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Universal spectral correlations in the chaotic wave function and the development of quantum chaos
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We investigate the appearance of quantum chaos in a single many-body wave function by analyzing the
statistical properties of the eigenvalues of its reduced density matrix ρ̂A of a spatial subsystem A. We find that (i):
the spectrum of the density matrix is described by so-called Wishart random matrix theory, which (ii): exhibits
besides level repulsion, spectral rigidity, and universal spectral correlations between eigenvalues separated by
distances ranging from one up to many mean level spacings, which we investigate. We use these universal spectral
characteristics of the reduced density matrix as a definition of chaos in the wave function. A simple and precise
characterization of such universal correlations in a spectrum is a segment of strictly linear growth at sufficiently
long times, recently called the “ramp,” of the spectral form factor which is the Fourier transform of the correlation
function between a pair of eigenvalues. It turns out that Wishart and standard random matrix theory have the same
universal “ramp.” Specifically, here numerical results for the spectral form factor of the density matrix of generic
nonintegrable many-body systems, such as one-dimensional quantum Ising and Floquet spin models, are found
to exhibit a universal “ramp” identical to that appearing for a “random pure state” (“Page state,” or “Haar state”).
The density matrix of the latter is precisely the Wishart random matrix, the reduced density matrix of a completely
random wave function. In addition, we study the development of chaos in the wave function by letting an initial
direct product state evolve under the unitary time evolution. We find that the universal spectral correlations as
manifested by the “ramp” set in as soon as the entanglement entropy begins to grow, and first develop for the
eigenvalues at the top of the spectrum of the density matrix ρ̂A, subsequently spreading over the entire spectrum
at later times. Finally, we study a prethermalized regime described by a generalized Gibbs ensemble, which
develops in a rapidly driven Floquet model at intermediate times. We find that the prethermalized regime exhibits
no chaos, as evidenced by the absence of a “ramp” in the spectral form factor of the density matrix, while the
universal spectral correlations start to develop when the prethermalized regime finally relaxes at late times to the
fully thermalized (infinite temperature) chaotic regime.
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I. INTRODUCTION

The characterization of chaos in quantum mechanical sys-
tems has a long history, and chaos plays a key role in the
process of thermalization, i.e., relaxation to equilibrium in
generic isolated many-body quantum systems [1,2]. (See, e.g.,
Refs. [3–6] for a review.) It also plays an important role
for the quantum nature of black holes [7–12]. An important
milestone in the study of quantum chaos has been the so-called
Bohigas, Giannoni and Schmidt conjecture [13], which states
that chaos manifests itself in the spectral properties of the
Hamiltonian of a quantum system by exhibiting universal
features which are the same as those of the spectrum of a
random Hamiltonian matrix in the same symmetry class. Such
universal features include, besides level repulsion statistics
between adjacent spectral levels, spectral rigidity and more
generally the correlation function between two levels which
is universal for levels separated by energy scales that range
from the mean level spacing to energy differences which
can be much larger, up to scales at which model-dependent
(“ultraviolet”) features set in. The corresponding universality
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classes are solely determined by the action of the antiunitary
time-reversal operator, giving rise to the three possible sym-
metry classes of spectral statistics depending on whether time
reversal symmetry is absent (“GUE”, Dyson index β = 2), or
is present and squares to the identity operator (“GOE”, Dyson
index β = 1) or squares to minus the identity operator (“GSE,”
Dyson index β = 4).

Spectral characteristics of a discrete spectrum of levels
Ei are conveniently described by the so-called spectral form
factor [14], which is the Fourier transform of the correlation
function between two levels and can be written in the form

g(τ ) ≡
〈∑

i,j

e−iτ (Ei−Ej )

〉
, (Spectral Form Factor). (1.1)

Here τ denotes an auxiliary real time (not to be confused with
an ‘Euclidean’ or ‘imaginary’ time coordinate, often denoted
by the same symbol), and 〈...〉 stands for a certain average, to
be described in detail below, whose sole purpose is to remove
nonuniversal rapid temporal fluctuations (in τ ) from the signal
which originate from (nonuniversal) high frequency compo-
nents corresponding to large energy differences (Ei −Ej ).
In random matrix theory, considering here the simplest
case where time-reversal symmetry is absent (“GUE-type”
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FIG. 1. Typical structure [15] of the linear universal “ramp” in
the spectral form factor g(τ ) as well as of the connected spectral
form factor gc(τ ), which exhibits a longer “ramp” ranging from a
microscopic short time scale τ0 below which nonuniversal effects set
in, up to the Heisenberg time τH (also called plateau time τp).

statistics), a simple and precise characterization of universal
spectral correlations is a segment of strictly linear growth [15]
in time τ , recently called [12] the “ramp,” of the spectral
form factor g(τ ) at sufficiently long times up to the so-called
Heisenberg time τH (defined to be 2π times the inverse of the
mean level spacing), where it suddenly becomes completely
flat, reaching its long-time “plateau” value, as sketched [16]
in Fig. 1. [The Heisenberg time has also been called “plateau
time” τp ≡ τH .] More precisely, the connected spectral form
factor gc(τ ) obtained [17] from (1.1) by subtracting a (nonuni-
versal) disconnected piece |〈∑i e

−iτEi 〉|2, turns out to exhibit a
longer segment of universal, strictly linear growth (“ramp”) for
time scales τ larger than a shortest time scale τ0 below which
(in applications, e.g., to spectra of Hamiltonians describing
quantum chaos) possible nonuniversal features set in. I.e., the
region τ � τ0 corresponds to differences of energies (Ei − Ej )
which exceed the universal regime. In the (nonconnected)
spectral form factor g(τ ) from (1.1), a portion of this universal
segment of linear growth in gc(τ ) turns out to be hidden at
small times larger than τ0 by possible nonuniversal features
of the disconnected part, and g(τ ) typically only exhibits a
shorter part of the entire universal linear “ramp,” as depicted
in Fig. 1.

It was shown [18,19] many years ago that in chaotic
quantum systems with a small number of degrees of freedom
whose classical limit is ergodic, the “ramp” for the energy
spectrum of the Hamiltonian can be computed analytically in
the semiclassical limit by making use of Gutzwiller’s Trace
Formula [20] and known properties of asymptotically long
classical periodic orbits. In these cases, the time-scale τ0

characterizes the onset of potential nonuniversal contributions
to gc(τ ) for τ � τ0 arising from short orbits. On the other hand,
the spectral form factor has very recently formed a topic of

extensive discussion in the context of the Sachdev-Ye-Kitaev
(SYK) model [21–23], a strongly chaotic quantum system,
whose Hamiltonian has been shown numerically to exhibit
a spectrum possessing the expected “ramp.” A recent lucid
discussion of many aspects of the spectral form factor, with an
emphasis on the Hamiltonian spectrum of the SYK model, can
be found in Ref. [12]. In contrast, these universal spectral cor-
relations are absent in an integrable system, where the spectral
form factor exhibits no “ramp” (and the probability distribution
for the spacing between adjacent levels is Poissonian).

In the present paper, we are going to show that the universal
spectral correlations manifested by a strictly linear “ramp”
already appear at the level of a single many-body wave
function of a generic chaotic quantum system, without focusing
attention on the spectrum of the Hamiltonian of the system; we
also discuss periodically driven Floquet systems.

For thermalizing (chaotic) systems whose time evolution
is governed by a time-independent Hamiltonian (i.e., not
Floquet systems), our work can be motivated by the connection
between a typical state and the thermal ensemble, a notion in-
herent in the eigenstate thermalization hypothesis [1,2] (ETH),
which we now briefly summarize as follows: Let |ψ〉 be a state
at finite energy density e = E/V (i.e., 〈ψ |Ĥ |ψ〉 = E = e V ,
where V is the volume), which can either be a highly excited
exact eigenstate of a chaotic Hamiltonian Ĥ in the spatial
volume V , or just a typical short-range entangled initial state
(which is not an eigenstate of Ĥ ) acted on by the corresponding
unitary quantum mechanical time-evolution operator for a
sufficiently long time. ETH states that the expectation value of
a product of local operators in the state |ψ〉 equals the thermal
expectation value of this product at a temperature determined
by e in the usual sense of microcanonical statistical mechanics.
For Floquet systems, these expectations values in the analogous
state |ψ〉 are at infinite temperature.

Here we consider the reduced density matrix in a spatial
subregion A (B = Ā is the complement of A) of such a typical
state,

ρ̂A = TrB |ψ〉〈ψ |. (1.2)

We will show that the spectral form factor for the spectrum of
eigenvalues λi of the reduced density matrix ρ̂A,

g(τ ) ≡
〈∑

i,j

e−iτ (λi−λj )

〉
, (1.3)

exhibits a “ramp.” As mentioned above, the presence of a
“ramp” in the spectral form factor demonstrates the presence
of universal spectral correlations over a possibly large range of
scales (determined by τ0 and τH ) in the spectrum of eigenvalues
of the density matrix. Thus, in this paper we use the presence
of these universal spectral correlations in the spectrum of
eigenvalues of the reduced density matrix of a typical quantum
state |ψ〉, as manifested by the presence of a “ramp” in the
associated spectral form factor, to define the notion of quantum
chaos in the state (i.e., “in the wave function”). In particular, we
will show at the technical level that spectral properties of the
reduced density matrix ρ̂A are described by so-called Wishart
random matrix theory [24]. As it turns out, Wishart random
matrix theory exhibits universal spectral correlations identical
to those appearing in standard (here [25] GUE) random matrix
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theory; in particular they have the same universal linear “ramp”
(see Sec. IV C and Appendix B).

For systems whose time evolution is governed by a time-
independent Hamiltonian, we can look at this also from a
slightly different angle: Instead of investigating the spectral
statistics of the reduced density matrix, one may also be
inclined to consider the spectral statistics of the associated
entanglement Hamiltonian ĤE defined by

ρ̂A = N−1
E exp{−βeffĤE}. (1.4)

The spectral form factor for the entanglement Hamiltonian is
obtained from (1.3) by letting λi → − ln λi . As discussed
in Appendix A, the two spectral form factors, of ρ̂A and of
ĤE , exhibit identical universal features in their respective level
statistics. In particular, in a chaotic system they both exhibit
a linear “ramp.” Now, one may think of the entanglement
Hamiltonian and of (1.4) in the light of a strong version of ETH
proposed in Ref. [26], which states that the reduced density
matrix of the single state |ψ〉 takes on a thermal form, ρ̂A =
N−1

A exp{−βĤA}, where ĤA is the physical (chaotic) Hamil-
tonian of the system, projected onto the region of subsystem A.
Note that this strong version of ETH [26] is a quite nontrivial
statement because even though ρ̂A is constructed from a single
state [see (1.2)], this statement implies that ρ̂A contains the
knowledge of the entire Hamiltonian of the system, or rather at
least of its projection onto A. Then, if one assumes the validity
of the above-mentioned strong version of ETH, one would nat-
urally expect that the universal correlations in the spectrum of
the entanglement Hamiltonian ĤE are directly inherited from
those of the physical Hamiltonian ĤA (which, according to
the Bohigas, Giannoni, and Schmidt conjecture, is expected to
exhibit universal spectral correlations). Thus, since we observe
(as mentioned) that ρ̂A and ĤE exhibit the same universal
features in their spectral form factors, it would be natural to
expect the appearance the universal spectral correlations (and
the “ramp”) in the entanglement Hamiltonian of a single state
|ψ〉. Put another way, for thermalizing (chaotic) systems whose
time evolution is governed by a time-independent Hamiltonian,
our results can thus also be viewed as a confirmation of the
strong version of ETH proposed in Ref. [26].

In order to investigate explicitly the presence of the men-
tioned universal correlations in the spectrum of the reduced
density matrix (1.2) in many-body quantum chaos, we numer-
ically compute the spectral form factor of the density matrix
of a typical single many-body wave function |ψ〉 [as defined
in the paragraph above (1.2)], in two generic nonintegrable
one-dimensional systems: a Floquet spin model and a quantum
Ising model in both transverse and longitudinal field. As
will be shown below in the bulk of the paper, we clearly
observe for both systems a linear “ramp” in the spectral form
factors of their density matrices, confirming the corresponding
universal spectral correlations in their spectra of eigenvalues.
Furthermore, in order to provide a generic, model-independent
description of the universal features of quantum chaos in a wave
function, we consider a so-called “random pure state,” or “Page
state” (“Haar state”) [27],

|�({αi})〉 =
∑

i

αi |Ci〉, (1.5)

in which the coefficients αi of the state in a fixed basis {|Ci〉}i
are random complex numbers subject solely to the normal-
ization constraint, with a probability distribution invariant
under unitary basis changes. The set of coefficients {αi}i can
thus be considered a row (or column) vector of a unitary
random matrix (distributed according to the Haar measure).
When we now form the reduced density matrix ρ̂A of the
“random pure state” (1.5) in a spatial region A, we obtain a
random matrix which turns out to belong to the well-studied
“Wishart random matrix ensemble” (see Sec. IV A below for
a more detailed discussion). The probability distribution for
the eigenvalues of the Wishart random matrix and hence of
the density matrix ρ̂A of the “random pure state” are known
analytically (as reviewed in Sec. IV B), and the spectral form
factor for ρ̂A can be shown analytically (see Sec. IV C and
Appendix B) to exhibit a linear “ramp” in the limit of large
density matrices, reflecting the presence of universal spectral
correlations in their spectra. As already mentioned, the linear
“ramp” in gc(τ ) for the eigenvalues of the Wishart random
matrix turns out to be identical to that of standard random
matrix theory in the same symmetry class (see Sec. IV C and
Appendix B). The spectral form factor for the “random pure
state” is discussed in detail in Sec. II B below. In Sec. II C
we compare the numerically obtained spectral form factors of
the Floquet and the quantum Ising systems with that of the
“random pure state” (for the same system sizes) and find full
agreement of the universal features. This means that Wishart
random matrix theory describes the spectral correlations of the
reduced density matrix of a single many-body wave function
in typical chaotic systems of Hamiltonian and Floquet type in
their universal regime, just as ordinary random matrix theory is
thought to describe the level statistics of a chaotic Hamiltonian
(according to the Bohigas, Giannoni, and Schmidt conjecture
[13]). The Floquet and quantum Ising systems considered in
this paper lack time-reversal symmetry and so the “GUE”
Wishart random matrix ensemble will be appropriate.

Subsequently, we explore the important question of devel-
opment of quantum chaos under quantum mechanical unitary
time evolution. Recently, it has been proposed that the “out-
of-time-ordered” correlation function (OTOC) can probe the
development of chaotic dynamics and scrambling of quantum
information [7–11,28]. At early times, the OTOC can exhibit
an exponentially growing regime, the growth rate of which
represents a quantum analog of the (classical) Lyapunov
exponent. In this paper, we will study instead as an indicator of
the development of quantum chaos the emergence of universal
spectral correlations and of the corresponding “ramp” in the
spectral form factor, in the spectrum of the reduced density
matrix ρ̂A(t ) as a function of time t in a quantum quench
problem. ETH states that an (sufficiently general short-range
entangled) initial state which is not an eigenstate, relaxes under
the quantum mechanical time evolution, after a sufficiently
long time, to a state which appears to be (in the sense of ETH, as
reviewed above) in thermal equilibrium (at infinite temperature
for Floquet systems) [1,2]. Therefore, if we start with an initial
direct product state, one expects that while the spectrum of the
reduced density matrix ρ̂A(t ) will initially exhibit no spectral
correlations, under the unitary time evolution a “ramp” will
emerge after a sufficiently long time t in its spectral form factor.
We consider both (one-dimensional) Floquet and quantum
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Ising models and find that a “ramp” starts to develop as soon as
the entanglement entropy begins to grow. More precisely, it is
interesting to note that universal spectral correlations are first
seen to appear for the eigenvalues at the top of the spectrum of
the reduced density matrix ρ̂A(t), and subsequently spread out
over the entire spectrum at later times.

We emphasize that there is no direct connection between the
appearance of a volume law in the entanglement entropy and
quantum chaos. In integrable systems, initial direct product
states (as above) are typically expected to thermalize to a
generalized Gibbs ensemble (GGE) after sufficiently long
unitary time evolution [29–32]. Although the reduced density
matrix ρ̂A for these GGE states possesses an entanglement
entropy exhibiting a volume law, the eigenvalues of this density
matrix are not expected to exhibit the discussed universal
spectral correlations, in contrast to the reduced density matrix
of chaotic (thermalizing) systems discussed above. To illustrate
this point explicitly, we have constructed a rapidly driven
Floquet system whose time evolution, starting out from a direct
product state, exhibits a long, stable so-called prethermalized
regime [33–36] at intermediate times. This prethermalized
regime, accompanied by a long plateau in the time dependence
of the entanglement entropy exhibiting a volume law, will
be seen to be clearly devoid of chaos as evidenced from the
absence of the characteristic universal spectral correlations in
the spectrum of the density matrix ρ̂A(t ), which is manifested
by the absence of a “ramp” in the corresponding spectral form
factor. A linear “ramp” in the spectral form factor is seen to
develop only when the prethermalized regime eventually re-
laxes at very late times to the fully thermalized chaotic regime,
in which the conservation laws (approximately) present in the
prethermalized regime cease to exist.

We end the introduction by mentioning some related work.
Level repulsion statistics between adjacent levels of the density
matrix of thermalizing systems with a main focus on disordered
systems has been discussed in the context of work investigating
Many-Body-Localization (MBL) in Refs. [37] and [38]. Level
repulsion statistics and level variance of the reduced density
matrix of a spinless Hubbard model, subject to a constant
electric field and after a flux quench, was discussed in Ref. [39].
Our work, in contrast, discusses spectral rigidity and, in partic-
ular, the universal spectral correlations and the “ramp” in the
spectral form factor, focusing on non-random chaotic systems,
and it elucidates the origins of these spectral correlations in
the “random pure state” (Page state) and in Wishart random
matrix theory, both for Hamiltonian and Floquet systems.
Furthermore, we identify the development of chaos as the
process of buildup of these spectral correlations in the density
matrix under the unitary time-evolution. We also discuss a
prethermal regime, lacking chaos, and its late-time relaxation
to a chaotic state.

The rest of the paper is organized as follows. In Sec. II, we
first discuss the spectral form factor in the “random pure state”
(Page state) and its linear “ramp.” Then, we discuss the spectral
form factors of typical wave functions of nonintegrable Floquet
and quantum Ising models for the same system sizes and show
that they both exhibit the same universal linear “ramp” as the
“random pure state.” In Sec. III, we discuss the development
of chaos in these Floquet and Ising model wave functions
by computing the time evolution of the spectral form factor.

Moreover, we explore the development of chaos in a Floquet
model which exhibits a long prethermal regime at intermediate
times. In Sec. IV, we compute the spectral form factor in the
“random pure state” (Page state) analytically by using some
basic knowledge of the Wishart ensemble and compare the
result with the numerical calculations in Sec. II. We summarize
and conclude in Sec. V.

II. SPECTRAL FORM FACTOR

A. General discussion

We decompose the Hilbert space of the total system of
dimension N (of which the “typical” state |ψ〉 is an element)
into a tensor product of the Hilbert spaces of the two sub-
systems, system A with Hilbert space dimension NA, and
system B with Hilbert space dimension NB (i.e., N = NANB).
The spectral form factor g(τ ) for the NA eigenvalues λi of
the reduced density matrix ρ̂A defined in (1.3) above can be
conveniently expressed [40] in terms of the Fourier transform
of the eigenvalue density

Z(τ ) ≡ Tr exp(−iτ ρ̂A) =
NA∑
i=1

exp(−iτλi ) (2.1)

as follows

g(τ ) =
〈

NA∑
i,j=1

e−iτ (λi−λj )

〉
= 〈Z(τ )Z∗(τ )〉. (2.2)

As seen from (2.2), at τ = 0 the spectral form factor clearly
takes on the value g(τ = 0) = (NA)2, while in the limit τ →
∞ only contributions with λi = λj survive, which yields the
smaller value limτ→∞ g(τ ) = NA. As we will see below, the
function g(τ ) initially decreases starting from τ = 0 until it
reaches a minimum (“dip”), then exhibits a segment of linear
rise (“ramp”), until the curve suddenly becomes constant (at
the Heisenberg time τH ) reaching its late-time “plateau” value
(see, e.g., Fig. 1). As we will review below, the initial decrease
at early times is nonuniversal, whereas the linear “ramp” is
completely universal, depending only on the symmetry class.
We note that the presence of these three distinct regimes, the
decrease until the “dip,” the linear rise along the “ramp,” and
the flat plateau, was stressed in the context of the spectral
form factor of the Hamiltonian of the SYK model in the recent
Ref. [12] already mentioned above.

We will also consider the connected spectral form factor

gc(τ ) = 〈Z(τ )Z∗(τ )〉 − 〈Z(τ )〉 〈Z∗(τ )〉, (2.3)

which exhibits (as already mentioned) a longer and more
pronounced “ramp” (compare, e.g., Fig. 1). Its analytic form
for the “random pure state” and the Wishart random matrix
ensemble is displayed in (4.24) of Sec. IV in the limit of a
large density matrix. In the context of the spectrum of a random
(GUE, GOE, or GSE) Hamiltonian matrix, the connected
spectral form factor gc(τ ) has been extensively discussed in
the literature over many years [41].

As already mentioned in the Introduction (Sec. I), the
purpose of the average 〈...〉 in (2.2) and (2.3) is to remove
nonuniversal rapid temporal fluctuations [42] from the spectral
form factor g(τ ). In our work reported below, there will be a
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FIG. 2. (a) Spectral form factor g(τ ) = 〈ZZ∗〉 for the “random pure state” (Page state) with fixed value of N = 2L and different values
of NA = 2LA , where L is the total number of lattice sites, and LA denotes the number of lattice sites in subsystem A. The curve is obtained by
taking the disorder average over 1000 states. (b) Connected spectral form factor gc(τ ) = 〈ZZ∗〉 − 〈Z〉〈Z∗〉 for the “random pure state” with
fixed values of N and different values of NA. Again, the curve is obtained by taking the disorder average over 1000 states.

natural ensemble available over which to perform the average
as an ensemble average: For the “random pure state” (Page
state) discussed in Sec. II B below, this will be an average
over the statistical ensemble of “random pure states,” while
for the Floquet and quantum Ising models in Sec. II C this will
be an ensemble of initial direct product states. Another way
to remove the high-frequency fluctuations from the spectral
form factor g(τ ) is to coarse grain the latter in time τ

by convolution with a temporal “smearing function” which
eliminates high frequencies components from the signal. (For
example, see Refs. [12,43].) Since the ensemble averages were
more convenient for us, we did not use the coarse graining
approach in the present work to remove the high frequency
fluctuations.

B. Random pure state

Since, as already mentioned in the Introduction, this will
turn out to provide a model-independent description of the
universal properties of quantum chaos in a wave function, we
first study the spectral form factor of the “random pure state”
(Page state), discussed in (1.5) and the paragraph below that
equation. The reduced density matrix for a “random pure state”
is also a random matrix and it turns out to belong to the so-called
(unitary) Wishart ensemble with Dyson index β = 2, in which
the spectral density satisfies the so-called Marchenko-Pastur
distribution [24]. (See Sec. IV for a review.)

Using this property, Page showed [27] that the ensemble-
averaged (von Neumann) entanglement entropy [EE] of the
reduced density matrix for subsystem A of the “random pure
state” is equal to

〈SA〉 = log NA − NA

2NB

. (2.4)

(Recall that NA and NB are Hilbert space dimensions for
subsystem A and its complement B, respectively, and we have
assumed NA � NB without loss of generality.)

Since the Hilbert space dimension NA grows exponen-
tionally with the volume of subsystem A, the entanglement
entropy of the random product state exhibits according to (2.4)
a volume law (as expected). For example, for the Ising-type
systems considered in the present paper which have a local
(onsite) Hilbert space dimension of two, we have NA = 2LA

where LA is the number of lattice sites of subsystem A. We thus
seen from (2.4) that the entanglement entropy of the “random
pure state” exhibits a volume law of maximal possible value
(given the dimension of the onsite Hilbert space), up to a small
subleading term which depends on the ratio of the Hilbert
space dimensions of subsystems A and B, which we denote by
α ≡ NA/NB . The latter subleading term in (2.4) takes on its
maximal value 1/2 at α = 1 and approaches zero as NA � NB .

It it known analytically (as reviewed in Sec. IV below) that
the eigenvalues of the Wishart random matrix exhibit the same
universal spectral correlations as those of the Hamiltonian of
the GUE random matrix ensemble, which manifest themselves,
as already mentioned, in the connected spectral form factor
gc(τ ). We have computed numerically the (nonconnected)
spectral form factor g(τ ) = 〈Z(τ )Z∗(τ )〉 for the eigenvalues
of the Wishart random matrix, describing the reduced density
matrix of the “random pure state.” The results are plotted in
Fig. 2(a) which shows that when α = NA/NB < 1, there is an
intermediate linear “ramp” where g(τ ) = 〈Z(τ )Z∗(τ )〉 grows
linearly with time τ . The presence of the “ramp” demonstrates
the presence of the mentioned universal spectral correlations,
as discussed analytically in Sec. IV below (compare also
Fig. 1).

Continuing with α = NA/NB < 1, we also observe in
Fig. 2(a) an early time regime where g(τ ) = 〈Z(τ )Z∗(τ )〉
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drops down quickly to a minimum value. It turns out that
at early times, 〈Z(τ )Z∗(τ )〉 factorizes into 〈Z(τ )〉〈Z∗(τ )〉
and is therefore determined by the Fourier transform of the
average of the eigenvalue density, 〈Z(τ )〉, defined in (2.1).
One can determine from Fig. 2(a), where g(τ ) = 〈Z(τ )Z∗(τ )〉
is plotted versus τ for NA = 212 (and N = 226, i.e., when
α = 1/4), that it scales as 1/τ 3 in this early time regime.
Moreover, we observe in the plots shown in the same figure
for smaller values of α, that there are large oscillations in this
early time regime [44], but with an envelope function that is
still close to 1/τ 3, when compared to the α = 1/4 case.

This power law decay behavior of the spectral form factor at
early times originates from the eigenvalue distribution function
〈Z(τ )〉 of the Wishart matrix which will be analytically
computed in Sec. IV B. For a generic chaotic system with
Hamiltonian Ĥ , the details of the eigenvalue distribution
function of the density matrix ρ̂A for a typical wave function
will in general be different from that of the Wishart matrix,
and will not be universal. In particular, in the early time
regime where the spectral form factor g(τ ) = 〈Z(τ )Z∗(τ )〉
factorizes into 〈Z(τ )〉〈Z∗(τ )〉, it will be model dependent,
in contrast to the regime of intermediate τ where it exhibits
a universal “ramp,” whose presence depends solely on the
universal spectral correlations in the spectrum of eigenvalues.

As already discussed, at late times τ larger than the Heisen-
berg time τH , the spectral form factor g(τ ) = 〈Z(τ )Z(τ )∗〉
will saturate to a constant value NA, which is coming from
the terms with λi = λj [see (2.2)]. Since, as has also been
mentioned, the saturation value is much smaller than the initial
value N2

A attained at τ = 0 [see again (2.2)], we plot g(τ ) =
〈Z(τ )Z∗(τ )〉 on a log-log scale so that the behavior of 〈ZZ∗〉
at the different time scales τ can be seen clearly. The three time
regimes mentioned in Sec. (II A) are separated by two typical
time scales: The time where the “dip” occurs (“dip time”)
τd , and the time where the plateau begins (“plateau time,”
or “Heisenberg time”) τp = τH . We find that the dip time τd

scales as
√

NAN , while τp is found to scale as NA

√
N . (Recall

N = NANB .) (Both statements are obtained analytically in
Sec. IV and have also been checked numerically.) This is
analogous to the three regimes observed in Ref. [12] for
the spectral form factor for a M × M random matrix in the
GUE ensemble (as compared to the Wishard random matrix
ensemble discussed here), where τd ∼ √

M and τp ∼ M .
We finally discuss a subtlety occurring when α =

NA/NB = 1. In contrast to the case where α < 1 discussed
above, we see from Fig. 2(a) (top curve, NA = 213, where
the total Hilbert space dimension is N = 226) that for α = 1
the intermediate “ramp” in g(τ ) disappears. The difference
between α = 1 and α < 1 is caused by the different behavior
of 〈Z(τ )〉: At early times, where g(τ ) = 〈Z(τ )Z∗(τ )〉 ∼
〈Z(τ )〉〈Z∗(τ )〉 factorizes, for α = 1 the spectral form factor
scales as 1/τ and then directly transits to the plateau. However,
the absence of the “ramp” does not mean that universal spectral
correlations are absent in the spectrum of eigenvalues when
α = 1. Rather, the different behavior of 〈ZZ∗〉 just turns out to
hide the “ramp” due to the slow decay of the disconnected part
〈Z(τ )〉〈Z∗(τ )〉. The effect of the slowly decaying 〈Z(τ )〉 can
be removed if we consider instead the connected spectral form
factor gc(τ ) = 〈ZZ∗〉 − 〈Z〉〈Z∗〉, which is plotted in Fig. 2(b).
In the latter figure we observe a long “ramp” even for α = 1.

Actually, for the other curves with α < 1 in the same figure,
the linear “ramp” in gc(τ ) starts at an earlier time (denoted
earlier by τ0, see Fig. 1) than the “ramp” in g(τ ), where part
of the longer linear “ramp” in gc(τ ) is in fact covered up
by 〈Z〉〈Z∗〉 as depicted in Fig. 2(a). Since small values of
τ correspond to large eigenvalue differences on the scale
of the mean level spacing, the early-time part τ0 � τ � τH

of the “ramp” in gc(τ ) describes the spectral correlations of
eigenvalues separated by an energy scale of many times the
mean level spacing. Eventually, as τ is close to τ0, the universal
behavior of gc(τ ) reflected in the linear “ramp” will be limited
by model-dependent (“ultraviolet”) effects at large separations
of eigenvalues, leading to deviations from the linear “ramp” at
yet smaller values of τ � τ0.

The length of the “ramp” in g(τ ) increases with the number
of eigenvalues that exhibit universal spectral correlations [12].
We clearly see from Fig. 2(b) that both the length of “ramp,”
and the position of τp, are linearly proportional (on a log scale)
to log NA.

We finally want to mention that the reduced density matrix
ρ̂A studied in this section belongs to the Wishart random matrix
ensemble lacking time-reversal symmetry, described by Dyson
index β = 2 (i.e., the “GUE-type” version of the Wishart
random matrix ensemble). We can also consider a density
matrix ρ̂A described by a Wishart ensemble with Dyson index
β = 1, 4 (the “GOE” and the “GSE” version of the Wishart
random matrix ensemble), in which the details of the universal
spectral correlations are slightly different. In the spectral form
factor, these modified spectral correlations between the eigen-
values are reflected in a similar but slightly more complicated
universal “ramp.” [24] While a straightforward extension, we
will not discuss details of these cases explicitly in this paper.

C. Floquet and quantum Ising models

For a generic chaotic system with a time-independent
Hamiltonian Ĥ , we expect that for the states |ψ〉 with energy
expectation value E (=〈ψ |Ĥ |ψ〉 = eV , where e is the energy
density) in the middle of the spectrum of Ĥ , the resulting
density matrix ρ̂A of the subsystem is well thermalized and
its entanglement entropy exhibits a volume law. As already
mentioned in the introduction, one might expect based on
notions from ETH that the spectrum of this reduced density
matrix exhibits universal spectral correlations. In this section,
we will show more specifically for both one-dimensional
Floquet and quantum Ising models that the spectra of the
reduced density matrices of the above-mentioned states |ψ〉
have the same universal properties as those of the “random
pure states” (Page states), and that the universal features of their
reduced density matrix are in fact those of the Wishart random
matrix, which is the reduced density matrix of the “random
pure state,” the density matrix of a completely random wave
function.

For practical reasons, instead of diagonalizing the Hamil-
tonian (or the Floquet operator) to investigate the spectral
statistics the reduced density matrix obtained for the subsystem
for a typical eigenstate [45], we will choose a set of initial
product states |�0〉 (which thus are not entangled) and let them
evolve under the unitary evolution governed by the Floquet
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FIG. 3. (a) g(τ ) = 〈ZZ∗〉 for Page state, Floquet, and quantum Ising models. (b) gc(τ ) = 〈ZZ∗〉 − 〈Z〉〈Z∗〉 for Page state, Floquet, and
quantum Ising models. For both (a) and (b), we average over an ensemble containing over 1000 states.

operator or Ising Hamiltonian, i.e.,

|�0(t )〉 = U (t )|�0〉. (2.5)

This is actually a quantum quench problem. For a generic
nonintegrable system, the initial wave function |�0〉 will
eventually, at long times t , thermalize under its own dynamics
and the reduced density matrix ρ̂A(t ) = TrB |�0(t )〉〈�0(t )|
will approach the reduced density matrix of a generic eigenstate
of the Hamiltonian [1,2]. Universal spectral correlations will
develop in the spectrum of the reduced density matrix starting
from such unentangled initial states, so that the final state
obtained after sufficiently long time evolution will be fully
thermalized. The advantage of this method is that we can
work with relatively large systems (the time evolution operator
simply has to be applied for a long time). Specifically, we
will consider below one-dimensional Floquet and Ising models
with L = 20 lattice sites.

1. Floquet model

We first consider a Floquet model. It is known that Floquet
systems can thermalize very rapidly due to the absence of
any conservation laws [6,46–49]. The properties of such
periodically driven systems are determined by the unitary
time evolution operator over one period, i.e., the Floquet
operator. Following Ref. [46], we consider the following
Floquet operator

ÛF = exp[−it0Ĥz] exp[−it0Ĥx] , (2.6)

where

Ĥx =
L∑

j=1

gσ̂ x
j

Ĥz =
L−1∑
j=1

σ̂ z
j σ̂ z

j+1 +
L∑

j=1

hσ̂ z
j , (2.7)

and σ̂ x
j and σ̂ z

j are standard Pauli matrices acting on lattice
site j . This model is a one-dimensional periodically driven
system with period T = 2t0. In the numerical calculations
discussed below we choose open boundary conditions and
typical system parameters (g, h, t0) = (0.9045, 0.8090, 0.8).
We choose a set of initial states which are random product states
(hence unentangled, having vanishing EE) with the direction
of the spin at each lattice site chosen independently from a
uniform distribution on the Bloch sphere.

Since we are considering a Floquet model, the evolution
time t is an integer multiple of T , i.e., t = nT with n ∈ Z+. For
the parameters we are considering here, it only takes a small
number of time steps to achieve thermalization. The details
of the thermalization process itself and of the development of
chaos will be discussed in Sec. III below. Here we discuss the
properties of the fully thermalized state that the system takes
on after sufficiently long time evolution. Note that since for
a Floquet system energy is not conserved, one expects that
the subsystem (LA � L/2) will always thermalize to a state at
infinite temperature close to the “random pure state” discussed
above [49].

In Fig. 3 we present numerical results for the spectral form
factor g(τ ) = 〈Z(τ )Z∗(τ )〉 and for the connected spectral
form factor gc(τ ) = [〈Z(τ )Z∗(τ )〉 − 〈Z(τ )〉〈Z∗(τ )〉] at time
step n = 30, when the system is fully thermalized. We see
from Fig. 3 that for both LA = 9 and for LA = 10 [here
L = 20], both quantities g(τ ) and gc(τ ) are indistinguishable
from those for the “random pure state.” The “ramp” in g(τ ) =
〈Z(τ )Z∗(τ )〉 is absent when LA = 10 = L/2, but becomes
visible once we subtract the disconnected part 〈Z(τ )〉〈Z∗(τ )〉
to obtain the connected spectral form factor gc(τ ) (as discussed
above in the context of the “random pure state”).

We also note that there is another way to generate an
ensemble that can be used to perform the average: We can pick
a fixed initial state |�0〉, but consider an ensemble of states
whose members consist of the time series of states originating
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from the time evolution of this fixed state by different amounts
of time tm ≡ T0 + m δt , where T0 is a large time ensuring
that the initial state has “thermalized,” δt is some time step
(= T in the Floquet case), and m = 1, 2, . . . , M , i.e.

|�0(tm)〉 = Û (tm)|�0〉, (m = 1, . . . ,M ). (2.8)

In this situation the time average over the set of states (2.8) at
times tm then generates the ensemble average of the spectral
form factor. The resulting averaged spectral form factor is
displayed in Fig. 4 and seen to exhibit the same universal linear
“ramp” as that arising from averaging over the ensemble of
initial states |�0〉 displayed in Fig. 3.

2. Quantum Ising model

In this section we study the transverse field quantum Ising
Hamiltonian with a longitudinal field. The Hamiltonian is

Ĥ =
∑

i

σ̂ z
i σ̂ z

i+1 + hx

∑
i

σ̂ x
i + hz

∑
i

σ̂ z
i . (2.9)

The system parameters are (hx, hz) = (1.05, 0.5) [50]. This
model is far from integrable due to the large longitudinal field.
The reduced density matrix of the initial direct product state
will eventually thermalize under the time evolution generated
by the time-independent Hamiltonian (2.9), the total energy
always being conserved. We choose the initial states to be
random product states with Hamiltonian expectation values
E within a small energy interval E ∈ [−0.1, 0.1] (close to
the middle of the spectrum of Ĥ ), and study the spectral
correlations and the emergence of a “ramp” in the spectrum of
eigenvalues of the reduced density matrix at a sufficiently long
time t = 100, when the system is fully thermalized. The results
are presented in Fig. 3. We see that the spectral form factor
g(τ ) = 〈Z(τ )Z∗(τ )〉 is indistinguishable from that computed
for the “random pure state,” as well as from that computed for
the Floquet model, for times τ ranging from close to two orders

of magnitude below the Heisenberg time scale all the way up to
the plateau and it exhibits a linear “ramp” in that range of times
τ . On the other hand, there is some difference in the connected
spectral form factor gc(τ ) = [〈Z(τ )Z∗(τ )〉 − 〈Z(τ )〉〈Z∗(τ )〉]
displayed in Fig. 3(b): The length of the “ramp” for the Ising
model is shorter than that for “random pure state,” and that
for the Floquet model, and shows an overshoot at early τ .
This suggests that for the Ising model, whose time evolution
is constrained by the energy conservation law, the subsystem
is “less chaotic” in the sense that model-dependent features
appear in the connected spectral form factor already at (small)
times, here τ ≈ τ0 = 104 ≈ 10−2τH , see Fig. 3(b), reflecting
deviations from universal spectral correlations for eigenvalues
λi at correspondingly large separations. We will discuss this
issue in more detail in the next section.

III. THE DEVELOPMENT OF CHAOS
AND THERMALIZATION IN FLOQUET

AND ISING MODEL

In this section, we study the development of quantum chaos
in the many-body wave function. Starting (as before) with an
initial product state |�0〉, the time-evolved reduced density
matrix ρ̂A(t ) of the subsystem,

ρ̂A(t ) = TrB[Û (t )|�0〉〈�0|Û †(t )], (3.1)

will eventually thermalize under the unitary time evolution
operator Û (t ) of a generic nonintegrable system, and its spec-
trum will in the process develop universal spectral correlations,
manifested by a linear “ramp” in the corresponding spectral
form factor. In this section we ask: At what times t , under the
quantum mechanical time evolution, does the “ramp” emerge,
and how does it evolve in time t until it reaches its final fully
thermalized regime at long times? That is, we will be studying
the development of chaos in the density matrix. To answer these
questions, we will study the spectral form factor at different
times t before ρ̂A(t ) has fully thermalized.

A. Floquet system

We first study the Floquet system defined in (2.6) and (2.7)
[6,46–49]. As shown in the inset of Fig. 5(b), when the
subsystem size is LA = 9 (total system size L = 20), the EE
grows linearly with time t = nT for time steps n � 10, and
then quickly saturates exponentially in the time step n to the
Page value. As is clearly seen from the inset of Fig. 5(b), at
time step n = 30 the deviation of the EE from its Page value
is negligible.

When we consider the spectral form factor g(τ ) =
〈Z(τ )Z∗(τ )〉 for the same density matrix ρ̂A(t = nT ), the
“ramp” starts to emerge at time stepn = 11: In Fig. 5(a), we can
clearly observe that as the time step n increases beyond n = 11,
the dip in g(τ ) becomes much deeper, and at the same time the
“ramp” is getting longer. At time step n = 15, the length of the
“ramp” in g(τ ) = 〈Z(τ )Z∗(τ )〉 is already very close to that
observed at time step n = 30. In Fig. 5(b) we plot the connected
spectral form factor gc(τ ) = 〈Z(τ )Z∗(τ )〉 − 〈Z(τ )〉〈Z∗(τ )〉,
which is seen to exhibit a “ramp” whose length continues to
increase beyond time step n = 15 until the fully thermalized
regime at time step n = 30 is reached. These plots also show
an overshoot at the low-τ end of the “ramp” in gc(τ ), which is
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FIG. 5. (a) g(τ ) = 〈ZZ∗〉 versus τ for the Floquet model defined in (2.7) at different time steps n, averaged over 1000 samples. (b)
gc(τ ) = 〈ZZ∗〉 − 〈Z〉〈Z∗〉 for the same model at different time steps n. The inset shows the averaged entanglement entropy (EE) as a function
of time step n.

however suppressed as the time step n increases further, and at
n = 30 the overshoot has basically disappeared [and gc(τ ) is
the same as that for the “random pure state”—compare Fig. 3
(b)], indicating that at this time step chaos has fully developed
in the subsystem. All these time scales depend on the length
LA of the subsystem and become smaller as the subsystem size
LA is decreased.

We note that we have obtained the above results upon
computing the spectral form factor by using in (1.3) or (2.2)
all the eigenvalues of the reduced density matrix ρ̂A(t = nT ).
Actually, in order to gain additional insight, it is useful to
limit the eigenvalues used to compute the spectral form factor
in (1.3) or (2.2) to a subset lying in a window around a
fixed eigenvalue, and to compute the spectral form factor
by only using the eigenvalues of the density matrix in this
window. This procedure can then detect “local universal
spectral correlations” characterizing the correlations amongst
the eigenvalues in this window. In Fig. 6(a), we present results
for the spectral form factor g(τ ) = 〈Z(τ )Z∗(τ )〉 for a window
of 10 consecutive eigenvalues at the top of spectrum [51] in
ρ̂A. We notice the appearance of a linear “ramp” as early as at
time step n = 5. As we move the window of eigenvalues away
from the top to the bottom of the spectrum of the density matrix
[52], we find that the linear “ramp” develops only at later time
steps—here at n = 11 [Fig. 6(c)]. This result demonstrates that
in the Floquet model, as time t evolves, the universal spectral
correlations first emerge at the top of spectrum of ρ̂A(t = nT )
and subsequently spread over the entire spectrum at later times
t . This behavior, i.e., the fact that not the entire spectrum of the
density matrix develops the spectral correlations uniformly in
time t , is also responsible for the shallowness of the dip that
appears, when the time step n is between 11 and 15, in the plot
in Fig. 5(a) of the spectral form factor g(τ ) = 〈Z(τ )Z∗(τ )〉
which uses the entire spectrum as input.

Finally, we would like to discuss the connection between
the linear growth of the EE and the development of universal
spectral correlations. When we look at the magnitudes of the
eigenvalues of ρA(t ) at early times, we find that there are only a
few of them which are appreciably different from zero, and it is
them that exhibit the spectral correlations and are also respon-
sible for the observed value of the EE. Actually, they also give
rise to the volume law in the EE for smaller subsystem sizes.

As time evolves, more and more eigenvalues become appre-
ciably different from zero. They develop spectral correlations
and lead to the linear growth of the EE. This is in contrast
with an integrable system, where the linear growth of the EE
is due to the ballistic propagation of quasiparticles [31] and
there are no spectral correlations between the eigenvalues and
hence there is no “ramp” in the spectral form factor [53]. In
Sec. III C we will show an example of such a phenomenon
within a Floquet system.

B. Ising model

In this section we investigate the development of chaos in
a quantum Ising model, where the thermalization process is
slower due to the presence of the energy conservation law.

High energy states: For an ensemble of initial random direct
product states |�0〉 with Hamiltonian expectation value in the
small energy interval E ∈ [−0.1, 0.1] [i.e., E = 〈�0|Ĥ |�0〉
in the middle of the spectrum of the Ising Hamiltonian Ĥ in
(2.9)], the EE grows linearly with time until t ≈ 7 and then
saturates exponentially to the final volume law at longer times
around t = 100 [see inset in Fig. 7(b)]. Since this initial state
has energy E close to zero (middle of the spectrum of Ĥ ), the
effective temperature is high and the saturation value of the EE
is only slightly smaller than the Page value. In particular, when
LA = 9 (total system size L = 20), the difference between the
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FIG. 6. (a) g(τ ) = 〈ZZ∗〉 versus τ for a subset (window) of 10 eigenvalues at the top of the spectrum of ρ̂A for the Floquet model defined
in (2.7) at different time steps, averaged over 1000 samples. (b) g(τ ) = 〈ZZ∗〉 for a subset of 10 eigenvalues in the middle of the spectrum of
the same model. (c) g(τ ) = 〈ZZ∗〉 for a subset of 10 eigenvalues at the lower edge of the spectrum of the same model.

two values of the EE is seen to be around 0.0045, which is less
than 0.1% of the EE of the Page state.

In Fig. 7, we present results for the spectral form factors
g(τ )=〈Z(τ )Z∗(τ )〉 and gc(τ )=〈Z(τ )Z∗(τ )〉−〈Z(τ )〉〈Z∗(τ )〉
at different times t . In Fig. 7(a), the “ramp” in g(τ ) starts to
emerge at around t = 9. As t increases further, the dip becomes
deeper and shifts to earlier times. At t = 15, a linear “ramp”
has fully developed and remains almost unchanged until the
system is fully thermalized at t = 100. In Fig. 7(b) we plot the
connected spectral form factor gc(τ ), which is seen to exhibit
a “ramp” that continues to grow further in length, even beyond
time t = 15. However, in contrast to the Floquet model, the
overshoot appearing at the low-τ end of the “ramp” cannot be
fully suppressed and is always present even after a very long
time evolution [compare also Fig. 3(b)]. This indicates that the
energy conservation law makes the Ising model “less chaotic”

than the Floquet model, in the sense that universal spectral
correlations do not extend to pairs of eigenvalues λi as far
separated as in the Floquet model. We have also computed the
spectral form factor using only a subset of eigenvalues of ρ̂A(t )
in a window around an eigenvalue at the top, in the middle and
at the bottom of its spectrum and we find similar behavior as in
the Floquet model: Universal spectral correlations first emerge
at the top of the spectrum and then spread over the rest of
spectrum.

Lower energy states: Since for the Ising model energy is
conserved, we can also study the spectral correlations of ρ̂A(t )
which arise upon time evolution starting from an initial state
with a lower energy E (= Hamiltonian expectation value =
〈ψ0|Ĥ |ψ0〉) corresponding to properties of the quantum Ising
Hamiltonian (2.9) at relatively low temperatures. (Though E is
separated from the ground state by many levels, the spectrum
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FIG. 7. (a) g(τ ) = 〈Z(τ )Z∗(τ )〉 versus τ of the spectrum of ρ̂A for states at “high energy” expectation values E ∈ [−0.1, +0.1] of the
quantum Hamiltonian defined in (2.9), which has support in the interval [−26, +33]. Different curves correspond to different times t , and
averages were taken over 1000 samples. (b) gc(τ ) = 〈Z(τ )Z∗(τ )〉 − 〈Z(τ )〉〈Z∗(τ )〉 for the same model at different times t , under otherwise
identical conditions. The inset shows the averaged entanglement entropy (EE) as a function of time t .
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subset of 10 eigenvalues in the middle of the spectrum of the same model and otherwise identical conditions. (c) g(τ ) = 〈ZZ∗〉 for a subset
of 10 eigenvalues close to the lower edge of the spectrum of the same model and otherwise identical conditions.

of Ĥ has support in an interval which is approximately
[−26,+33].) In particular, we consider an initial direct product
state close to the Neel state with an energy in the narrow interval
E ∈ [−14.1,−13.9] rather than the random product state in
the middle of the spectrum of Ĥ , which has high excitation
energy E, considered above. Furthermore, we introduce some
randomness into this ensemble of initial states so that we can
perform a disorder (ensemble) average over them. Under the
unitary time evolution, the EE is found to initially grow linearly
with time t and to saturate as expected to a smaller volume law
after long time evolution as compared to the case of a random
initial state with energy E in the middle of the spectrum of Ĥ .
For LA = 9 (total system size L = 20), we start to observe a
dip in the spectral form factor g(τ ) = 〈Z(τ )Z∗(τ )〉 at times
around t = 9. As before, we also compute the spectral form
factor g(τ ) = 〈ZZ∗〉 by only using a subset of eigenvalues
of ρ̂A(t ) locally in a window around a fixed eigenvalue of the
density matrix. For a window of 10 consecutive eigenvalues
close to the top of the spectrum of the density matrix ρ̂A we
find, similar to the Floquet model, a “ramp” already at an
early time t = 4 which becomes linear at t = 6 [Fig. 8(a)].
On the other hand, as we move the window of 10 consecutive
eigenvalues close to the bottom of the spectrum of the density
matrix [Fig. 8(c)], the spectral correlations emerge only at later
times t as compared to the case where the window is at the top
of the spectrum. This is analogous to what was observed in the
Floquet case.

Finally, we turn off the longitudinal field hz in the quantum
Ising Hamiltonian (2.9), so that the model becomes integrable.
An initial random direct product state equilibrates after the
quantum quench to a thermal state described by the generalized
Gibbs ensemble (GGE) with an extensive number of conserved
quantities [29–31]. As shown in Fig. 9, we do not observe any
“ramp” in the spectral form factor g(τ ) = 〈Z(τ )Z∗(τ )〉, indi-
cating the absence of chaos reflected in the absence of universal
spectral correlations in the reduced density matrix ρ̂A.

C. Floquet system with prethermal regime

As discussed before, for a generic Floquet system the
reduced density matrix of a general short-range entangled

initial state will reach a steady state at infinite temperature after
a sufficiently long time evolution, since energy is not conserved
[6,46,48,54]. How thermal equilibrium and chaos emerge in
the wave function is model dependent. Recently, it has been
shown that a rapidly driven system may exhibit an intermediate
prethermal regime of long duration in which the system reaches
a thermal equilibrium state governed by an approximate time-
independent Hamiltonian with the effective temperature set
by the initial energy [33–36,55]. This regime can have an
exponentially long lifetime (in units of inverse frequency, and
other parameters of the system). We note that a prethermalized
regime in a system with a time-independent (as opposed to
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FIG. 9. g(τ ) (solid curves) and gc(τ ) (dashed curves) versus τ

for the quantum Ising model defined in Eq.(2.9) for the integrable
case where the longitudinal field vanishes, hz = 0, averaged over
1000 samples of initial random direct product states with energy
expectation values in the interval E ∈ [−0.1, +0.1], i.e., E is close
to zero.
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FIG. 10. Time dependence of the entanglement entropy of the
Floquet system described by (3.3) on a semilog scale. The period of
T = 2t0 = 0.2. The result is averaged over an ensemble of 400 wave
functions. The inset shows the entanglement entropy at early times
on the linear scale, exhibiting linear growth as expected.

Floquet) Hamiltonian has also been considered recently in
the context of nonintegrable perturbations of integrable many-
body systems [56], but we do not discuss these situations here.

In this section, we are going to explore a Floquet model that
exhibits such prethermalization to a thermal state which is close
to that of a nearly-integrable system. The Floquet operator
that we use to achieve such a prethermalized regime takes the
following form,

ÛF = exp[−it0Ĥ1] exp[−it0Ĥ2] , (3.2)

where

Ĥ1 = −
L−1∑
j=1

σ̂ z
j σ̂ z

j+1 − hx

L∑
j=1

σ̂ x
j

Ĥ2 = −hy

L∑
j=1

σ̂
y

j . (3.3)

This model is a one-dimensional periodically driven system
with period T = 2t0. In the numerical calculations, we choose
open boundary conditions and system parameters (hx, hy ) =
(1, 1). The period T = 0.2 is chosen to be very small in order
to realize a long prethermal regime.

Since the period T is very small, it takes a large number
of time steps for the Floquet system to relax to its ultimate,
fully thermalized (chaotic) state. The previous method used
above for rapidly thermalizing Floquet systems that simply
amounted to applying the time-evolution operator many times
to an initial state, which did not require diagonalizing the
Floquet operator, is no longer useful here due to the large
number of required time steps. Here we will instead consider a
smaller system size with L = 14 so that we can diagonalize the
Floquet operator explicitly and study the long time dynamics
by applying that operator for any length of time to the initial
state. We start with a random direct product state and evolve
it under the Floquet operator. The result for the time evolution
of the EE is shown in Fig. 10, where we clearly observe a long
intermediate plateau which corresponds to the prethermalized
regime. We further have computed the spectral form factor
g(τ ) = 〈Z(τ )Z∗(τ )〉 in this (prethermalized) regime and we
do not observe any dip or “ramp,” demonstrating that the
eigenvalues of the reduced density matrix ρ̂A(t = nT ) do not
exhibit any universal spectral correlations in this regime. The
lack of the spectral correlations shows that chaos is absent in
this regime, and we expect that it is described by a generalized

Linear growth 
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Development of chaos Fully thermalized
n

(a) (b) (c)

102 108

 Z
Z

*

101

102

103

104

n  500

102 108
101

102

103

104

n  1.4 104

102 108
101

102

103

104

n=106

FIG. 11. Spectral form factor g(τ ) = 〈ZZ∗〉 for the Floquet model in (3.3) at different stages in the time evolution (time step n). Each
curve represents the average over an ensemble of 400 wave functions.
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Gibbs ensemble (GGE). On the other hand, chaos starts to
appear at yet longer times where the EE increases further and
eventually relaxes to the Page value; at those longer times, a
small “ramp” is seen to develop in the spectral form factor
depicted in Fig. 11(b). A more pronounced linear “ramp”
can be observed (see Fig. 11) once the state reaches full
thermalization at still larger time steps n.

Therefore, in the present Floquet model, we can separate
the long time evolution into four stages (see Figs. 10 and 11):
(1) a regime of linear growth of the EE, which also appears
in all of the previous models (see inset of Fig. 10), (2) the
prethermal regime described by GGE and absence of chaos,
which is reflected by a plateau in the time evolution of the
EE, (3) the regime of development of chaos where universal
spectral correlations start to develop at the top of the spectrum
of the density matrix ρ̂A, and (4) the fully thermalized regime,
where the initial state has time evolved into a state whose
reduced density matrix exhibits a spectrum indistinguishable
from that of the density matrix of a featureless “random pure
state.”

IV. ANALYTICAL CALCULATIONS FOR
THE “RANDOM PURE STATE”

A. Random pure state and Wishart-Laguerre ensemble

In this subsection we briefly review the connection between
the reduced density matrix of the “random pure state” (Page
state) and the Wishart random matrix ensemble. First, we
decompose the total Hilbert space into a tensor product of the
Hilbert spaces of the two subsystems A and B with dimensions
NA and NB , respectively (assuming NA � NB without loss of
generality), and write the “random pure state” defined in (1.5)
in a direct (tensor) product basis

|�〉 =
NA∑
i=1

NB∑
J=1

XiJ

∣∣� i
A

〉 ⊗ ∣∣�J
B

〉
, (4.1)

where the coefficients XiJ are complex Gaussian random
variables and form a rectangular NA × NB random matrix X

subject to the normalization constraint Tr(XX†) = 1. After
tracing out subsystem B, we obtain from this wave function
the reduced density matrix ρ̂A = XX† for subsystem A, which
is a NA × NA square matrix.

In order to make contact with the Wishart-Laguerre random
matrix ensemble, we consider a (unconstrained) NA × NB

complex random matrix Y = {YiJ } whose statistically inde-
pendent complex matrix elements are drawn from a Gaussian
probability distribution

P ({YiJ }) = N−1 exp

{
−β

2
NBTr(YY †)

}
. (4.2)

The NA × NA matrix W ≡ YY † is then a random matrix
belonging to what is known as the β = 2 (“GUE-type”)
Wishart random matrix ensemble. Consequently, the density
matrix for the “random pure state,” discussed above, can be
expressed in terms of the Wishart random matrix as follows

ρ̂A ≡ YY †

Tr(YY †)
. (4.3)

We finally note that the denominator on the right hand side of
(4.3) has expectation value

〈Tr(YY †)〉 =
NA∑
i=1

NB∑
J=1

〈|YiJ |2〉 = (NANB )

NB

= NA. (4.4)

Thus, in the limit where both NA and NB tend to infinity while
the ratio α ≡ NA/NB remains fixed, the relative fluctuations f

of the random variable Tr(YY †) = NA(1 + f ) about its mean
NA vanish, and we can replace

Tr(YY †) → NA. (4.5)

Owing to (4.3) the eigenvalues λi of the reduced density matrix
ρ̂A are thus related in the limit of large NA and NB to the
eigenvalues μi of the Wishart matrix W via

λi = μi

NA

. (4.6)

Clearly, the above-described relationship immediately extends
to the other two universality classes of GOE (β = 1) and
GSE (β = 4) “random pure states” and Wishart random matrix
ensembles.

B. Eigenvalue statistics of the Wishart-Laguerre ensemble

Here we first briefly review some important results for the
Wishart-Laguerre random matrix ensemble [24]. For more
details, see Appendix B.

In general, for a Wishart matrix W = YY † with Y being
a NA × NB matrix with real (β = 1), complex (β = 2) or
quaternion (β = 4) Gaussian entries drawn from the joint
distribution as in (4.2), the joint probability probability dis-
tribution for the NA eigenvalues μi of W is known to be [24]

P [{μi}] = Ñ−1 exp[−βE({μi})], (4.7)

where

E[{μi}] = 1

2

N∑
i

[
V (μi ) − 1

2
log |μi − μj |

]
, μi > 0,

and V (μ) = (μ − κ log μ) with κ = (1 + NB − NA) − 2/β;
Ñ−1 is a normalization factor. The weight E[{μi}] can be
thought of as the energy of a one-component Coulomb gas
of charges with logarithmic interaction in an external potential
V (μ).

In the limit NA,NB → ∞, the average of the spectral
density

ν̂(μ)≡
NA∑
i=1

δ(μ−μi ), satisfying
∫

dμν̂(μ)=NA, (4.8)

of the matrix W = YY † can be calculated via the saddle
point approximation and is found to be equal to the so-called
Marchenko-Pastur (MP) distribution [24],

n̄(μ) ≡ 〈ν̂(μ)〉
NA

= 1

2παμ

√
(μ − α−)(α+ − μ),

∫ α+

α−
dμ n̄(μ) = 1, (4.9)
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where α− � μ � α+ with α± = (1 ± √
α)2, α = NA/NB and

N = NANB . This distribution is independent of the Dyson
index β. Note that μ has support in the finite interval α− �
μ � α+ of NA-independent length (α+ − α−) = 4

√
α. Since

all NA eigenvalues lie in this interval, the average level spacing
is

(�μ) = 4
√

α

NA

(average level spacing of eigenvalues μi ).

(4.10)

Consider now the spectral density of the reduced density
matrix ρ̂A (eigenvalues λi = μi/NA, and λ = μ/NA),

ν̂(λ) ≡
NA∑
i=1

δ(λ − λi ) = NA ν̂(μ), satisfying

∫
dλ ν̂(λ) = NA. (4.11)

In view of (4.3) and (4.5), valid in the limit NA,NB → ∞
which we are currently considering, it follows from (4.9) that
the averaged spectral density of the density matrix ρ̂A satisfies

n̄(λ) ≡ 〈ν̂(λ)〉
NA

= NA n̄(μ) = NA

2παλ

√(
λ− α−

NA

)(
α+
NA

−λ

)
,

(where λ = μ/NA). (4.12)

It follows from (4.12) that n̄(λ) is defined on the interval λ ∈
[α−/NA, α+/NA], satisfying

∫
α+/NA

α−/NA
dλ n̄(λ) = 1 by construc-

tion. Since the NA eigenvalues λi of the reduced density matrix
lie in the interval α−/NA � λi � α+/NA (which becomes
small when NA becomes large), their average level spacing
is

(�λ) = 4
√

α

(NA)2
, (average level spacing of eigenvalues λi ).

(4.13)

Starting from the average spectral density n̄(λ) in (4.12), we
can write the Fourier transform (2.1) of the expectation value
of the eigenvalue density of the reduced density matrix ρ̂A as

〈Z(τ )〉 =
∫

dλ 〈ν̂(λ)〉 e−iλτ =NA

∫
dλ n̄(λ) e−iλτ . (4.14)

When α = NA/NB < 1, the density n̄(λ) vanishes at both
edges, scaling as

√|λ − αa/NA| as λ → αa where a = ±
[see (4.9) above]. These two edges λ = α± dominate the
expectation value 〈Z(τ )〉 and contribute

|〈Zα± (τ )〉| = 1

(1 ± √
α)2

N
5
2
A

2
√

π
α− 3

4
1

τ 3/2
. (4.15)

Assuming α = NA/NB � 1, we have

|〈Z(τ )〉|2 = N2
AN3/2

πτ 3
. (4.16)

As mentioned, the spectral form factor factorizes at early times
τ , where it thus reads 〈Z(τ )Z∗(τ )〉 ≈ |〈Z(τ )〉|2 ∼ 1/τ 3. This

is in agreement with the numerical results shown in Figs. 2
and 3.

On the other hand, when α = NA/NB = 1, the lower edge
for MP distribution (4.9) is pushed to α− = 0 and the spectral
density has a 1/λ1/2 divergence at this edge. This divergence
will lead to a different behavior of 〈Z(τ )〉, namely

〈Z(τ )〉 = N2
A

2π

∫ 4/NA

0
dλ

√
4/NA − λ

λ
e−iλτ

= NA

[
J0

(
2τ

NA

)
+ iJ1

(
2τ

NA

)]
e
− 2iτ

NA , (4.17)

where Jα (z) is the Bessel function of the first kind, which
behaves in the limit z � 1 as |Jα (z)| ∼ 1/

√
2πz. This leads

to

|〈Z(τ )〉|2 ∼ N3
A

πτ
, (4.18)

which decays much slower than in the case α < 1 displayed in
(4.16). This is also in agreement with the numerical results in
Fig. 2 and Fig. 3.

C. Spectral form factor for the reduced density matrix
from Wishart random matrix theory

For any random matrix ensemble with the joint probability
density described by (4.7), the level-level correlation function
(“pair correlation function”) is universal and only depends
[57,58] on the symmetry type, although the spectral density
depends on the explicit form of the potential V (μi ) defined
in (4.7). Specifically, the connected correlation function of
the spectral density ν̂(λ), defined in (4.11), takes for Dyson
index β = 2 (“GUE-type” class) in the large NA limit the
following universal form which can be expressed in terms of
the celebrated so-called sine-kernel [57–59],

〈ν̂(λ)ν̂(λ′)〉 − 〈ν̂(λ)〉 〈ν̂(λ′)〉

= 〈ν̂(E)〉δ(ω)−〈ν̂(λ)〉 〈ν̂(λ′)〉 sin2[π〈ν̂(E)〉ω]

[π〈ν̂(E)〉ω]2
, (4.19)

where

ω = λ − λ′, E = (λ + λ′)/2. (4.20)

(For more details see Appendix B 3.) We also recall 〈ν̂(λ)〉 =
NA n̄(λ) from (4.12). Here, in order to obtain a universal
expression, the argument of the sine function was rescaled by
the nonuniversal factor 〈ν̂(E)〉 that determines the local mean
level spacing [60].

The spectral form factor

g(τ ) = 〈Z(τ )Z∗(τ )〉 = [〈Z(τ )Z∗(τ )〉 − 〈Z(τ )〉〈Z∗(τ )〉]
+〈Z(τ )〉〈Z∗(τ )〉

= gc(τ ) + 〈Z(τ )〉〈Z∗(τ )〉 (4.21)

is related to the level-level correction function 〈ν̂(λ)ν̂(λ′)〉
through Fourier transformation,

gc(τ ) =
∫

dλdλ′ [〈ν̂(λ)ν̂(λ′)〉 − 〈ν̂(λ)〉〈ν̂(λ′)〉] e−i(λ−λ′ )τ ,

(4.22)
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FIG. 12. Spectral form factor of the entanglement Hamiltonian.

and we focus here on the connected function gc(τ ) as the
disconnected part has already been discussed in Sec. IV B.
Taking the Fourier transform of the sine kernel in (4.19) which
is determined by the following elementary integral (a is any
real parameter)

∫ ∞

−∞
e−iωτ sin2[πaω]

π2ω2
dω =

{
a − |τ |

2π
, |τ | < 2πa

0, |τ | � 2πa
, (4.23)

we obtain (for more details see Appendix B 3)

gc(τ ) =
{ 2

π
1√
N

|τ |, |τ | < τH

NA, |τ | > τH

,

where τH = (2π/(�λ)) = π

2
NA

√
N, (4.24)

where we recall that N = NANB . The regime of linear growth
with τ is universal and reflects the universal spectral corre-
lations present in the spectrum, which are represented by the
sine kernel on the right hand side of (4.19). Note also that the
prefactor of the linear growth term in (4.24) is independent of
subsystem size NA. This is the origin of the fact that the linear
“ramps” appearing for different subsystem sizes NA all lie on
top of each other—see, e.g., Fig. 2. The spectral form factors of
the entanglement Hamiltonian, discussed in Appendix A and
depicted in Fig. 12, do not show this feature but are instead
shifted with respect to each other by a NA-dependent constant
(on a log-log plot), reflecting a NA-dependent coefficient of
the term linear in τ .

In view of (4.16),(4.18),(4.21),(4.24), the disconnected part
in g(τ ) hides the early-time τ part of the universal linear
“ramp” (4.24) appearing in gc(τ ). This effect gives rise to
the “dip” (minimum) in g(τ ) and allows one to estimate the
“dip time” τd as follows: Equating |〈Z(τ )〉|2 and the “ramp”
in (4.24) gives the dip time in 〈Z(τ )Z∗(τ )〉. Based on this
logic, we expect the dip time τd to be around (NAN )1/2

when α < 1, which is consistent with the numerical results.
On the other hand, when α = 1, this logic yields τd ∼ N2

A.

However this is a time scale of the order of the plateau
time τp = τH , and therefore we cannot observe the “ramp”
in g(τ ) = 〈Z(τ )Z∗(τ )〉 when α = 1, consistent with our
numerical findings reported above.

V. DISCUSSION AND CONCLUSION

In conclusion, we have explored the presence of universal
spectral correlations in the spectrum of the reduced density
matrix ρ̂A of a many-body wave function and used the presence
of these correlations to define quantum chaos at the level of
a single many-body wave function. To detect these spectral
correlations, we constructed the spectral form factor g(τ ) for
ρ̂A and identified the presence of a “ramp” as a hallmark of
the spectral correlations. We explicitly considered three wave
functions: the “random pure state,” a typical state of a Floquet
spin model, and of a quantum Ising model in both transverse
and longitudinal fields, both in one spatial dimension. In all
three cases, we numerically found the presence of the universal
linear “ramp” in the spectral form factor. For the “random pure
state,” we also analytically computed the spectral form factor
by using Wishart random matrix theory and found agreement
with our numerical results.

Moreover, we discussed how universal spectral correlations
develop in a quantum quench problem from an initial product
state lacking chaos. We found that the spectral correlations first
emerge at the top of spectrum of the reduced density matrix
ρ̂A, and then spread over the entire spectrum at later times.
We verified this statement numerically in both the Floquet and
quantum Ising models. Finally we studied a rapidly driven
Floquet system which possesses a long prethermalized regime
exhibiting an “EE plateau,” on which the system can be well
approximated by a GGE. For times when the system is on
that EE plateau, we don’t observe any “ramp” in the spectral
form factor, which is consistent with the absence of chaos in
the GGE. We found that universal spectral correlations (and
a “ramp”) in the density matrix develop only when the wave
function starts to relax to the fully thermalized regime at late
times.
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APPENDIX A: SPECTRAL FORM FACTOR
OF THE ENTANGLEMENT HAMILTONIAN

Numerical results for the spectral form factor of the en-
tanglement Hamiltonian ĤE of the “random pure state” are
displayed in Fig. 12 and are to be compared with the spectral
form factor of the reduced density matrix ρ̂A of the same
system, depicted in Fig. 2. We see that both spectral form
factors exhibit a linear “ramp” (unit slope on the log-log plot),
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which is the hallmark of universal spectral correlations. The
form factors of the entanglement Hamiltonian are shifted by
a NA-dependent constant on the log-log plot, which reflects a
NA-dependent prefactor of the linear τ dependence. Recall that
entanglement Hamiltonian and density matrix are related as in
(1.4), and that, as mentioned in the sentence below (1.4), the
spectral form factor of the former is obtained from that of the
latter by letting λi → − ln λi , where λi denotes the eigenvalues
of the reduced density matrix.

APPENDIX B: SOME DETAILS ON WISHART
RANDOM MATRIX THEORY

1. Unscaled Gaussian Probability Weight

In general, for a Wishart matrix W = YY † with Y being an
arbitrary NA×NB matrix with real (β =1), complex (β =2),
or quaternion (β = 4) Gaussian entries drawn from the prob-
ability distribution

P ({YiJ }) = N−1 exp

{
−β

2
Tr(YY †)

}
, (B1)

the joint probability distribution for the NA eigenvalues ξi of
W is known to be [24]

P[{ξi}] = CNA,NB
e− β

2

∑NA
i=1 ξi

NA∏
i=1

ξ
κβ/2
i

×
∏

1�j<k�NA

|ξj − ξk|β, ξi > 0, (B2)

where κ = (1 + NB − NA) − 2/β and CNA,NB
is a normal-

ization factor. This expression can be written in standard
Boltzmann form, P[{ξi}] ∝ exp[−βE({ξi})], where

E[{ξi}] = 1

2

N∑
i

[
V (ξi ) − 1

2
log |ξi − ξj |

]
(B3)

can be thought of as the energy of a one-component Coulomb
gas of charges with logarithmic interaction in an external
potential

V (ξ ) = (ξ − κ log ξ ). (B4)

In the limit NA,NB → ∞ with α = NA/NB = fixed, the
spectral density can be computed via the saddle point approx-
imation leading to the Marchenko-Pastur (MP) distribution

n̄(ξ ) ≡ 〈ν̂(ξ )〉
NA

= lim
NA,NB→∞

〈
1

NA

∑
i

δ(ξ − ξi )

〉

= 1

2παξ

√(
ξ

NB

− α−

)(
α+ − ξ

NB

)
, (B5)

where α± = (1 ± √
α)2 and NBα− � ξ � NBα+. This distri-

bution is independent of the Dyson index β and by construction
satisfies

∫ NBα+
NBα−

dξ n̄(ξ ) = 1.

2. Scaled Gaussian—NA-independent Spectral Density

It is convenient to rescale the Wishart random matrix and
consequently also its eigenvalues

W ≡ NB W, W = YY †, ξi ≡ NB μi (B6)

so that

P ({YiJ }) = Ñ−1 exp

{
−β

2
NB Tr(YY †)

}
. (B7)

We can think of this as rescaling β → β NB . Now, the
joint probability distribution for the NA eigenvalues μi of
the Wishart matrix W can be written in standard Boltzmann
form, P [{μi}] ∝ exp[−βNBE({μi})], with E[{μi}] the same
function as in (4.7). In the limit NA,NB → ∞, we obtain from
(B5) the spectral distribution [noting that n̄(ξ ) dξ = n̄(μ) dμ]

n̄(μ) = lim
NA,NB→∞

〈ν̂(μ)〉
NA

= 1

2παμ

√
(μ − α−)(α+ − μ).

(B8)

In this form the distribution becomes independent of NA,NB

in the limit when these are large, and the result depends only
on α = NA/NB which we consider holding fixed.

As already discussed in the paragraph surrounding (4.4),
we have the expectation value

〈Tr(YY †)〉 =
NA∑
i=1

NB∑
J=1

〈|YiJ |2〉 = (NANB )

NB

= NA. (B9)

Thus, in the limit where both NA and NB tend to infinity while
the ratio α ≡ NA/NB remains fixed, we can replace

Tr(YY †) → NA (B10)

in the usual sense. We see from ((B6), (B7)) that the eigenvalues
λi of the reduced density matrix ρ̂A are related in the limit of
large NA and NB to the eigenvalues μi of the Wishart matrix
W via

λi = μi

NA

. (B11)

3. Some details about the computation of the Spectral Form
Factor for the (“GUE-type”-) Wishart Random Matrix

Ensemble in (4.24)

We can express the spectral form factor (1.3) as follows in
terms of the density of states (4.11)

g(τ ) =
〈∑

i,j

e−iτ (λi−λj )

〉

=
〈∑

i,j

[∫
dλ δ(λ − λi )

]

×
[∫

dλ′ δ(λ′ − λj )

]
e−iτ (λi−λj )

〉

=
∫

dλ

∫
dλ′ e−iτ (λ−λ′ )

〈∑
i,j

δ(λ − λi ) δ(λ′ − λj )

〉

=
∫

dλ

∫
dλ′ e−iτ (λ−λ′ ) 〈ν̂(λ) ν̂(λ′)〉. (B12)

Using (4.11) we obtain from (B12)

g(τ ) =
∫

dμ

∫
dμ′ e−i(τ/NA )(μ−μ′ ) 〈ν̂(μ) ν̂(μ′)〉. (B13)
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The (2-point) correlation function of the density of states (4.11)
appearing in ((B12),(B13)) above can be re-written as follows

〈ν̂(μ) ν̂(μ′)〉 =
〈∑

i,j

δ(μ − μi ) δ(μ′ − μj )

〉

=
〈∑

i

δ(μ − μi ) δ(μ′ − μi )

〉

+
〈∑

i �=j

δ(μ − μi ) δ(μ′ − μj )

〉

= δ(μ − μ′)

〈∑
i

δ(μ − μi )

〉

+
〈∑

i �=j

δ(μ − μi ) δ(μ′ − μj )

〉

= δ(μ − μ′) 〈ν̂(μ)〉

+
〈∑

i �=j

δ(μ − μi ) δ(μ′ − μj )

〉
, (B14)

and thus the connected function reads

〈ν̂(μ) ν̂(μ′)〉c = 〈ν̂(μ) ν̂(μ′)〉 − 〈ν̂(μ)〉 〈ν̂(μ′)〉
= δ(μ − μ′) 〈ν̂(μ)〉 + 〈ν̂(μ)〉 〈ν̂(μ′)〉

×
⎡
⎣

〈∑
i �=j δ(μ − μi )δ(μ′ − μj )

〉
〈ν̂(μ)〉 〈ν̂(μ′)〉 − 1

⎤
⎦.

(B15)

Note that 〈∑i �=j δ(μ − μi )δ(μ′ − μj )〉 equals NA(NA − 1)
times the probability that one eigenvalue equals μ and another
eigenvalue equals μ′( �= μ), as computed from (4.7).

When μ and μ′ are separated by much less than NA level
spacings, so that we can approximate 〈ν(μ)〉 ≈ 〈ν(μ′)〉 ≈
〈ν(E )〉, where

E ≡ μ + μ′

2
, � ≡ (μ − μ′), (B16)

the square bracket in (B15) is known analytically (“sine
kernel’) to be [57–59][ 〈ν̂(μ)ν̂(μ′)〉

〈ν̂(μ)〉 〈ν̂(μ′)〉 − 1

]
= (when � = (μ − μ′) �= 0)

=
⎡
⎣

〈∑
i �=j δ(μ − μi )δ(μ′ − μj )

〉
〈ν̂(μ)〉 〈ν̂(μ′)〉 − 1

⎤
⎦

= (−1)
sin2[π〈ν̂(E )〉�]

[π〈ν̂(E )〉�]2
. (B17)

Analogous to what was mentioned in the paragraph below
(4.20), the argument of the sine function is rescaled by the
nonuniversal factor 〈ν̂(E )〉 which equals the inverse of the local
mean level spacing of eigenvalues μi at μ = E .

We now provide some detailed steps for obtaining (4.24).
The connected spectral form factor on the left hand side of this
equation now reads explicitly

gc(τ ) =
∫

dμ

∫
dμ′ e−i(μ−μ′ )(τ/NA ) 〈ν̂(μ) ν̂(μ′)〉c

=
∫

dE
∫

d� e−i�(τ/NA )

[
〈ν̂(E )〉 δ(�)

−〈ν̂(E + �/2)〉 〈ν̂(E − �/2)〉 sin2[π〈ν̂(E )〉�]

[π〈ν̂(E )〉�]2

]
,

(B18)

or

gc(τ ) =
∫

dE
∫

d� e−i�(τ/NA )

[
〈ν̂(E )〉 δ(�)

−R(E,�)
sin2[πNA〈ν̂(E )〉�]

[π�]2

]
, (B19)

where

R(E,�) ≡ 〈ν̂(E + �/2)〉 〈ν̂(E − �/2)〉
〈ν̂(E )〉2

. (B20)

Next, we implement a version of an idea that was used in
Ref. [12] for the computation of the spectral form factor of a
random GUE Hamiltonian in the context of the SYK model.
In particular, we limit the integral over � by introducing a
cutoff �0, ∫

d� →
∫ +�0/2

−�0/2
d�, (B21)

chosen to satisfy the requirement that the density of states
〈ν̂(E + �/2)〉 does not vary appreciably when −�0/2 < � <

+�0/2. Then the factor R in the integrand in (B19) becomes
unity, R(E,�) → 1. [Physically, the cutoff of course implies
that variations of gc(τ ) on time scales (τ/NA) � (1/�0) can
no longer be resolved.] Now we divide the interval [α−, α+] in
which all eigenvalues μi have support, into a set of nonover-
lapping subintervals of length �0 each. The integral of � over
each subinterval number I = 1, 2, . . . , M at fixedEI (say at the
center of the interval) can now be done in the limit NA → ∞ by
using (4.23) and the fact that in that limit 〈ν̂(EI )〉 = NA n̄(EI ),
where n̄(EI ) is a NA-independent constant [see (4.9)]:∫ +�0/2

−�0/2
e−i�(τ/NA ) sin2[πNA n̄(EI )�]

[π�]2
d�

= NAn̄(EI )

π2

∫ +NAn̄(EI )�0/2

−NAn̄(EI )�0/2
e−i�′τ/N2

An̄(EI ) sin2[π�′]
[�′]2

d�′

∼ NAn̄(EI )

π2

∫ +∞

−∞
e−i�′τ/N2

An̄(EI ) sin2[π�′]
(ω′)2

d�′

= NAn̄(EI )

π2

{
π2 − π

2
|τ |

N2
An̄(EI )

,
|τ |

N2
An̄(EI )

< 2π

0,
|τ |

N2
An̄(EI )

> 2π

=
{

NAn̄(EI ) − 1
2π

|τ |
NA

,
|τ |
NA

< 2πNAn̄(EI )

0,
|τ |
NA

> 2πNAn̄(EI )
.
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For subinterval number I , at fixed EI , we thus obtain a “ramp,”

g(I )
c (τ ) =

{ 1
2π

|τ |
NA

,

1
2π

|τ |
NA

< NAn̄(EI )

NAn̄(EI ), 1
2π

|τ |
NA

> NAn̄(EI )

= min

{
1

2π

|τ |
NA

, NAn̄(EI )

}
. (B22)

Now, doing the integral over E as a sum over the subintervals,∫ α+

α−
dE →

M∑
I=1

�0, (B23)

where α± were defined immediately below (4.9), we obtain
from (B22)

gc(τ )=
M∑
i=1

�0 g(I )
c (τ )

= min

{∫ α+

α−
dE 1

2π

|τ |
NA

,

∫ α+

α−
dE NA n̄(E )

}

= min

{(
α+−α−

NA

) |τ |
2π

, NA

}
= min

{
2
√

α|τ |
πNA

,NA

}
,

(B24)

where we used (α+ − α−)/NA = 4
√

α

NA
= 4√

N
, recalling α =

NA/NB , as well as the normalization of n̄(μ) from (4.9). We
now obtain (4.24) from (B24), since 4√

N

|τH |
2π

= NA leads to

τH = π
2 NA

√
N . The Heisenberg time is defined to be 2π times

the inverse of the mean level spacing (here of the reduced
density matrix ρ̂A), and this yields (setting h̄ = 1) upon using
(4.13) τH = (2π/(�λ)) = π

2 (N2
A/

√
α) = π

2 NA

√
N in agree-

ment with the above result. In conclusion we have obtained the
following result for the connected spectral form factor,

gc(τ ) = NA

{ |τ |
τH

, |τ | < τH

1, |τ | > τH

,

where τH = (2π/(�λ)) = π

2
NA

√
N (B25)

=
{ 2

π
1√
N

|τ |, |τ | < τH

NA, |τ | > τH

,

where τH = (2π/(�λ)) = π

2
NA

√
N. (B26)

The last equation, displaying explicitly the NA independence
of the prefactor of the linear growth in τ , is the result shown
in (4.24).
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