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Detecting end states of topological quantum paramagnets via spin Hall noise spectroscopy
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We theoretically study the equilibrium spin current fluctuations and the corresponding charge noise generated
by the inverse spin Hall effect (ISHE) in a metal with strong spin-orbit coupling deposited on top of a quantum
paramagnet. It is shown that the charge noise power spectra measured along different spatial axes can directly probe
the different spin components of the boundary dynamic spin correlations of the quantum paramagnet. We report
the utility of this ISHE-facilitated spin noise probe as a tool to unambiguously detect topological phase transitions
in an S = 1/2 quantum spin ladder that hosts a trivial ground state of singlet product states, but topologically
protected fractional spin excitations localized at its ends. Our work demonstrates the general usefulness of
ISHE-mediated spin noise spectroscopy for the detection of topological phases in quantum paramagnets.
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I. INTRODUCTION

For over the last decade, spin noise spectroscopy has
provided a powerful tool to study the dynamics of interacting
spin systems through their spin fluctuations [1]. A well-studied
mode of operation is the optical approach [2], in which these
fluctuations are quantified using fluctuations in the Faraday
rotation angle for a linearly polarized beam passing through
the sample. The inverse spin Hall effect (ISHE) refers to a
relativistic spin-orbit coupling phenomenon, in which a pure
spin current flowing in a paramagnetic conductor converts into
a transverse charge current [3]. The effect has been extensively
used in spintronics as an essential tool for the detection of pure
spin currents via electrical signals [4]. Exploiting the utility of
ISHE as a spin-to-charge transducer, it is interesting to explore
how spin noise spectroscopy can be performed on interacting
spin systems by converting the spin noise information into
charge noise signals via the ISHE.

Such ISHE-facilitated spin current noise spectroscopy, re-
ferred to here as spin Hall noise spectroscopy (SHNS), has
recently attracted attention in bilayer systems consisting of a
normal metal in contact with a quantum magnet with long-
range magnetic order [5–7]. Spin fluctuations in the quantum
magnet lead to spin current fluctuations near the interface that
diffuse into the metal. These fluctuations can eventually be
converted into charge fluctuations via the ISHE and ultimately
detected electrically. Theoretical works have shown that SHNS
can be used to reveal the quantum uncertainty associated with
magnon eigenstates [6] as well as nontrivial spin scattering
and heating processes taking place at such an interface [7].
A recent experimental work investigated equilibrium charge
noise in Pt thin films deposited on top of an insulator with
long-ranged ferromagnetic order [5]. It was observed that the
equilibrium voltage noise power spectrum measured across
the Pt film depends on the magnetization orientation [5] in a
nontrivial way. This result was interpreted as a modulation in
the thermal spin current noise in the metal, due to variations

in the magnetization orientation, which led to modulations in
the charge noise via the ISHE.

In this work, we consider SHNS in a bilayer consisting of a
normal metal in contact with a quantum paramagnet, which is
a quantum magnet with quantum fluctuations strong enough
to destroy conventional magnetic ordering [8] (see Fig. 1).
In particular, we report the utility of the SHNS setup as a
tool to unambiguously detect topological phase transitions in
such a quantum paramagnet. Following the advent of fermionic
systems with nontrivial symmetry-protected topological order
[9], the emergence of elementary bosonic excitations with
topologically nontrivial band structures has been investigated
in the context of various quantum spin models [10–15]. Akin
to the fermionic systems, the nontrivial topology of these
bosonic bands gives rise to protected magnon or triplon edge
states, which distinguish a topological quantum paramagnet
from its trivial counterpart. We demonstrate the suitability of
SHNS as a means to detect topological phase transitions in
quantum paramagnets, by considering as a concrete example
an S = 1/2 quantum spin ladder hosting a topological quantum
paramagnet (TQP) [15]. The TQP considered here is an exotic
state of matter with a trivial ground state of singlet product
states, but hosts fractional excitations localized at the ends.
Using SHNS we show that we can access the dynamical spin
correlations at the ends, which bear the signatures of these
nontrivial end states.

II. SPIN HALL NOISE SPECTROSCOPY (SHNS)

We begin with a general discussion of SHNS. An attractive
aspect of SHNS is that it allows one to use a table-top
experiment to probe dynamical spin correlations for virtually
any type of quantum spin system, by depositing above it a
normal metal film with strong spin-orbit coupling (e.g., Pt,
Ta, W, etc., as shown in Fig. 1). Moreover, the experiment
can be performed in thermal equilibrium, thus eliminating
any unwanted effects (such as Joule heating and shot noise)
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FIG. 1. Schematic diagram of the setup for spin Hall noise
spectroscopy. A quantum magnet is coupled at its top surface to a
normal metal film with strong spin-orbit coupling. Spin fluctuations
in the quantum magnet lead to a fluctuating pure spin current in the
metal and to a fluctuation charge current via the inverse spin Hall
effect.

that might arise in the presence of nonequilibrium drives. We
assume that the entire structure is in thermal equilibrium at
temperature T and, for simplicity, consider a quantum magnet
with a cubic lattice structure with quantum spins Ŝi localized
on the lattice sites i . The exact lattice structure is not germane
to the rest of the discussion.

The quantum magnet and the normal metal are assumed to
be coupled via an isotropic exchange interaction,

Ĥc = −ηa3
∑

i

δix ,1 ŝ(x = 0, Ri ) · Ŝi , (1)

where η is the exchange constant and a is the lattice scale of
the metal. Here, ŝ(x) = ψ̂

†
s (x)τ ss ′ψ̂s ′ (x)/2 is the local spin

density in the metal, x = 0 is the interface plane of the metal,
and Ri collects the two-dimensional interfacial coordinates
corresponding to lattice sites i on the ix = 1 (interfacial) layer
(see Fig. 1).

Spin fluctuations in the quantum magnet generate a fluctu-
ating spin current Iσ

s (t ) = I σ
s (t )x̂ with spin polarization σ in

the normal metal at x = 0. For an isotropic diffusive metal with
spin diffusion length λ (and for frequencies much smaller than
the inverse spin relaxation time in the metal), the spin current
density profile inside the metal may be written as [4,5]

jσ
s (x, t ) = Iσ

s (t )
sinh[(d − x)/λ]

Ai sinh(d/λ)
, (2)

where d is the thickness of the normal metal film, Ai is the
interfacial area, and a boundary condition of vanishing spin
current at the outer edge is assumed. Via the ISHE, the fluctu-
ating spin current Eq. (2) leads to charge current fluctuations
(integrated over the cross-sectional area Am normal to charge
flow direction), given by

I c(t ) = �
2e

h̄

λAm

dAi

tanh

(
d

2λ

)
(x̂ × σ )I σ

s (t ), (3)

where � is the so-called spin Hall angle. As a consequence,
the charge noise spectrum measured along the y (z) axis
[denoted by S

y,z
c (�)] is sensitive to the spectrum of spin

current fluctuations polarized along the z (y) axis [denoted

by S
z,y
s (�) = ∫

dt 〈I z,y
s (0)I z,y

s (t )〉e−i�t ], i.e.,

Sy,z
c (�) =

[
�

2e

h̄

λAm

dAi

tanh

(
d

2λ

)]2

Sz,y
s (�). (4)

We now compute the z component of the charge noise
spectrum using the above equation. (The derivation for the
y component is similar and will be simply stated at a later
point.) Orienting the spin quantization axis in the metal
along the axis of the spin polarization σ in the quantum
magnet, the y component of the operator for the spin cur-
rent entering the metal reads Î

y
s = ιηa3T̂y/2 + h.c., where

T̂y = ∑
i δix ,1ψ̂

†
↑(Ri )ψ̂↓(Ri )(Ŝ

z
i − ιŜx

i ), and ι = √−1. For a
metal with quadratic dispersion εk = h̄2k2/2m and chemical
potential μ, the noise spectral density S

y
s (�) can then be

computed to lowest nontrivial order in η,

Sy
s (�) = 2ι

(
ηa3mkF

2π2h̄

)2 ∑
i, j

δix ,1δjx,1

×
∫

dν
[
χxx

i j (ν) + χzz
i j (ν)

]

× sinc2(kF |Ri − R j |) � − ν

eβh̄(�−ν) − 1
, (5)

where β is the inverse temperature, kF is the Fermi wave vector
in the metal, and the spin correlation functions in the quantum
magnet are defined via

−ι
〈
Ŝα

i (0)Ŝα
j (t )

〉
0

=
∫

dν

2π
χαα

i j (ν)eινt ; (6)

see the Supplemental Material (SM) for technical details of the
derivation [16]. For large Fermi wave vectors, i.e., kF |Ri −
R j | � 1 for all i 	= j , and in the low temperature limit, one
may finally show that the second derivative of Eq. (4) reduces
to

d2Sz
c (�)

d�2
=

[
�

2e

h̄

λAm

dAi

tanh

(
d

2λ

)(
ηa3mkF

2π2h̄

)]2

× 2ι
∑

i

δix ,1
[
χxx

i i (�) + χzz
i i (�)

]
. (7)

We see that the second derivative of the charge noise spectrum
measured along the z axis is directly proportional to the x and
z components of the interfacial dynamical spin correlations of
the quantum paramagnet. A similar calculation for the charge
current fluctuations along the y axis gives

d2S
y
c (�)

d�2
=

[
�

2e

h̄

λAm

dAi

tanh

(
d

2λ

)(
ηa3mkF

2π2h̄

)]2

× 2ι
∑

i

δix ,1
[
χxx

i i (�) + χ
yy

i i (�)
]
. (8)

Since the spin correlation functions are extracted via the
frequency derivatives of the noise spectra, this detection
method has the advantage of being able to eliminate any
unwanted (frequency-independent) background white noise,
e.g., Johnson-Nyquist noise.

A theoretical work recently showed that spin current in a
setup similar to Fig. 1 can be used to probe the dynamic spin
structure factor of the quantum magnet and shed light on the
spectral properties of its low-lying excitations [17]. While a
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FIG. 2. A schematic diagram of a TQP (i.e., a quantum spin
ladder) exchange coupled to a normal metal at one of its ends.

nonequilibrium spin accumulation is necessary to generate a
spin current in Ref. [17], Eqs. (7) and (8) show that noise can
probe the dynamic structure factor in equilibrium.

III. DETECTING TOPOLOGICAL QUANTUM
PARAMAGNET VIA SHNS

We now discuss how the SHNS can be used to probe a TQP.
The TQP considered here is a topologically non-trivial state of
a quantum spin ladder system hosting trivial spin-1 excitations
in the bulk and fractional spin excitations localized at the
ends of the ladder [15]. The topological aspect in this case is
manifested in the excitations, in contrast to the fermionic topo-
logical phases wherein the ground state carries the topological
features, thus rendering the detection of a TQP challenging.
We now discuss how the SHNS setup introduced above can
provide a definitive experimental signature of the TQP.

The setup of interest is shown in Fig. 2, in which N
quantum spin ladders (per unit interfacial area) are laterally
exchange coupled to a spin-orbit coupled metal at one of their
ends. Since SHNS probes the local dynamical spin correlations
at the ends of the ladders, the charge noise spectrum inherits
the signatures of the topologically nontrivial end states and
facilitates the electrical detection of the topological phase
transition.

The quantum spin ladder, hosting a TQP, is described by
the following Hamiltonian [15]:

Ĥ = J
∑

i

Ŝ1i · Ŝ2i + K
∑

i

[Ŝ1i · Ŝ1i+1 + Ŝ2i · Ŝ2i+1]

+D
∑

i

[
Ŝz

1i Ŝ
x
1i+1 − Ŝx

1i Ŝ
z
1i+1 + Ŝz

2i Ŝ
x
2i+1 − Ŝx

2i Ŝ
z
2i+1

]

+�
∑

i

[
Ŝz

1i Ŝ
x
1i+1 + Ŝx

1i Ŝ
z
1i+1 + Ŝz

2i Ŝ
x
2i+1 + Ŝx

2i Ŝ
z
2i+1

]

+hy

∑
i

[
Ŝ

y

1i + Ŝ
y

2i

]
, (9)

where i denotes the dimer site, m = 1, 2 labels the two legs
of the ladder, J is the antiferromagnetic intra-dimer coupling,
andK is the inter-dimer Heisenberg interaction. The odd-parity
Dzyaloshinkii-Moriya (DM) interaction D and the even-parity
spin-anisotropic interdimer coupling � arise from spin-orbit
coupling. The TQP obtains for |hy | < D.

In the quantum paramagnetic phase, we represent the spins
via bosonic quasiparticles, i.e., triplons, described within the
bond-operator theory as follows [18,19]:

Ŝα
1,2i = ι

2
(±t̂

†
iα ŝi ∓ ŝ

†
i t̂iα − εαβγ t̂

†
iβ t̂iγ ), (10)

where t̂ (t̂†) are the triplon annihilation (creation) operators,
coming in three flavors corresponding to the three triplet states.
In the quantum paramagnetic phase, we condense the singlet
operator ŝ, such that we can replace ŝ = ŝ† = 1, and within the
harmonic approximation we retain only the bilinear terms in
the triplon operators.

For the spin current noise spectral density, Eq. (5), we need
the correlators on each leg. In short, we need the Fourier
transform of the following correlator at the end site of the
ladder: ∑

m=1,2

〈
Ŝx

m1(t )Ŝx
m1(0) + Ŝz

m1(t )Ŝz
m1(0)

〉
, (11)

where 1 denotes the left end site. In terms of the triplon
operators, the required correlators take the form∑

m=1,2

Ŝx
m(t )Ŝx

m(0)

= 1
2 [−t̂†x (t )t̂†x (0) + t̂†x (t )t̂x (0) + t̂x (t )t̂†x (0) − t̂x (t )t̂x (0)]

+ 1
2 [−t̂†y (t )t̂z(t )t̂†y (0)t̂z(0) + t̂†y (t )t̂z(t )t̂†z (0)t̂y (0)

+ t̂†z (t )t̂y (t )t̂†y (0)t̂z(0) − t̂†z (t )t̂y (t )t̂†z (0)t̂y (0)], (12)

and∑
m=1,2

Ŝz
m(t )Ŝz

m(0)

= 1
2 [−t̂†z (t )t̂†z (0) + t̂†z (t )t̂z(0) + t̂z(t )t̂†z (0) − t̂z(t )t̂z(0)]

+ 1

2
[−t̂†y (t )t̂x (t )t̂†y (0)t̂x (0) + t̂†y (t )t̂x (t )t̂†x (0)t̂y (0)

+ t̂†x (t )t̂y (t )t̂†y (0)t̂x (0) − t̂†x (t )t̂y (t )t̂†x (0)t̂y (0)]. (13)

where, for brevity, we have suppressed the site index i = 1
of the spin and triplon operators. The first line in Eqs. (12)
and (13) contribute to the single-particle response, while the
second and third lines give the two-particle response. Hence,
the second derivative of the charge noise spectrum, Eq. (7), is
proportional to

χ (�) ≡
∑

m=1,2

[
χxx

m1,m1(�) + χzz
m1,m1(�)

]
, (14)

which is obtained from the Fourier transforms of Eqs. (12) and
(13); see SM for details [16].

As is evident, χ (�) has both real and imaginary parts.
Due to the factor of ι, the real part of the SHNS observable,
Eq. (7), is proportional to − Im{χ}, while its imaginary part
is proportional to Re{χ}. These are plotted in Figs. 3 and 4,
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Im
Im Im

Im

FIG. 3. The real part of the second derivative of the charge noise spectrum, Eq. (7), measured across the normal metal film is proportional
to the imaginary part of the spin correlator χ (�), Eq. (14). The sharp peak at �/J = 1 is from topological end excitation, while the broad
peaks arise from bulk triplons. Parameters used are K/J = 0.01, D/J = �/J = 0.1. A phenomenological Lorentzian broadening with width
δ/J = 10−3 is used to account for scattering and impurity effects. Here, we have set h̄ = 1, such that both energies and frequencies are measured
in units of J . The topological quantum paramagnet occurs for |hy |/J < 0.1.

respectively. Within the topological phase, i.e., the topological
quantum paramagnet, which occurs for |hy | < 0.1, there are
in-gap localized end states around �/J = 1. (Here we set
h̄ = 1, such that both energies and frequencies are measured
in units of J .) Hence, we expect sharp peaks in the imaginary
part − Im{χ}, as is seen in Fig. 3. Correspondingly, the real
part Re{χ} exhibits 1/� singularities at �/J = 1. Such peaks

are absent in the topologically trivial paramagnetic phase, due
to the absence of the localized end states. The appearance of
these peaks provide a clear distinguishing feature to identify
the topological quantum paramagnetic phase using SHNS.
Note that apart from the sharp features due to the topological
excitation at the end of the ladder, there are two broad peaks
in Fig. 3 (broad features in Fig. 4) arising from bulk triplon

R
e

R
e

R
e

R
e

FIG. 4. Real part of the spin correlator χ (�), Eq. (14), for the same parameters as in Fig. 3. The topological quantum paramagnet occurs
for |hy |/J < 0.1.
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excitations, which appear in both the phases. While the peak
due to the topological excitation is always pinned at �/J =
1, the bulk features appear above and below this energy.
Moreover, upon increasing the magnitude of the magnetic field
from zero, the bulk broad features move closer to �/J = 1
until the topological phase transition (which occurs at ψ̂ = 0.1
here) and thereafter away this energy. In contrast, the sharp
topological peak is pinned at �/J = 1 in the topological phase
and completely disappears in the trivial phase. We also note
that the dominant features in χ (�) at �/J = 1 originate from
the single-particle response, while the contributions from the
two-particle response are negligibly small.

IV. DISCUSSION

We now estimate the magnitude of the predicted charge
noise effect for Pt thin films deposited on top of a spin-ladder
material. The charge current noise can be measured as voltage
noise if the normal metal is electrically open. Here, we consider
a Pt film of thickness d = 7 nm attached laterally to the ends of
a stack of the quantum spin ladder material BiCu2PO6 [20–22]
with the coupling interfacial area of 5 mm × 1 mm. BiCu2PO6

has recently been identified as a promising candidate for
realizing the topological triplon phase [15]. Converting Eq. (7)
to voltage fluctuations,

d2Sz
V (�)

d�2
=2ι

[
�

2e

h̄
N ρ�

λ

d
tanh

(
d

2λ

)(
ηa3mkF

2π2h̄

)]2

χ (�),

(15)

where ρ is the resistivity of Pt and � is the length over
which the voltage drop is measured (i.e., � = 5 mm here). To
obtain the derivatives of the spectrum, one needs to measure
the noise over a frequency window of width, e.g., 0.1J/h̄,
straddling � ∼ J/h̄. Using an effective Pt electron mass of
m ≈ 13me [23], ρ ≈ 10−8 �m, spin Hall angle of � ≈ 0.1,
spin diffusion length of λ ≈ 3 nm [24], lattice constant for Pt of
a ≈ 4 Å ∼ k−1

F , N ≈ (8 Å)−2 based on the crystal structure
for BiCu2PO6 [20], interfacial exchange constant of η/kB ≈
1 K, and maximum peak height of 100J/h̄ for χ (�) (see
Figs. 3 and 4), the voltage noise amplitude becomes of order
SV ∼ 10−21 V2/Hz. Voltage fluctuations of this magnitude
have been detected in [5]. Finally, we note from Figs. 3 and
4 that signatures of the topological end-states appear at a
frequency scale of the order of J , which in the spin ladder ma-
terials is of the order of J ∼ 1-10 meV ∼ 100-1000 GHz [21].
These frequency scales are accessible given the availability of

high-frequency noise spectral analyzers with ranges up to a
few hundred GHz [25].

Electric noise in the metal may have other contributions,
such as Johnson-Nyquist and 1/f noises, that may mask the
noise generated by the quantum paramagnet. We do not expect
1/f noise to be problematic in the high frequency range where
the topological signatures are predicted to arise. Furthermore,
since any sources of noise that are independent of frequency
(e.g., thermal white noise) or vary linearly over the relevant
frequency range are eliminated once the second derivative
of the noise spectrum is taken, SHNS should be capable of
exposing the spin noise computed in this work.

V. CONCLUSION

In conclusion, we studied the equilibrium charge noise in a
metal in contact with a quantum paramagnet. We showed that
the interfacial spin fluctuations of the paramagnet induce spin
current fluctuations in the metal, which via the inverse spin
Hall effect (ISHE) lead to charge fluctuations. More precisely,
the second derivative of the charge noise spectrum in the
metal is directly proportional to the dynamical spin correlation
function of the quantum paramagnet. Hence, by measuring
the ISHE-induced charge fluctuations it is possible to probe
the dynamical spin correlation of any quantum paramagnet in
a table-top experiment. This is particularly useful to detect
edge states of topological quantum paramagnets, as these
are quite difficult to observe with other probes. We have
demonstrated this for the case of a topologically nontrivial
quantum spin ladder, whose topological edge states lead to
distinct features in the charge noise at a frequency of the order
of J . We expect that the discussed detection technique can
be applied to probe the topological edge states of a wider
class of quantum magnets, such as, the spin-1/2 edge states
of the Affleck-Lieb-Kennedy-Tasaki (AKLT) chain [26], or
the chiral magnon edge states of compounds described by the
Kitaev-Heisenberg model [13,14]. As an outlook, it is also
interesting to investigate the response of a spin-liquid state to
the proposed setup. We hope that our findings will stimulate
experimental investigations along these lines.
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