

−u

(
∂θ

∂y
+ β sin θ

∂φ

∂y

)
, (12a)

sin θ
dφ

dt
= γ

Ms

δw

δθ
+ α

dθ

dt

−u

(
sin θ

∂φ

∂y
− β

∂θ

∂y

)
. (12b)

The overall torque acting on m can be split as

� = �θ êθ + �φ êφ, (13)

where �θ = � · êθ and �φ = � · êφ .
Finally, the different energy density terms can be expressed

as

wex = A

[(
∂θ

∂y

)2

+
(

∂φ

∂y

)2

sin2 θ

]
, (14a)

w⊥ = K⊥ cos2φ sin2θ, (14b)

wZ = −μ0 Ms Happ sinφ sinθ, (14c)

wu = − Ku√
2

(sin φ sin θ ± cos θ )2. (14d)

Here, we took into account that the magnetization is solely
changing along the y direction and the magnetic bias field is
oriented alongy as well (Happ = Happ êy). In the expression for
wu, we included the abrupt 90◦ rotation of uniaxial magnetic
anisotropy. The upper sign relates to the left domain (y < 0)
and the lower sign applies to the right domain (y > 0).

2. Heisenberg model

In the discrete Heisenberg model, we replace m by ŝn in
the LLG equation. The effective magnetic field encountered
by spin ŝn is given by Heff n = −(μSμ0)−1(δH/δ ŝn). For the
discrete variable we use ∂ ŝ/∂y = (ŝn+1 − ŝn−1)/(2 a) at the
nth site of the 1D chain. This gives a discretized expression
for the current-induced spin-transfer torque

τ n = −u

a
[�ŝn − β ŝn × �ŝn], (15)

where �ŝn = (ŝn+1 − ŝn−1)/2.

III. 90◦ DOMAIN WALL

A. Equilibrium DW

We will now inspect the DW profile in equilibrium, i.e.,
when no external magnetic field and no electric current are
applied. If we assume that the magnetization rotates in the film
plane (φ = π/2), �θ = 0 in both domains and

�φ = γ

Ms

{
−2 A

∂2θ (y)

∂y2
+ Ku sin [2(θ (y) − ξu)]

}
. (16)
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FIG. 3. Domain wall profiles obtained from Heisenberg model
simulations for different values of applied magnetic field μ0Happ. In
the simulations, N = 2000, a = 0.5 nm, Ms = 1.5 × 106 A/m, A =
2.1 × 10−11 J/m, Ku = 2.5 × 104 J/m3, and D⊥ = 0.1Du. The open
circles indicate zero-field solutions of the analytic model [Eq. (19)].

In equilibrium, �θ = �φ = 0, which gives [7]

∂2θ ′

∂y2
= 1

λ2
sin θ ′ cos θ ′. (17)

Here, we defined θ ′(y) = θ (y) − ξu and

λ =
√

A

Ku

. (18)

For a head-to-tail 90◦ DW one needs to impose the boundary
conditions θ ′ → 0 for y → ±∞. Moreover, y = 0 and θ =
π/2 at the anisotropy boundary. Using these conditions, we
obtain a static solution for the DW profile

θ (y) =

⎧⎪⎪⎨
⎪⎪⎩

π
4 + 2 arctan[(

√
2 − 1) exp(y/λ)],

if y < 0,
3π
4 − 2 arctan[(

√
2 − 1) exp(−y/λ)],

if y > 0.

(19)

This expression is exact when dipolar interactions are
negligible. For a head-to-tail 90◦ DW this is an accurate
approximation because its profile is determined by the com-
peting strengths of exchange coupling and uniaxial magnetic
anisotropy [31]. Figure 3 demonstrates that the analytical
solution agrees well with Heisenberg model simulations for
zero magnetic field (see solid orange curve and open circles),
which also ignores dipolar interactions.

When a magnetic field is applied along an unpinned 180◦
magnetic DW, it moves to minimize Zeeman energy. On the
other hand, when the field is oriented perpendicular to the
same DW, its internal spin structure and, thereby, the dynamic
properties change [38,39]. Next, we will analyze how the
application of a magnetic field normal to the DW plane alters
the profile of a pinned 90◦ DW.

B. Effect of magnetic field

When an in-plane magnetic field is applied perpendicular
to the head-to-tail 90◦ DW, i.e., along the y axis, the Zeeman

energy is the same in both domains. Therefore, the DW will
not leave its equilibrium position on top of the anisotropy
boundary. Instead, the magnetization vectors in both domains
gradually rotate towards each other in a magnetic field. This
coherent reduction of the DW angle depends on the strength
of uniaxial magnetic anisotropy.

The torque that acts on the magnetization in an external
magnetic field Happ is given by

�φ = γ

Ms

{
−2A

∂2θ

∂y2
− Ku sin[2(θ − ξu)]

+Happ μ0Ms cos θ

}
. (20)

For Happ > 0, the magnetization angle θ in the left domain
increases by angle ζ , θL = π/4 + ζ , while in the right domain
θR = 3π/4 − ζ . Consequently, the magnetization rotation be-
tween neighboring domains (�) is reduced by 2ζ ; � = π/2 −
2ζ . Figure 3 shows how the DW profile evolves as a function
of applied magnetic field.

Deep inside the domains, where ∂θ/∂y = 0, Eq. (20) can
be used to derive an expression for ζ

Ku

μ0 Ms
sin (2 ζ ) = Happ cos

(
ζ + π

4

)
. (21)

This equation can be solved numerically for any arbitrary value
of Happ. Once the angle ζ is known, one can use the following
ansatz for the DW profile in an applied magnetic field

θζ (y) =

⎧⎪⎪⎨
⎪⎪⎩

π
4 + ζ + 2 arctan[C exp(y/λ′)],

if y < 0,
3π
4 − ζ − 2 arctan[C exp(−y/λ′)],

if y > 0,

(22)

where C can be extracted from the boundary condition at y = 0

C = tan

(
π

8
− ζ

2

)
. (23)

Moreover, λ′ in Eq. (22) is the DW width, which differs from
the zero-field DW width λ as defined by Eq. (18).

Figure 4 shows the parameter ζ and ratio p = λ′/λ as a
function of magnetic field for different values of Ku. While the
values of ζ are directly obtained from Eq. (21), the dependence
of λ′ follows from Heisenberg model simulations. Here, the
LLG equation is used to simulate the relaxation of discrete
magnetic moments in a magnetic field. Once the static state
is reached, the parameters ζ and λ′ are extracted by fitting the
spatial magnetization profile to Eq. (22). Equation (21) and the
discrete Heisenberg model give very similar results for ζ .

For large perpendicular magnetic fields, ζ approaches a
maximum of π/4. This value corresponds to full magnetization
saturation along the direction of applied magnetic field. As a
result of diminishing magnetization rotation between domains
(�), the DW width (λ′) decreases with increasing field strength
[Fig. 4(b)]. The predicted tunability of the width and internal
spin structure of a pinned DW might be exploited for active
manipulation of spin waves. Previously, it has been found
that dynamic stray fields in DWs reduce the transmission of
propagating spin waves if the DW width becomes smaller
than the spin-wave wavelength [40,41]. Reprogramming of the
DW spin structure by an external field at a fixed location of a
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FIG. 4. (a) Angle ζ and (b) p = λ′/λ as a function of applied
magnetic field, Happ, for various values of Ku. The others parameters
in the calculations are the same as in Fig. 3.

ferromagnetic film could thus impose controllable changes to
the amplitude or phase of passing spin waves, which is an
essential feature of magnonic logic devices [42].

IV. CURRENT-INDUCED DOMAIN WALL DYNAMICS

A. Zero magnetic field

We now discuss the influence of an electric current on
the DW profile and its dynamic properties. We first focus
on a pinned head-to-tail 90◦ DW in zero magnetic field.
To examine the action of spin-transfer torque, we perform
numerical simulations of the Heisenberg model with constant
spin current density. In these simulations, we develop the
magnetization using the LLG equation until a stationary state
is reached. Results for a current density of I = ±1012 A/m2,
which is comparable to values used in experiments [5,43],
are shown in Fig. 5. While the electric current does not
substantially modify the in-plane DW profile, it shifts the DW
center away from the magnetic anisotropy boundary [see inset
in Fig. 5(a)]. Moreover, the DW magnetization tilts out of the
film plane under the action of an electric current [Fig. 5(b)].
The direction of DW displacement and sign of DW tilt depend
on the direction of electric current. The magnitude of both
effects are determined by the absolute value |I |. Our results
are consistent with current-induced magnetization dynamics
of 180◦ DWs [6,35]. Importantly, the results of Fig. 5 allow
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FIG. 5. Head-to-tail DW profiles under the influence of an electric
current for (a) in-plane, Sz, and (b) out-of-plane, Sx , spin coordi-
nates as obtained from Heisenberg model simulations. The inset of
(a) shows the displacement of the DW center from the anisotropy
boundary at y = 0. In the calculations α = 0.15, P = 0.5, β = 0.4,
and |I | = 1012 A/m2. The other parameters are the same as in Fig. 3.

us to assume that the profile of a pinned 90◦ DW does not
change under the influence of an electric current. Hence, we can
describe DW dynamics by two collective coordinates, namely,
the position of the DW center (q(t )) and the DW tilt angle
(ψ (t )), as illustrated in Fig. 1.

In agreement with Eq. (19), we use the following ansatz for
the in-plane DW profile

θ̃ (y, t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π
4 + 2 arctan

[
(
√

2 − 1) exp
(

y−q(t )
λ

)]
,

if y < q(t ),
3π
4 − 2 arctan

[
(
√

2 − 1) exp
(
− y−q(t )

λ

)]
.

if y > q(t ).

(24)

The out-of-plane DW profile needs to satisfy vanishing mag-
netization and spin-transfer torque inside the domains, i.e., far
away from the anisotropy boundary. To account for this, we
use

φ̃(y, t ) = π

2
− ψ (t ) cos[2 θ̃ (y, t )]. (25)

Here, the DW tilting angle ψ corresponds to the maximum out-
of-plane magnetization angle. We note that this simple ansatz
does not fully reproduce the numerical simulations of Fig. 5(b).
In Eq. (25), φ decays more quickly as a function of y compared
to the Heisenberg model. Despite this discrepancy, we will
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demonstrate that the approximation is valid for calculations of
the tilting angle and resonance frequency in the limit of small
DW displacements.

We obtain dynamic equations for the collective DW coordi-
nates, q(t ) and ψ (t ), by using δw/δθ and δw/δφ from Eq. (12)
and defining the differential areal energy density

dε =
∫ ∞

−∞
dy

[(
δw

δθ

)
δθ +

(
δw

δφ

)
δφ

]
. (26)

Inserting Eq. (24) and Eq. (25) into Eq. (26) and integrating
along y gives an equation of motion for the collective coordi-
nates

d

dt

(
q

ψ

)
= M̄

(
∂ε/∂q

∂ε/∂ψ

)
+

(
au

bu

)
u, (27)

where

M̄ = − γ

Ms

3

2
√

2

(
5
√

2+1
5 α λ −1

1 3
2

√
2−1
λ

α

)
, (28)

and

au = 1 + αβ, (29a)

bu = −3(
√

2 − 1)

2

α − β

λ
. (29b)

Equation (27) can be linearized. This gives

d

dt

(
q

ψ

)
= D̄

(
q

ψ

)
+

(
au

bu

)
u, (30)

where D̄ is the dynamic matrix

D̄ = M̄ ·
(

∂2ε/∂q2 ∂2ε/∂q∂ψ

∂2ε/∂ψ∂q ∂2ε/∂ψ2

)
eq

, (31)

and the subscript eq indicates that the second derivatives of the
areal energy density are evaluated numerically in the equilib-
rium magnetic configuration, i.e., q = 0 and ψ = π/2 [20,44].

Let us now discuss the validity and applicability of the
linearized 1D model. Figure 6 compares the stationary values
of q and ψ under constant electric current as a function of Ku.
As Ku increases, both the DW displacement and DW tilting
angle decrease because of stronger pinning at the anisotropy
boundary. As a result, the linearized 1D model is more accurate
for large values of Ku. This is confirmed by Figs. 6(a) and
6(b), where the parameter values of the 1D model approach
the numerical simulations when the anisotropy is strong. In
addition, if we fit the displaced DW profile with Eq. (24),
we obtain a DW width that is comparable to Eq. (18) in the
whole anisotropy range [Fig. 6(c)]. Based on these results,
we conclude that our linearized 1D model describes current-
induced DW dynamics in the approximation of small DW
displacements. The calculated DW displacement for a current
density I = 1012 A/m2 is of the order ∼1 nm. This distance
compares well to micromagnetic simulations in Ref. [19]. In
the same study it was shown that DW oscillations of this
amplitude, driven by an ac spin-polarized current, turn the
pinned 90◦ DW into a tunable source of propagating spin
waves.
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FIG. 6. Comparison of the linearized analytical model and
Heisenberg model simulations for α = 0.15, P = 0.5, β = 0.4, and
I = 1012 A/m2. The other parameters are the same as in Fig. 3.
(a) DW displacement, (b) DW tilting angle, (c) DW width. In (c), the
DW width obtained from Heisenberg model simulations is compared
to Eq. (18).

Now, we discuss the effect of an ac electric current in
our model. Since the direction of DW displacement depends
on the direction of current, an ac electric current induces
DW oscillations around its equilibrium position. For potential
applications in magnonics, the DW resonance frequency (ωr)
is a key parameter [45]. To calculate ωr , we use the linearized
equations of motion [Eq. (30)]. For an ac electric current with
frequency ω, we write I (t ) = I0 e−i ωt . Moreover, we assume
that the solutions of the linearized equation of motion have
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FIG. 7. (a) DW resonance frequency calculated for Happ = 0. The
line is calculated using the 1D analytical model and the open diamonds
are obtained from micromagnetic simulations. (b) Field dependence
of the DW resonance frequency calculated using the 1D model
(lines) for various values of Ku and extracted from micromagnetic
simulations (solid symbols) using Ku = 1.0 × 104 J/m3 (pentagons)
and 5.0 × 104 J/m3 (triangles).

the same form, q(t ) = Cq e−i ωt and ψ (t ) = Cψ e−i ωt , where
Cq and Cψ are constants. Using these parameters, we find that
Eq. (30) has a solution for a DW resonance frequency of

ωr = 3

2
√

2

γ

Ms

√
∂2ε

∂q2

∂2ε

∂ψ2
−

(
∂2ε

∂q ∂ψ

)2

, (32)

where, as in Eq. (31), the second derivatives of the areal
energy density (ε) are evaluated numerically in the equilibrium
magnetic configuration.

The solid line in Fig. 7(a) shows the dependence of fres =
ωr/(2π ) on Ku in the absence of a magnetic field. We find that
ωr ∼ K

1/2
u . In addition, the potential stiffness κ which is de-

fined by ∂ε/∂q = κ q can be approximated as κ = Ku/λ. This
gives κ ∼ K

3/2
u . Finally, the DW mass mDW = κ/ω2

r [45,46],
which can be used as an indicator for the operation speed of
DW devices, varies as mDW ∼ K

1/2
u .

B. Simultaneous effect of magnetic field and electric current

In Sec. III B we showed that an in-plane magnetic field
along the y axis reduces the magnetization rotation between

domains (�) and the DW width (λ′). This might also modify
the DW resonance frequency. By combining the expression for
zero-field resonance frequency [Eq. (32)] and ansatzes for the
DW profile [Eqs. (22) and (25)], we derive dynamic equations
for the collective coordinates in nonzero magnetic fields. The
equation of motion has the same form as Eq. (27) with M̄
replaced by

M̄(ζ ) = γ

Ms

(
αλ′ f (ζ )−1 g(ζ )−1

−g(ζ )−1 α h(ζ )−1/λ′

)
, (33)

and

au = 1 + αβ, (34a)

bu = α − β

λ′
f (ζ )

g(ζ )
. (34b)

Here, the three functions that vary with ζ are given by

f (ζ ) =
√

2 (sin ζ + cos ζ −
√

2), (35a)

g(ζ ) = 2
√

2

3

sin ζ + cos ζ − √
2 sin(2ζ )

cos(2ζ )
, (35b)

h(ζ ) =
√

2

15

1

cos2(2ζ )
[5 (sin ζ + cos ζ ) − 2

√
2 sin(2ζ )

+ 7[sin(3ζ ) − cos(3ζ )] − 10
√

2 ]. (35c)

After linearization, we obtain an expression for the DW
resonance frequency as a function of magnetic field

ωr (ζ ) = γ

Ms
g(ζ )−1

√
∂2ε

∂q2

∂2ε

∂ψ2
−

(
∂2ε

∂q ∂ψ

)2

. (36)

Here, we applied the approximate relation f (ζ )h(ζ ) 
 g2(ζ ).
The DW resonance frequency depends on the function g(ζ )−1.
For zero applied field g(0)−1 = 3/(2

√
2), which recovers

Eq. (32). g(ζ )−1 increases with ζ and diverges for ζ → π/4,
i.e., when the DW is erased by the applied magnetic field.

Figure 7(b) shows the field dependence of fres(ζ ) =
ωr (ζ )/(2π ) for several values of Ku. The resonance frequency
increases as a function of Happ. This effect relates to a reduction
of the DW width at nonzero Happ [see Fig. 4(b)]. For narrow
DWs, the stiffness of the pinning potential increases, causing
an upshift of fres. Our calculations indicate nearly linear tuning
of fres by several GHz in modest magnetic fields.

C. Comparison with micromagnetic simulations

In the previous sections, we derived a 1D analytical model
for a magnetic DW that is pinned by a 90◦ uniaxial anisotropy
boundary. Results from this model for the DW profile, DW dis-
placement, and DW tilting angle were compared to numerical
simulations based on the 1D Heisenberg model. Although the
1D Heisenberg model goes beyond a simple linear approxima-
tion and the assumption of a rigid DW profile, it might deviate
from reality because of its reduced dimensionality and lack
of long-range dipolar interactions [47,48]. Therefore, we will
now compare our model results to micromagnetic simulations
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and assess its relevance for the interpretation of experimental
data.

The simulations were performed using MuMax3 soft-
ware [49] with periodic boundary conditions in the y-z plane.
Modulations of uniaxial magnetic anisotropy were included by
abrupt rotation of the magnetic easy axis at the cell boundary
of two 10-μm-wide stripe domains. The film thickness was
set to 5 nm and the structure was discretized into 2.44 ×
4.88 × 5 nm3 cells. We estimated the resonance frequency of
the pinned DW by applying a sinc-function-type current pulse
in the y direction with a cutoff frequency of 40 GHz. After this,
the z component of magnetization was recorded one cell from
the anisotropy boundary. The eigenfrequency of the DW was
extracted by performing a Fourier transformation on these data.

The simulated profile and width of the pinned DW in zero
and nonzero magnetic field agree well with results from our
1D model. The main effect of dipolar interactions, which are
included in the micromagnetic simulations but omitted in the
1D model, is an enlargement of the DW tails. We also find good
correspondence between the simulated and calculated values of
the DW resonance frequency. Figure 7(a) shows a comparison
for different values of Ku and zero magnetic field. At large
magnetic field, the results start to deviate, as shown in Fig. 7(b).
Under these conditions, the 1D model overestimates the DW
resonance frequency. One of the reasons is a gradual decrease
of the magnetization rotation between domains (�). This
effect lowers the spin-transfer torque efficiency and thereby the
displacement of the DW. Another factor relates to a distortion
of the DW during magnetization dynamics. The dependence
of both effects on applied magnetic field is illustrated in
Fig. 8. The figure shows micromagnetic simulations of the
displacement and deformation of the DW during current-
induced DW oscillations. The applied magnetic field in (a) and
(b) is μ0Happ = 25 mT and μ0Happ = 400 mT, respectively.
The solid black lines represent DW profiles for zero electric
current and the other lines depict snapshots of dynamic DW
deformations. In small magnetic field, the spin-transfer torque
displaces the DW without significantly changing its profile.
Because of smaller spin-transfer torque efficiency, the DW
displacement diminishes upon an increase of the magnetic
field strength. At the same time, deformations of the DW
profile become more pronounced. Because our 1D analytical
model assumes a rigid DW, it overestimates the DW resonance
frequency for large magnetic field.

V. CONCLUSIONS

In summary, we studied the static and dynamic properties
of a magnetic DW that is pinned by a 90◦ uniaxial anisotropy
boundary using an analytical model with continuous spatial
coordinates and a discrete Heisenberg model. First, we derived
a formula for the profile of an equilibrium head-to-tail DW.
To account for the abrupt rotation of magnetic anisotropy, we
split the expression for the in-plane magnetization profile into
two parts [Eq. (19)]. Consequently, calculations for the two
domains were done separately. We note that the following
ansatz can be used to simplify the model

θu,approx(y) = π

4
+ arctan

[
exp

(y

λ

)]
. (37)
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FIG. 8. Micromagnetic simulations of the DW profile during
current-induced magnetization dynamics. Panels (a) and (b) show
results for different magnetic bias fields along the y axis. The solid
black lines depict DW profiles in equilibrium (zero current). The
dashed red and dotted blue lines show snapshots of the displaced
and distorted DW during current-driven oscillations. The anisotropy
constant in the simulations is Ku = 105 J/m3.

Here, λ is given by Eq. (18). Equation (37) does not satisfy
Eq. (17), but its similar shape could be sufficient for practical
purposes. After assessing the equilibrium state, we analyzed
how the DW profile deforms in a magnetic field. Besides
an obvious reduction of the magnetization rotation between
domains, we observed a gradual decrease of the DW width in
a perpendicular magnetic field.

Next, we used the Landau-Lifshitz-Gilbert equation to
explore current-induced dynamics of a pinned DW. For a small
electric current and zero magnetic field, we found that the DW
is slightly displaced from the anisotropy boundary without
significantly changing its in-plane magnetization profile. Ad-
ditionally, the spin-transfer torque tilts the DW magnetization
out of the film plane. Using an ansatz for the DW profile,
we derived linear equations of motion for collective DW
coordinates and demonstrated that the calculated values of DW
displacement and DW tilting angle are in good agreement with
Heisenberg model simulations. We also derived expressions
for the DW resonance frequency in zero and nonzero magnetic
fields. Our results indicate that an ac electric current can drive
the domain wall into resonance. Moreover, the model predicts
active tuning of the DW eigenfrequency by a magnetic bias

064417-8



STATIC PROPERTIES AND CURRENT-INDUCED … PHYSICAL REVIEW B 98, 064417 (2018)

field. Finally, we showed that our model calculations are in
good agreement with micromagnetic simulations up to modest
magnetic fields. Beyond this, breakdown of the rigid-DW
approximation causes an overestimation of the DW resonance
frequency.

Spin waves are emitted from a pinned DW if an ac spin-
polarized current or another activation mechanism forces it to
oscillate. To exploit DW pinning at anisotropy boundaries in
programmable magnonic devices one needs to understand their
basic static and dynamic properties and learn how to control
them. The models provided here describe active tuning of the
DW resonance condition by means of an external magnetic
field.
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