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Using a combination of quantum Monte Carlo and exact methods, we study the field-driven saturation transition
of the two-dimensional J -Q model, in which the antiferromagnetic Heisenberg exchange (J ) coupling competes
with an additional four-spin interaction (Q) that favors valence-bond solid order. For small values of Q, the
saturation transition is continuous and is expected to be governed by zero-scale-factor universality at its upper
critical dimension, with a specific form of logarithmic corrections to scaling (first proposed by Sachdev et al.
[Phys. Rev. B 50, 258 (1994)]). Our results conform to this expectation, but the logarithmic corrections to scaling
do not match the form predicted by Sachdev et al. We also show that the saturation transition becomes first
order above a critical coupling ratio (Q/J )min and is accompanied by magnetization jumps—metamagnetism.
We obtain an exact solution for (Q/J )min using a high magnetization expansion, and confirm the existence of the
magnetization jumps beyond this value of coupling using quantum Monte Carlo simulations.
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I. INTRODUCTION

Models of quantum magnetism are of great interest in the
quest to understand quantum phase transitions and many body
states with strong quantum fluctuations. Studies in this field
typically focus on identifying phases and phase transitions
between them as a function of some coupling ratio. These
coupling ratios are typically difficult or impossible to tune in
experimental systems. In contrast, external magnetic fields are
easy to adjust in experiments, making studies of field-driven
quantum phase transitions particularly relevant. Despite this
fact, such phase transitions have been largely neglected by
the theoretical literature. Here, we present a study of the field-
driven saturation transition in a two-dimensional (2D) quantum
antiferromagnet known as the J -Q model. In this model, a
nearest-neighbor antiferromagnetic Heisenberg exchange of
strength J competes with a four-spin interaction of strength
Q, which favors valence-bond solid order. The form of this
term is −QPi,jPk,l (where Pi,j ≡ 1

4 − Si · Sj and i, j and
k, l denote parallel bonds of an elementary plaquette of the
square lattice). While the Q interaction competes with the
Heisenberg exchange (−JPi,j ), it does not produce frustration
in the conventional sense, allowing numerically exact quantum
Monte Carlo studies of the physics. We find that the field-driven
saturation transition from the antiferromagnet to the fully
saturated state in the J -Q model is composed of two regimes:
a low-Q continuous transition and high-Q discontinuous (first
order) transition with magnetization jumps, both of which will
be address here.

For low Q, we find that the transition is continuous and
is therefore expected to be governed by a zero-scale-factor
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universality, which was predicted by Sachdev et al. in 1994 [1],
but until now had not been tested numerically or experimentally
in spatial dimension d = 2 (2D). Although the leading order
behavior matches the Sachdev et al. prediction, we find multi-
plicative logarithmic violations of scaling at low temperature.
Such violations are to be expected based on the fact that 2D
represents the upper critical dimension for this transition, but
these scaling violations do not match the form predicted by
Sachdev et al. for reasons that are currently unclear.

At high Q, the saturation transition is first order and there
are discontinuities (jumps) in the magnetization known as
metamagnetism [2–4]. These jumps are caused by the onset of
attractive interactions between magnons (spin flips on a fully
polarized background) mediated by the Q-term (a mechanism
previously established in the 1D J -Q model [2]). We use
a high-magnetization expansion to obtain an exact solution
for the critical coupling ratio (Q/J )min where the jump first
appears.

II. BACKGROUND

The J -Q model is part of a family of Marshall-positive
Hamiltonians constructed from products of singlet projection
operators [5]. The two-dimensional realization of the J -Q
model is given by

HJQ = −J
∑
〈i,j 〉

Pi,j − Q
∑

〈i,j,k,l〉
Pi,jPk,l, (1)

where 〈i, j 〉 sums over nearest neighbors and 〈i, j, k, l〉 sums
over plaquettes on a square lattice as pairs acting on rows
k l

i j and columns j l

i k [6]. The zero-field J -Q model has been
extensively studied in both one [2,7–9] and two [6,10–13]
spatial dimensions, where it provides a numerically tractable
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way to study the deconfined quantum critical point marking
the transition between the Néel antiferromagnetic state and
the valence-bond solid (VBS). The VBS breaks Z4 lattice
symmetry to form an ordered arrangement of local singlet
pairs. Here we will not focus on this aspect of the J -Q model,
but instead add an external magnetic field hz,

HJQh = HJQ − hz

∑
i

Sz
i , (2)

and study the magnetization near the field-driven transition to
saturation. A separate paper [14] will discuss magnetic field
effects in the vicinity of the Néel-VBS transition (see also
Ref. [15]). Hereafter, we will either fix the energy scale by
(1) setting J = 1 (and thereby referring to the dimensionless
parameters q ≡ Q/J and h ≡ hz/J ) or (2) requiring J + Q =
1 [and thereby referring to the dimensionless parameters s ≡
Q/(J + Q) and h ≡ hz/(J + Q)].

The magnetization jumps correspond to a first-order phase
transition (sometimes called metamagnetism) in which the
magnetization changes suddenly in response to an infinitesimal
change in the magnetic field [3,4]. This sort of transition
usually occurs in spin systems with frustration or intrinsic
anisotropy [16–24], but recent work [2,15,25,26] has shown
that metamagnetism occurs in the 1D J -Q model, which (in
the absence of a field) is both isotropic and unfrustrated. The
magnetization jumps in the 1D J -Q model are caused by the
onset of attractive interactions between magnons (flipped spins
against a fully polarized background) mediated by the four-spin
interaction [2]. In the 1D case the critical coupling ratio
qmin can be determined exactly using a high-magnetization
expansion [2]. Here we build on previous work [2] to include
the 2D case.

Zero-scale-factor universality, first proposed by Sachdev
et al. in Ref. [1], requires response functions to obey scaling
forms that depend only on the bare coupling constants, without
any nonuniversal scale factors in the arguments of the scaling
functions. It applies to continuous quantum phase transitions
that feature the onset of a nonzero ground state expectation
value of a conserved density [1,2]. The saturation transition in
theJ -Qmodel forq < qmin is just such a situation [2], although
the 2D case is at the upper critical dimension of the theory,
so we expect to find (universal) multiplicative logarithmic
corrections to the zero-factor scaling form.

Outline

The methods used in this work are summarized in Sec. III. In
Sec. IV, we discuss a schematic phase diagram of the 2D J -Q
model. In Sec. V, we focus on the onset of a magnetization jump
at qmin, where the saturation transition becomes first order,
and derive an exact result for the value of qmin. In Sec. VI
we discuss the universal scaling behavior near the continuous
saturation transition, focusing on tests of the zero-scale-factor
prediction as well as the presence of multiplicative logarithmic
corrections expected at the upper critical dimension (d = 2).
Our conclusions are discussed further in Sec. VII.

III. METHODS

For the exact solution for qmin we have used Lanczos exact
diagonalization [27] of the two-magnon (flipped spins on a

fully polarized background) Hamiltonian, which we derive
in an exact high-field expansion. The large-scale numerical
results obtained here were generated using the stochastic series
expansion quantum Monte Carlo (QMC) method with directed
loop updates [28] and quantum replica exchange. This QMC
program is based on the method used in our previous work [2].
The stochastic series expansion is a QMC method which maps
a d-dimensional quantum problem onto a (d + 1)-dimensional
classical problem by means of a Taylor expansion of the
density matrix ρ = e−βH , where the extra dimension roughly
corresponds to imaginary time in a path-integral formulation
[27]. In the QMC sampling, the emphasis is on the operators
that move the world-lines rather than the lines themselves. The
method used here is based on the techniques first described in
Ref. [28] (as applied to the Heisenberg Model).

In addition to the standard updates, we incorporated quan-
tum replica exchange [29,30], a multicanonical method in
which the magnetic field (or some other parameter) is sampled
stochastically by running many simulations in parallel with dif-
ferent magnetic fields and periodically allowing them to swap
fields in a manner that obeys the detailed balance condition. To
further enhance equilibration we used a technique known as
β-doubling, a variation on simulated annealing. In β-doubling
simulations begin at high temperature and the desired inverse
temperature is approached by successive doubling of β; each
time β is doubled a new operator string is formed by appending
the existing operator string to itself [31]. A detailed description
of all of these techniques can be found in Chapter 5 of Ref. [15].

IV. PHASE DIAGRAM

In Fig. 1, we present a schematic zero-temperature phase
diagram of the 2D J -Q model. Here the h axis corresponds
to the well-understood 2D Heisenberg antiferromagnet in an
external field, and the q axis corresponds to the previously stud-
ied [6,10–13,32] zero-field J -Q model, which for q < qc has
long-range antiferromagnetic Néel order in the ground state.
At finite temperature O(3) spin-rotation symmetry (which is
continuous) cannot be spontaneously broken (according to
the Mermin-Wagner Theorem [33]), so there is no long-range
spin order; instead, there is a “renormalized classical” regime
with the spin correlation length diverging exponentially as
T → 0 like ξ ∝ e2πρs/T [34]. At qc, the zero-field J -Q model
undergoes a quantum phase transition to the valence-bond solid
(VBS) state. The off-axes area of Fig. 1 has not previously been

h

q=Q/JqC

VBS

Fully polarized/saturated

Partially Polarized XY

Néel

hs

qmin

FIG. 1. Schematic phase diagram of the 2D J -Q model in an
external field at zero temperature. The different phases and critical
points are explained in the text.
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studied; we here focus on the region around the field-driven
saturation transition, hs (q ). The region around the deconfined
quantum critical point, qc, will be addressed in a forthcoming
publication [14].

Starting from the Néel state (q < qc) on the q axis, adding
a magnetic field forces the antiferromagnetic correlations into
the XY plane, producing a partially polarized canted antifer-
romagnetic state. At finite temperature, there is no long-range
Néel order, but the addition of a field permits a BKT-like
transition to a phase with power-law spin correlations. For
q > qc, the ground state has VBS order. This state has a finite
gap, so it survives at finite temperature and is destroyed by the
magnetic field only after it the closes spin gap. The destruction
of the VBS recovers the canted antiferromagnetic state (or
partially polarized spin disordered phase for T > 0).

We here will focus on the saturation transition in the high-
field region of the phase diagram. The system reaches satura-
tion (where all spins are uniformly aligned in the +z direction)
at h = hs (q ). For q < qmin, this transition is continuous and the
saturation field is given by hs (q � qmin) = 4J (in this regime
hs (q ) is a dashed line). For q > qmin the saturation transition
is first order (i.e., metamagnetic) and there are macroscopic
discontinuities in the magnetization (in this regime hs (q ) is
a solid line). The point qmin denotes the onset of metam-
agnetism, here the magnetization is still continuous, but the
magnetic susceptibility diverges at saturation (corresponding
to an infinite-order phase transition).

V. METAMAGNETISM

Magnetization jumps (also known as metamagnetism) can
appear due to a variety of mechanisms including broken
lattice symmetries, magnetization plateaus [35], localization
of magnetic excitations [36–38], and bound states of magnons
[2,18,20]. It has previously been established that magnetization
jumps occur in the J -Q chain caused by the onset of a bound
state of magnons [2,25,26]; to our knowledge, this is the first
known example of metamagnetism in the absence of frustration
or intrinsic anisotropy. To understand the mechanism for meta-
magnetism, we consider bosonic spin flips (magnons) on a fully
polarized background. These magnons are hardcore bosons
that interact with a short-range repulsive interaction in the
Heisenberg limit. The introduction of the Q-term produces an
effective short-range attractive interaction between magnons.
At qmin, this attractive force dominates and causes pairs of
magnons to form bound states.

A. Exact Solution for qmin

We will now find qmin for the 2D J -Q model using the
procedure developed for the J -Q chain in Ref. [2]. Let us
define bare energy of an n-magnon state, Ēn, as

En(J,Q, h) = Ēn(J,Q) − nh/2. (3)

We can then define the binding energy of two magnons as

�(q ) ≡ 2Ē1 − Ē2. (4)

The Q term is nonzero only when acting on states where
there are exactly two magnons on a plaquette, so it does
not contribute to the single-magnon dispersion, which has a
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FIG. 2. Binding energy �(q, L) plotted against q for several
system sizes calculated using exact diagonalization. The thin black
line represents � = 0. Inset: zoomed-in view of crossing point.

tight-binding-like form [2]. We can therefore solve analytically
for the single-magnon energy, Ē1 = −4J . The two-magnon
energy, Ē2 corresponds to the ground state in the two magnon
sector, and must be determined numerically. Since this is only
a two-body problem, relatively large systems can be studied
using Lanczos exact diagonalization to obtain Ē2 to arbitrary
numerical precision.

In Fig. 2 we plot the binding energy of two magnons,
�(q, L), for 0 � q � 1 and L = 4, 8, 12, 16. For all sizes the
binding energy becomes positive around q ≈ 0.417. We can
also see that Fig. 2 strongly resembles the analogous figure
for the J -Q chain (see Fig. 6 of Ref. [2]). For q < qmin finite
size effects result in an underestimate of the binding energy
and for q > qmin finite-size effects cause an overestimate of
the binding energy. Around qmin these effects cancel out and
the crossing is nearly independent of system size (in the
1D case the crossing is exactly independent of L). Using
a bracketing procedure, we can extract qmin(L) to arbitrary
numerical precision. Table I contains a list of qmin(L) for select
L × L systems with L � 24. qmin converges exponentially fast
in L, so based on extrapolation using these modest sizes we
know qmin(L = ∞) = 0.41748329 to eight digits of precision.

TABLE I. qmin(L) calculated to machine precision for select
L × L systems using Lanczos exact diagonalization. The underlined
portions of the numbers represent the digits that are fully converged
to the thermodynamic limit.

L qmin

4 0.413793103448
6 0.417287630402
8 0.417467568061
10 0.417481179858
12 0.417482857341
14 0.417483171909
16 0.417483250752
18 0.417483274856
20 0.417483283375
22 0.417483286742
24 0.417483288198
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Although we do not plot it here, the exponential convergence
of qmin(L) can be seen from the underlines in Table I, which
indicate the digits which are converged to the thermodynamic
limit; the number of underlined digits grows linearly with
L. Note here that qmin is not the same as qc (the Néel-VBS
transition point), and these two phase transitions are governed
by completely different physics.

In Fig. 3 we plot the ground state probability density in the
two magnon sector as a function of separation of the magnons
in the x direction, rx (with ry = 0). Here we consider a small
(18 × 18) system to make the features at the boundary easier
to distinguish on the scale of the figure. For q = 0, we can
see that the probability density takes on the form of a free
particle with periodic boundary conditions in rx, ry , with a
single excluded site at rx = ry = 0. In the continuum limit,
this corresponds to a repulsive delta potential. For q > qmin

the wave function takes on the exponentially decaying form
of a bound state. At q = qmin (the crossover between repulsive
and attractive interactions) the wave function becomes flat with
an exponentially-decaying short-distance disturbance of the
form ψ ∝ 1 − ae−rx/b (this was confirmed by further data not
depicted here). This exponential disturbance explains why the
finite size effects vanish exponentially near qmin. This form
of the wavefunction in the 2D case stands in contrast to the
flat wave function in the 1D J -Q model, where the bulk wave
function at qmin is perfectly flat and qmin is exactly independent
of L for L > 6 [2].

The onset of attractive interactions between magnons has
previously been found to cause metamagnetism [2,18,20],
but bound pairs of magnons are not a sufficient condition to
guarantee the existence of a macroscopic magnetization jump.
The magnetization could, for example, change by steps of
�mz = 2, but never achieve a macroscopic jump [20,39]. For
a true jump to occur, the point qmin must be the beginning of an
instability leading to ever larger bound states of magnons. In the
next section we will confirm numerically that a macroscopic
magnetization jump does in fact occur in the full magnetization
curves obtained via quantum Monte Carlo simulations. It will
not be possible to detect the onset of the magnetization jump
(which is initially infinitesimal) by directly examining the mag-
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FIG. 3. Probability density of magnon separation in the x-
direction for ry = 0, |ψ (rx, ry = 0)| in the two-magnon sector of the
J -Q model; calculated using Lanczos exact diagonalization.

netization curves due to finite-temperature rounding. Instead,
in Sec. VI we will examine the scaling of the magnetization
near saturation and find that a qualitative change in behavior
consistent with the onset of a different universality class, occurs
at the predicted value of qmin.

B. Quantum Monte Carlo results

In Fig. 4, we plot the magnetization density,

m = 2

L2

∑
Sz

i , (5)

of the 2D J -Q model as a function of external field for several
different values of 0 � s � 1 where s is defined such that
J = 1 − s and Q = s such that J + Q = 1. Here we use a
16 × 16 lattice with β = 4. Ordinarily, QMC can study much
larger systems than this, but as was observed in our previous
work [2,25], the J -Q model with a field is exceptionally
difficult to study, even when using enhancements such as
β-doubling and quantum replica exchange (both used here).
We have compared to both smaller and larger sizes and finite
size effects do not qualitatively affect the results on the scale of
Fig. 4. For s = 0 (the Heisenberg limit), the magnetization is
linear in h for small fields, and smoothly approaches saturation
at h = 4J . When s = 0.2, corresponding to a coupling ratio of
q = 0.25, the magnetization curve begins to take on a different
shape: shallower at low field and steeper near saturation.
This trend continues as s increases: for s � 0.8, there is
a clear discontinuity. Although the jump should appear for
q � qmin = 0.417, which corresponds to smin = 0.294, this is
difficult to distinguish in the QMC data. At qmin, the jump is
infinitesimal, and even when the jump is larger, such as for
s = 0.4 and s = 0.6, it is hard to clearly distinguish due to
finite temperature effects, which round off the discontinuity
in the magnetization. These results are nonetheless consistent
with the value of qmin predicted using the exact method, and
demonstrate that a macroscopic magnetization jump does in
fact occur. We will discuss more evidence for qmin ≈ 0.417
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FIG. 4. Magnetization density of the 2D J -Q model as function
of external field, h, for a range of different values of s defined
such that J = 1 − s and Q = s. Here s = 0, 0.2, 0.4, 0.6, 0.8, 1 with
β = 4 correspond to q = 0, 0.25, 0.67, 1.5, 4, ∞, respectively (with
non-constant rescaled β). Results from QMC with quantum replica
exchange.
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from the critical scaling of the magnetization near saturation
in Sec. VI.

VI. ZERO-SCALE-FACTOR UNIVERSALITY

In the J -Q model, magnetization near saturation should be
governed by a remarkably simple zero-scale-factor universality
for q < qmin (where the saturation transition is continuous)
[1,2]. Here, “zero-scale-factor” means that the response func-
tions are universal functions of the bare coupling constants and
do not depend on any nonuniversal numbers [1]. Zero-scale-
factor universality applies to low-dimensional systems where
there is a quantum phase transition characterized by a smooth
onset of a conserved density [1]. Typically this is applied to
the transition from the gapped singlet state of integer spin
chains to a field-induced Bose-Einstein condensate of magnons
(excitations above the zero magnetization state). In the J -Q
model, we instead start from the saturated state with h > hs ,
and consider flipped spins on this background—magnons—as
h is decreased below hs . In the 1D case, the zero-factor scaling
form applies for all q < qmin at sufficiently low temperature,
and is violated by a logarithmic divergence at exactly qmin

[2]. The 2D J -Q model is at the upper critical dimension of
this universality class, so we expect multiplicative logarithmic
violations of the zero-factor scaling form for all q. We will
describe the universal scaling form and its application to the
saturation transition in the 2D J -Q model and then show that
the low-temperature violations of the scaling form do not match
the prediction in Ref. [1].

In two spatial dimensions, the zero-factor scaling form for
the deviations from saturation (δ 〈m〉 ≡ 1 − 〈m〉) is given by
Eq. (1.23) of Ref. [1]:

δ 〈m〉 = gμB

(
2M

h̄2β

)
M(βμ), (6)

where M is the bare magnon mass (which is M = 1 when
J = 1), and μ represents the field, μ ≡ hs − h. For q � qmin,
the saturation field is hs = 4J (which can be determined
analytically from the level crossing between the saturated state
and the state with a single flipped spin [2]). We set h̄ = 1 and
δ 〈m〉 = gμB 〈n〉 to define the rescaled magnon density:

ns (q, βμ) ≡ β 〈n〉
2

= M(βμ). (7)

We emphasize again that these magnons are spin flips on fully
polarized background, so n → 0 corresponds to the saturated
state. The field is also reversed from the usual case (of a
gapped singlet state being driven to a polarized ground state
by applying a uniform field). Thus, in the present case, h > hs

produces a negative μ, which means n → 0, and h < hs

corresponds to a positive μ and a finite density of magnons.
At the saturation field, μ = 0, the scaling form in Eq. 7

predicts that the density takes on a simple form:

〈n〉 = 2M(0)T . (8)

At this same point the rescaled density, ns , becomes indepen-
dent of temperature:

ns (q, 0) ≡ β 〈n〉
2

= M(0). (9)

In our case there are two spatial dimensions and z = 2 imag-
inary time dimensions, so the total dimensionality is d = 4,
which is the upper critical dimension of the zero-scale-factor
universality [1]. At low temperatures, we therefore expect to
see multiplicative logarithmic violations of this scaling form,
which should be universal as well.

In Fig. 5, we plot the rescaled magnon density at saturation,
ns (q, μ = 0), as a function of temperature for two different
sizes, 32 × 32 and 64 × 64. Here we use the exact value of
the saturation field hs (q � qmin) = 4J . These sizes are large
enough that finite size effects only become important at low
temperature; the results for the two different sizes overlap
completely for T � 0.1, but exhibit some separation at lower
temperature depending on the value of q. From simulations
of 96 × 96 and 128 × 128 systems (not depicted here) we
know that the 64 × 64 curve for q = qmin is converged to the
thermodynamic limit within error bars.

If there were no corrections to Eq. (7) the lines in Fig. 5
would exhibit no temperature dependence. Instead, we observe
violations of the scaling form for all q. For q = 0, there is
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0.32

0.34

n
s(T

,h
=

h s)

FIG. 5. (Top) The zero-scale-factor-rescaled magnon density
[Eq. (7)] at h = hs , μ = 0 calculated using QMC with quantum
replica exchange. The bright green line is a fit to the log-corrected
scaling form Eq. (12). (Bottom) A zoomed-in view.
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some non-monotonic behavior, with a local minimum around
T = 0.35; at low temperatures, ns (T ) appears to diverge like
log(1/T ), which on this semi-log scale manifests as a straight
line. For q = 0.1 and 0.2, the behavior is similar, although
the whole curve is shifted upwards. For q = 0.3, the local
minimum in ns (T ) appears to be gone. The divergence for
q < qmin looks log-linear, but it is difficult to distinguish
between different powers of the log by fitting alone. At q = 0.4
and q = qmin = 0.4174833, finite size effects become more
important, and it appears that the log has a different power.

A. Behavior around qmin

We can also use the low-temperature behavior of ns in Fig. 5
to verify our prediction of qmin (from the high-magnetization
expansion discussed in Sec. V A). At qmin, the transition is
no longer the smooth onset of a conserved density, therefore
the zero-scale-factor universality does not apply (not even with
logarithmic corrections). For all q < qmin, the low-temperature
divergence appears to obey a form log ( 1

T
), or some power

of it. At q = qmin the divergence of ns (qmin, T ) takes on
a qualitatively different form that appears to diverge faster
than log ( 1

T
). This confirms the value of qmin predicted by

the high-magnetization expansion, even though no sign of
a discontinuity can be observed in the magnetization curves
themselves due to finite-temperature rounding (see Fig. 4).

B. Low-temperature scaling violations

Sachdev et al. [1] derived a form for the logarithmic
violations of the zero-scale-factor universality that occur at the
upper critical dimension. At μ = 0 (saturation, h = hs) they
predict that the magnon density will take on the form

〈n〉 = 2MkBT

4π

[
log

(
�2

2MkBT

)]−4

(10)

(see Eq. (2.20) of Ref. [1]). Where � is an upper (UV)
momentum cutoff. We can plug this into Eq. (7) to find a
prediction for the log-corrected form of the rescaled magnon
density:

ns (μ = 0) = M

4π

[
log

(
�2

2MkBT

)]−4

. (11)

This form should also be universal, but the UV cutoff should
depend on microscopic details.

For simplicity we will restrict our analysis to the Heisenberg
limit (Q = 0). Setting the magnon mass, M = 1 (the bare
value) and introducing a fitting parameter, a, we can attempt
to fit our QMC results for ns (q = 0, T → 0) to the form

ns = a

[
log

(
�2

T

)]−4

. (12)

Automatic fitting programs were unable to find suitable values
of a and � (in the low temperature regime where the divergence
appears), so we manually solved for a and � using two points:
ns (T = 0.04) = 0.278 and ns (T = 0.10) = 0.2604, finding
a = 2.65354 × 106 and � = 1.7 × 10−13. We plot the result-
ing curve as a bright green line in Fig. 5. Although this appears
to produce a good fit to the rescaled numerical data at low T , the
fitting parameters do not make physical sense. The prefactor is

fixed by the theory to be a = M/(4π ) ≈ 0.08, yet the fitted
value is huge: a ≈ 106 (7 orders of magnitude too large).
Worse yet, the UV cutoff, �, is extremely small (10−13), much
smaller than any other scale in this problem. In zero-scale-
factor universality, there should be no renormalization of bare
parameters, but even allowing for renormalization of the mass,
M (perhaps due to being at the upper critical dimension), it is
not possible for Eq. (12) to match the data while maintaining
a physically sensible (i.e., large) value of the UV cutoff �.

On close inspection, the fit in Fig. 5 bears a remarkable
resemblance to a linear log T divergence. Indeed, since T 	
�2, we can expand Eq. (12) in a Taylor series around small
u = log T and we find an expression,

ns = a

(log �2)4

[
1 + 4

log T

log �2
+ 10

(
log T

log �2

)2

+ . . .

]
,

(13)

that is linear in log T to first order and converges rapidly
because log �2 ≈ −58. Considering this fact and the unphys-
ical parameters required to make the Sachdev form fit the
data, it is clear that Eq. 11 does not accurately describe the
violations of the zero-scale-factor universality at its upper
critical dimension. The apparent fit is instead a roundabout
approximation of the true form, which is (approximately)
proportional to log ( 1

T
) to some positive power close to 1,

although the exact power is difficult to determine from fitting.
The reasons for the failure of the form predicted in Ref. [1] are
unclear at this time.

VII. CONCLUSIONS

Here we have presented a numerical study of the two-
dimensional J -Q model in the presence of an external mag-
netic field, focusing on the field-induced transition to the
saturated (fully polarized) state. Building on a previous version
of this study which focused on the 1D case [2,25], we have
found that the saturation transition is metamagnetic (i.e., has
magnetization jumps) above a critical coupling ratio qmin. The
existence of metamagnetism in the J -Q model is surprising be-
cause all previously known examples of metamagnetic systems
had either frustration or intrinsic anisotropy. This transition
is caused by the onset of bound states of magnons (flipped
spins against a fully polarized background) induced by the
four-spin Q term. The same mechanism can explain presence
of metamagnetism in a similar ring-exchange model [24].
We have determined qmin using an exact high-magnetization
expansion (see Ref. [2]). Although it is not possible to directly
observe the onset of the magnetization jump in the QMC data,
we do see an apparent change in universal scaling behavior at
qmin (Fig. 5) which most likely corresponds to the presence of
an infinitesimal magnetization jump which goes on to become
the macroscopic jump we see at high q and matches the results
of our exact calculation. We cannot exclude the possibility
that there is some intermediate behavior, like a spin nematic
phase [40] between q ≈ 0.417 and some higher-q onset of
metamagnetism, but we believe this is unlikely.

For q < qmin, the saturation transition is continuous and is
governed by a zero-scale-factor universality at its upper critical
dimension [1]. This universality has already been shown apply
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to the 1D case [2]. We have presented the first-ever numerical
test of the zero-scale-factor universality in two dimensions. We
found that the low-temperature scaling violations to not obey
the form proposed by Ref. [1], which predicts a divergence as
a negative power of log T as T → 0, and instead they appear
to diverge as some positive power of log T .

There are still some important unanswered questions here
that need to be addressed in future studies. It is still unclear
why the scaling violations to not match the form predicted by
Ref. [1] or what should be the correct form of the violations.
In a preliminary report (Ref. [15], Ch. 3) we considered an
alternative form of the violations based on an analogy to the
scaling of the order parameter in the 4D Ising universality
class (also at its upper critical dimension). This universality
matches the leading-order scaling predictions of the zero-
scale-factor universality, and produced a better but not fully
convincing agreement with the scaling violations observed in
our QMC results; the theoretical basis for the analogy was
weak. Further theoretical work is required to determine the
correct form of the scaling violations. Once the proper form

of the scaling violations is established it should be checked
over the full range of its validity 0 � q < qmin. At qmin, the
zero-scale-factor universality does not apply, but it is not
currently clear what universal behavior should appear. Finally,
we have not discussed the behavior of this system at low fields;
this aspect of the J -Q model including the field effect near the
deconfined quantum critical point qc [32] will be addressed in
a forthcoming publication [14].
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