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Superluminal moving defects in the Ising spin chain
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Quantum excitations in lattice systems always propagate at a finite maximum velocity. We probe this mechanism
by considering a defect traveling at a constant velocity in the quantum Ising spin chain in transverse field.
Independently of the microscopic details of the defect, we characterize the expectation value of local observables
at large times and large distances from the impurity, where a local quasistationary state (LQSS) emerges. The
LQSS is strongly affected by the defect velocity: for superluminal defects, it exhibits a growing region where
translational invariance is spontaneously restored. We also analyze the behavior of the friction force exerted by
the many-body system on the moving defect, which reflects the energy required by the LQSS formation. Exact
results are provided in the two limits of extremely narrow and very smooth impurity. Possible extensions to more
general free-fermion models and interacting systems are discussed.

DOI: 10.1103/PhysRevB.98.064304

I. INTRODUCTION

Recent times have witnessed an increasing interest in the
out-of-equilibrium dynamics of isolated quantum many-body
systems, sustained by various experimental achievements [1–
15]. Several efforts have been devoted to the understanding of
quantum quenches [16], in which a closed quantum system is
suddenly perturbed and then let to evolve: despite the unitary
evolution of the whole many-body system, the expectation
values of local observables can still exhibit relaxation [17].
With a global quench, an extensive amount of energy is injected
in the system and the late-time relaxation only depends on
those quantities which are conserved by the dynamics. In this
perspective, quantum systems can be broadly divided into
two classes: in generic systems, few local operators (e.g.,
Hamiltonian) are conserved and the system is expected to relax
towards a standard Gibbs ensemble. Instead, in one dimension,
there exist integrable models [18–20], which possess infinitely
many local conserved quantities that constrain the dynamics.
Homogeneous quantum quenches in integrable models have
been tackled in an impressive number of works [21–31] and are
nowadays well understood in terms of the so-called generalized
Gibbs ensemble (GGE) [32], constructed out of a complete set
of local and quasilocal integrals of motion [33–47].

The experience gained in the homogeneous framework
proved to be crucial in approaching inhomogeneous initial
states. A particularly simple example is the partitioning
protocol, first introduced in the framework of conformal
field theories [48–53]. Several works including numerical
investigations [54–56], results in free models [57–69], and
approximate predictions [55,70] finally led to the formulation
of the generalized hydrodynamics (GHD) [71,72], holding for
a large class of integrable systems. In practice, because of
integrability, the dynamics can be understood as the elastic
scattering of stable quasiparticles: this leads to a ballistic
scaling, so that, at large times the system can be thought to
be locally equilibrated to a GGE. In particular, finite distances

from the junction (x/t → 0) reach nonequilibrium steady
states [55,70,73], while a locally quasistationary state (LQSS)
[71,72] describes the behavior at fixed x/t ≡ ζ �= 0. This
approach has rapidly led to a plethora of accurate results in
a wide range of situations [71,72,74–89].

A similar phenomenology is expected for defect protocols
(or local quenches), where a localized impurity is suddenly
activated in an otherwise homogeneous system, even though
exact results are only known for free theories [90–93]. Re-
markably, a nontrivial LQSS can emerge despite the extreme
locality of the perturbation.

As long as lattice systems are concerned, all these settings
possess a finite maximal velocity vM < ∞ for the propagation
of quasiparticles, being it fundamentally due to the Lieb-
Robinson bound [94]. The existence of vM makes natural to
wonder what happens in the case of a defect moving at constant
velocity v. In particular, can the system cope with the defect
when the latter moves faster than vM? Is an LQSS still formed
and how is it affected by the velocity of the defect? The velocity
vM has the same role of the speed of light in the spreading of
information, therefore, for the sake of convenience, we refer
to fast defects v > vM as “superluminal,” while defect moving
slower than vM will be called “subluminal”.

Aside from being a compelling question from a theoretical
point of view, similar out-of-equilibrium protocols already
underwent experimental investigation (see, for example, Ref.
[15]). The best candidates to acquire some physical insight in
this problem are free models. While moving impurities have
been considered in different contexts (see, for example, Refs.
[95–100]), the investigation of the LQSS was only recently
presented in Ref. [101] in a system of hopping fermions. In this
case, a superluminal moving defect v > vM has been proven to
not affect the system, preventing any LQSS formation and thus
establishing a clear threshold v = vM . A crucial feature of the
case considered in [101] was the presence of a U(1) symmetry,
associated with the conservation of the number of fermions.
Thus, the defect acted as a moving scattering potential, but
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FIG. 1. Spreading of the LQSS due to a moving defect (con-
tinuous red line), for subluminal (v < vM ) and superluminal (v >

vM ) defects. In both cases, the local magnetization density 〈σ̂ z〉
is considered. In the subluminal case, the perturbation is entirely
contained within the light cone spreading from the initial position of
the defect (dashed lines), while in the superluminal case the system is
affected beyond such a light one, following the defect. In both cases,
vM = 1 and a δ-like defect is considered (see Sec. IV for notation).
Parameters used for v < vM : h = 1.15, c = 0.5, v = 0.5. Parameters
used for v > vM : h = 1.15, c = 2, v = 2.

could not create or destroy quasiparticles. As a consequence,
in a noninteracting system possessing U(1) symmetry (i.e.,
particle-number conservation) such as Ref. [101], a superlu-
minal defect could not experience any friction force.

In this work, we will address the same setup in more general
frameworks, where the particle number is not conserved. This
purpose leads us to consider the paradigmatic example of the
Ising spin- 1

2 chain in a transverse field, however, both the
tools and the resulting phenomenology hold for all quadratic
fermionic models, completing the puzzle of which Ref. [101]
was a first piece. The Ising model is defined through the
following Hamiltonian:

Ĥ = −1

2

N∑
j=1

σ̂ x
j σ̂ x

j+1 + hσ̂ z
j , (1)

where σ̂
x,y,z

j are the standard Pauli matrices, periodic boundary
conditions are assumed even though we will work directly in
the thermodynamic limit. At time t = 0, we activate a moving
impurity in the transverse magnetic field

h → h(j − vt ) = h + δh(j − vt ). (2)

By means of a Jordan-Wigner transformation, Eq. (1) can be
recast into a system of noninteracting spinless fermions on a
lattice. We anticipate that for superluminal defects, particles are
turned into holes after scattering on the defect. In this way, the
LQSS appears even for v > vM (see Fig. 1), an effect forbidden

by the U(1) symmetry analyzed in Ref. [101]. The behavior
of the superluminal LQSS is nevertheless very different from
the v < vM case. We will show that a superluminal LQSS is a
purely quantum effect: for very smooth and broad defects the
semiclassical approximation is well justified and in this limit
the superluminal LQSS disappears.

The paper is so organized: In Sec. II, we provide a brief
summary of the homogeneous Ising model and set up the
notation. In Sec. III, the problem of a generic moving defect is
framed in a convenient scattering theory, with some details left
to Appendix A. The produced LQSS is expressed only in terms
of the scattering of quasiparticles on the defect and discussed
in generality. In Sec. IV, we apply the scattering method to
the limiting case of an extremely narrow defect, namely, a
δ function. The results are then tested against the numeric.
In Sec. V, the opposite limiting case of an extremely smooth
defect is considered and solved within a semiclassical theory,
which derivation is contained in Appendix B. As anticipated,
a supersonic LQSS is absent in this case, clarifying that the
LQSS for superluminal defects is a purely quantum effect.
Section VI is devoted to a concrete and experimentally relevant
manifestation of the LQSS: the friction exerted by the medium
on the defect. We discuss its behavior for different defect
velocities (see also Appendix C). Finally, Sec. VII gathers our
conclusions and Appendix D describes the numerical methods
we employed.

II. GENERALITIES OF THE ISING MODEL

The solution of the homogeneous Ising model is well known
[102] and nowadays it is a cornerstone of several ordinary
textbooks of quantum mechanics, nevertheless, hereafter we
provide an useful short summary to set our notation. The
Hamiltonian (1) can be mapped to a system of free fermions
through a Jordan-Wigner transformation, the fermionic oper-
ators being defined as

d̂j = eiπ
∑j−1

l=1 σ̂+
l σ̂−

l σ̂+
j , (3)

where σ̂±
l = (σ̂ x

l ± iσ̂
y

l )/2. We are assuming the lattice sites
to run from 1 to N with periodic boundary conditions, but the
thermodynamic limit will always be considered. The operators
d̂j are spinless fermions obeying the anticommutation rules
{d̂†

j , d̂j ′ } = δj,j ′ . Despite the nonlocality of the Jordan-Wigner
transformation, the Ising Hamiltonian is still local in the
fermionic basis

Ĥ =
N∑

j=1

−1

2
(d̂†

j d̂
†
j+1 + d̂

†
j d̂j+1 + H.c.) + hd̂

†
j d̂j . (4)

Above, “H.c.” stands for the Hermitian conjugate of the
expression. (Anti)periodic boundary conditions in the fermion
basis must be used in the (even) odd magnetization sectors,
but such a difference is irrelevant in the thermodynamic limit
in which we are ultimately interested. In the Fourier space, a
Bogoliubov transformation

ψ̂j =
(

d̂j

d̂
†
j

)
=

∫ π

−π

dk√
2π

eikj

(
cos γk i sin γk

i sin γk cos γk

)(
α̂k

α̂
†
−k

)

(5)
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diagonalizes the Hamiltonian

Ĥ =
∫ π

−π

dk ω(k)α̂†
kα̂k + const. (6)

The operators α̂k are canonical fermionic operators {α̂†
k, α̂q} =

δ(k − q ) and ω(k) =
√

(cos k − h)2 + sin2 k, while the Bo-
goliubov angle γk must be chosen in such a way

tan γk = ω(k) + cos k − h

sin k
. (7)

The velocity of the excitations is readily identified with the
group velocity

v(k) = ∂kω(k) (8)

and it is clearly bounded, leading to a finite vM . In particular,
it holds true

vM = min(h, 1). (9)

The ground state is easily identified as the vacuum with
respect to α̂k , i.e., the state such that α̂k|GS〉 = 0 for every
momentum. This is a Gaussian state, i.e., multipoint correlators
of α̂k factorize in two-point correlators, unambiguously fixed
by the excitation density η(k)δ(k − q ) = 〈α̂†

kα̂q〉, being the
latter zero in the GS. In the following, we will assume
our system to be always initialized in a Gaussian ensemble
diagonal in the eigenmodes α̂k , with a possible nontrivial
excitation density η(k). Among these states and apart from the
ground state, relevant examples are thermal states, and more
generally GGE density matrix [103–106]

ρGGE ∝ exp

[
−

∫ π

−π

dk log[2πη−1(k) − 1]α̂†
kα̂k

]
. (10)

These states are translationally invariant and diagonal in the
eigenmodes of the Hamiltonian in the absence of the impurity,
therefore, the nontrivial time evolution will be entirely caused
by the defect. Note that the modes α̂k and the fermions d̂j are
linked by a linear transformation, therefore, a Gaussian state
in terms of the modes α̂k translates into a Gaussian state in the
real-space field operators. In other words, any correlator of the
dj operators is determined in terms of 〈ψ̂j ψ̂

†
j ′ 〉, which in our

notation is a 2 × 2 matrix

〈ψ̂j ψ̂
†
j ′ 〉 =

(
〈d̂j d̂

†
j ′ 〉 〈d̂j d̂j ′ 〉

〈d̂†
j d̂

†
j 〉 〈d̂†

j d̂j ′ 〉

)
. (11)

III. MOVING DEFECT AND THE SCATTERING PROBLEM

Following the proposed out-of-equilibrium protocol, at time
t = 0, we activate the moving defect Eq. (2). The dynamics is
encoded in the Heisenberg equations of motion

i∂t ψ̂j = (iσ y − σ z)

2
ψ̂j−1 − (iσ y + σ z)

2
ψ̂j+1

+ σ zh(j − vt )ψ̂j , (12)

whose linearity preserves the Gaussianity of the ensemble
along the whole time evolution, therefore, only the two-point
correlators (11) are needed to completely describe the state.
Note that we employ the notation of Pauli matrices without
the “hat” to clarify that they act on the two components of ψ̂j ,

rather than on the many-body Hilbert space as in Eq. (1). The
explicit time dependence in Eq. (12) introduced by the defect
prevents a straightforward solution. On the other hand, time-
dependent perturbation theory is not suited to study late-time
dynamics.

Following Ref. [101], our strategy is then to perform a
change of reference frame which poses the defect at rest: in
this way, any time dependence of the equations of motion is
removed. Of course, the discreteness of the underlying lattice,
compared with the continuous shift of the moving defect,
obstructs such a transformation.

In order to overcome this issue, we first map the discrete
problem in a continuous one, where such a change of reference
system is possible. There, the late-time dynamics can be solved
in terms of a scattering theory and the final solution is then
pulled back to the original discrete problem.

A. Mapping the discrete in the continuous

The formal solution of the equation of motion (12) can
be expressed in terms of the Green function Gj,j ′ (t ), a 2 × 2
matrix, as

ψ̂j (t ) =
∑
j ′

Gj,j ′ (t )ψ̂j ′ . (13)

The Green function satisfies the differential equation

i∂tGj,j ′ (t ) = (iσ y − σ z)

2
Gj−1,j ′ (t ) − (iσ y + σ z)

2
Gj+1,j ′ (t )

+ σ zh(j − vt )Gj,j ′ (t ), (14)

together with the initial condition Gj,j ′ (0) = δj,j ′1.
The anticipated mapping to a continuous system can be

achieved defining a closely related continuous Green function
Gx,x ′ (t ). Hereafter, x and x ′ are continuous real variables and
Gx,x ′ (t ) is defined as the unique solution of

i∂tGx,x ′ (t ) = (iσ y − σ z)

2
Gx−1,x ′ (t ) − (iσ y + σ z)

2
Gx+1,x ′ (t )

+ σ zh(x − vt )Gx,x ′ (t ), (15)

with the initial condition Gx,x ′ (0) = δ(x − x ′)1. Given that
Eq. (15) is nothing else than Eq. (14) in which discrete
coordinates are promoted to continuous ones, G and G are not
surprisingly related. More specifically, since Eq. (15) couples
together only points that differ of an integer distance, we can
rewrite

Gx,x ′ (t ) = 2πδ(ei2π (x−x ′ ) − 1)gx,x ′ (t ), (16)

and using Eq. (16) in Eq. (15), it can checked that gx,x ′ (t ) for
integer x, x ′ satisfies the same differential equation and initial
conditions as Gj,j ′ (t ). Therefore, we can identify Gj,j ′ (t ) =
gj,j ′ (t ) and work directly with the continuous variables.

Moreover, being the initial state most easily expressed in the
momentum space, it is convenient to take a Fourier transform
with respect to the second coordinate. Then, one observes that
the Dirac δ in Eq. (16) transforms the Fourier integral in a
Fourier series. In practice, we arrive at

G̃j,k (t ) =
∫

dx e−ikxGj,x (t )

=
∑
j ′

e−ikj ′
gj,j ′ (t ) = G̃j,k (t ), (17)
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where we explicitly used Gj,j ′ (t ) = gj,j ′ (t ). We remark that
since the Green function G is defined on a continuous space,
its Fourier components run over the entire real axis. On the
contrary, the Green function G is defined on a lattice and thus
its Fourier transform is naturally embedded in a Brillouin zone.
However, Eq. (16) makes the left-hand side of Eq. (17) periodic
in the momentum space, as it should be for Eq. (17) to hold true.

The advantage of dealing with a continuous system is
that we can now perform a change of coordinates. Defining
G (v)

x,x ′ (t ) = Gx+vt,x ′ (t ), we obtain a time-independent equation
of motion

i∂tG (v)
x,x ′ (t ) = iv∂xG (v)

x,x ′ (t ) + (iσ y − σ z)

2
G (v)

x−1,x ′ (t )

− (iσ y + σ z)

2
G (v)

x+1,x ′ (t ) + σ zh(x)G (v)
x,x ′ (t ),

(18)

but which now explicitly involves the defect’s velocity v. Equa-
tion (18) can be interpreted as a single-particle Schrödinger
equation, which can be solved in terms of its eigenfunctions.
This spectrum will depend on the specific choice of the
function h(x); however, in the hypothesis of a narrow defect,
the problem is most easily addressed in the framework of a
scattering theory.

B. Scattering theory and the LQSS

The equation of motion of the Green function (18) is most
easily solved in terms of the eigenfunctions, i.e.,

G (v)
x,x ′ =

∑
a=1,2

∫
dk

2π
e−iEa (k)tφk,a (x)φ†

k,a (x ′), (19)

where φk,a constitute a complete set of two-dimensional vec-
tors satisfying the time-independent version of the Schrödinger
equation (18):

Ea (k)φk,a (x) = (H0φk,a )(x) + σ zδh(x)φk,a (x). (20)

Above, in the linear operator H0 we collected the homogeneous
part of the equation, while the inhomogeneous term due to the
defect is written explicitly. The notation φk,a has been chosen
in the perspective of the scattering theory we are going to
develop. We stress that φk,a (x) is a two-dimensional vector, not
a quantum operator: in this framework φk,a (x)φ†

k,a (x ′) repre-
sents a 2 × 2 matrix, similarly to the notation of Eq. (11). The
eigenfunctions satisfy the orthonormality and completeness
relations ∫

dx φ
†
k,a (x)φq,b(x) = δ(k − q )δa,b, (21)

δ(x − x ′) =
∑
a=1,2

∫
dk φ

†
k,a (x)φk,a (x ′). (22)

Taking advantage of the fact that δh(x) is a localized
impurity, we can describe the φk,a eigenfunctions in a scat-
tering theory framework, in particular, they must satisfy the
Lippmann-Schwinger equation [107] having as source terms
the eigenfunctions of the homogeneous problem. With the
definition

uk,1 =
(

cos γk

i sin γk

)
, uk,2 =

(
i sin γk

cos γk

)
. (23)

The Lippmann-Schwinger equation is simply

φk,a (x) = eikx

√
2π

uk,a +
∫

dx ′
[

1

Ea (k) − H0 + i0+

]
x,x ′

× δh(x ′)σzφk,a (x ′). (24)

Above, eikxuk,a are the eigenfunctions of the homogeneous
problem, with energies

E1(k) = −vk + ω(k), E2(k) = −vk − ω(k). (25)

We can recognize E1(k) as the energy of excitations ω(k)
with an additional shifting −vk due to the change of reference
frame. Similarly, E2(k) represents the energy of a hole.

As we will see, the LQSS is completely determined by the
behavior of the eigenfunctions in the scattering region, i.e.,
far away from the defect. From Eq. (24), the large distance
expansion is immediately recovered from the singularities in
the kernel

φk,a (x)

� 1√
2π

(
θ [−xva (k)]eikxuk,a +

∑
b

∫
dq eiqx

× δ[Eb(q ) − Ea (k)]θ [xvb(q )]|vb(q )|Sb,a (q, k)uq,b

)
,

(26)

where θ (x) indicates the Heaviside step function. This equation
admits a simple interpretation: the step functions θ (x) in
Eq. (26) discern between incoming/outgoing states; the second
term describes the scattering of a mode (k, a) into a mode
(q, b): this is allowed only if the energy is conserved Eb(q ) =
Ea (k) and it is mediated by the scattering amplitude Sb,a (q, k).
We remark that the number of solutions to Eb(q ) = Ea (k) is
always finite for v �= 0. In Eq. (26), va (k) represents the veloc-
ity of the excitation computed in the moving reference frame,
defined as va (k) = ∂kE

a (k). In particular, from Eq. (26), it
follows

v1(k) = v(k) − v, v2(k) = −v(k) − v. (27)

The scattering amplitudes can be expressed formally in the
form

Sb,a (q, k)

=
{

1 + ∫
dx e−ikxu

†
k,aσ

zδh(x)φk,a (x) (k, a) = (q, b),∫
dx e−iqxu

†
q,bσ

zδh(x)φk,a (x) (k, a) �= (q, b).

(28)

This expression is not yet a solution for the scattering am-
plitudes, as it depends on the unknown eigenfunction φk,a

in the region where the defect is placed. However, we can
already draw some general conclusions. Indeed, the scattering
amplitudes are not arbitrary functions, but they must satisfy
the constraints (21) and (22). These relations can be translated
in sum rules that the scattering amplitudes must obey and are
enough to determine the structure of the local GGE.

Further details are left for Appendix A, while hereafter we
simply report the result. A local observable locally relaxes to a
ray-dependent GGE: it is convenient to consider the rays in the
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FIG. 2. Dynamically accessible scattering channels 1 → 1 and 1 → 2 (see Sec. III B for notation). The scattering channels are identified
as the solutions of Eq. (31) which are ultimately pulled back to the first Brillouin zone. The magnetic field is set h = 1.15, thus vM = 1.

moving reference frame, which in laboratory coordinates are
simply defined as ζ = j/t − v. The ray-dependent excitation
density ηζ (k), which ultimately uniquely identifies the GGE
through Eq. (10), can be written as

ηζ (k) = [θ (−ζv1(k)) + θ (ζv1(k))θ (|ζ | − |v1(k)|)]η(k)

+ θ (ζv1(k))θ (|v1(k)| − |ζ |)ηscat(k), (29)

where η(k) is the initial excitation density, introduced in Sec.
II. The function ηscat(k) is the excitation density propagating
from the defect and is defined as

ηscat(k) =
∞∑

n=−∞

∑
a=1,2

∫ π

−π

dq [δ[Ea (q ) − E1(k + 2πn)]

× |v1(k + 2πn)||S1,a (k + 2πn, q )|2ηa (q )] (30)

with the convention η1(q ) = η(q ) and η2(q ) = 1 − η(q ). De-
spite deriving Eqs. (29) and (30) requires some rather technical
steps, their meaning is readily explained on a physical ground.

At fixed momentum k, Eq. (29) simply describes the
progressive replacement of the prequench excitation density
with the one emerging from the scattering event. Indeed, let
us suppose that k is such that v1(k) > 0 and fix a large time t .
Then, all the points on the left of the defect (ζ t < 0) have not
yet scattered on the defect; similarly, the points ζ t > v1(k)t
have not yet been reached by the excitations emitted by the
scattering on the defect. Therefore, the excitation density is
unaffected and ηζ (k) = η(k) in these regions. Instead, for
0 < ζ < v1(k), the excitation density is replaced by the one
produced by the scattering events, i.e., ηζ (k) = ηscat(k).

As it is clear from Eq. (30), ηscat(k) receives contributions
from excitations [a = 1, fact associated with η(q )] and holes
[a = 2, associated with 1 − η(q )], weighted with the proper
squared scattering amplitudes. Finally, the sum over the inte-
gers in Eq. (30) accounts for the folding of momenta in the first

Brillouin zone while coming back from the continuous to the
discrete model. Overall, we have framed the quantum problem
in a simple scattering picture, being the details of the defect
completely encoded in the scattering amplitudes.

C. General features of the LQSS

Equations (29) and (30) fully characterize the emergent
LQSS, encoding the details of the defect only in the scatter-
ing amplitudes. Even though the specific values of Sa,b are
eventually needed in order for Eq. (30) to be predictive (see
Secs. IV and V), we can nevertheless sketch the qualitative
behavior of the LQSS based only on kinematics. Thereafter,
we discuss how the scattering features change for defect’s
velocities ranging from v = 0 up to v > vM .

Consider at first a static defect (v = 0): in this case the
complicated detour of mapping the discrete model in the
continuous one is clearly superfluous and we must recover the
simple solution we would have obtained from a direct analysis
of the lattice problem. This is readily understood looking at the
scattering processes in (30), which are allowed by the energy
conservation

E1(kIN) = Ea (kOUT), a = 1, 2. (31)

Note that, for the time being, we treat k as ranging on the whole
real axis and only at the end fold it to the Brillouin zone. A
graphical representation of the possible scattering channels is
reported in Fig. 2 and hereafter explained.

For v = 0, as it is clear from Eq. (25) we simply have
E1(k) = ω(k) and E2(k) = −ω(k). This immediately pre-
vents any solution in the form E1(k) = E2(q ): a hole can
never be scattered into an excitation. Instead, the equation
E1(k) = E1(q ) has infinitely many solutions because of the
periodicity of ω, but once they are folded back to the Brillouin
zone they reduce to only two possibilities ±k. Therefore, for
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(a) (b)

FIG. 3. The analytic LQSS generated by a δ defect is compared with the numeric, in particular the local magnetization 〈σ̂ z〉, trivially
connected with the fermionic density σ̂ z

j = 1 − 2d̂
†
j d̂j , is considered in the subluminal (a) and superluminal (b) cases. Notice the presence of

the plateau in the superluminal case, accordingly with the discussion of Sec. III C. In both cases, the light velocity is vM = 1 and the ray ζ is
measured with respect to the defect, which is thus located at ζ = 0. Parameters (a): h = 1.15, c = 0.6, v = 0.6, 1800 sites. Parameters (b):
h = 1.15, c = 2, v = 2, 1100 sites.

a static defect, an excitation is either transmitted or reflected
with opposite momentum as it should be.

As soon as we move to v > 0, the scattering picture
becomes more involved. In fact, the equation E1(k) = E1(q )
has now only a finite number (divergent in the limit v → 0)
of solutions. These zeros are no longer equivalent once folded
back in the Brillouin zone. Furthermore, scattering of holes
into excitations is also possible since E1(k) = E2(q ) has non-
trivial solutions. The number of possible scattering channels
decreases as v grows until v = vM : after this threshold, the
equation E1(k) = E1(q ) possesses the unique solution k = q.
This feature was already present in the XX model presented
in Ref. [101] and was at the root of the lack of a superluminal
LQSS. However, in the Ising model the situation is different.
In fact, the equation E1(k) = E2(q ) still has one (and only
one) solution. Thus, from the kinematical point of view, the
scattering of a hole into an excitation is allowed: in Ref. [101]
such a transition was prevented by the already mentioned U(1)
symmetry, but in the generic case there is no reason obstructing
such a scattering and a superluminal LQSS is expected (see
again Fig. 1).

Because of its peculiar mechanism of formation, a su-
perluminal LQSS has clear differences from the subluminal
counterpart. They become manifest looking closely at the
ray dependence encoded in Eq. (29): for v < vM the com-
bination of Heaviside theta functions provides a nontrivial
ray dependence to ηζ (with a discontinuity in ζ = 0) which
ultimately ensures a nontrivial profile of local observables.
On the contrary, in the case v > vM we have mink |v1(k)| =
|v − vM |, as it is clear from its very definition (27) and this
ensures a ζ -independent excitation density ηζ (k) as long as
|ζ | � |v − vM |. Considering a local observable Oj back in
the laboratory frame, this guarantees the formation of a tail
beyond the defect whose size grows as t |v − vM | where 〈Oj 〉
is translationally invariant. In the next section, we investigate
explicitly the formation of such a plateau for a narrow defect
and compare our predictions against numerics.

IV. AN EXACT SOLUTION: THE δ DEFECT

There exists one peculiar defect for which the scattering
data (28) can be computed exactly and explicitly, i.e., the limit

of an extremely narrow impurity described by a δ function

δh(x) = cδ(x). (32)

Before presenting the derivation, some additional comments
are due: in Eq. (32) the δ function is a genuine Dirac delta
function. Of course, as long as a static defect on a lattice is
considered, Eq. (32) is not well defined: while pinching a lattice
site gives a singularity, placing the delta in-between two lattice
sites will leave the system completely unaffected. However,
the inconsistency disappears as soon as a moving defect is
considered: for v �= 0, Eq. (32) describes a “kick” traveling
along the lattice, impulsively acting on the system whenever
the δ support meets a lattice site. As it should now be clear,
this peculiar form of defect does not have a continuous limit
v → 0, as it happens instead for a smooth function δh(x). This
example was also considered in Ref. [101] for the XX spin
chain and we can borrow the same techniques, even though
the present case requires some extra technical refinements.

In Fig. 3, the forthcoming analytical results for a δ-like
impurity are compared with the numeric, finding excellent
agreement. In particular, we show the magnetization along the
z direction in the original spin model, directly associated with
the fermionic density σ̂ z

j = 1 − 2d̂
†
j d̂j . It is worth stressing the

presence of the already anticipated plateau in the superluminal
case.

We now present the exact solution. If we directly approach
Eq. (24), formally replacing δh(x) = cδ(x) we would naively
reach

φk,a (x)
?= eikx

√
2π

uk,a + K(x)cσzφk,a (0), (33)

where we pose K(x − x ′) = [E − H0 + i0+]−1(x, x ′). De-
spite the appealing simplicity, the above equation is not correct.
In the replacement of the δ function in the integral, it is implicit
the continuity of the kernel, but this is not absolutely the case
as K(0+) �= K(0−). This implies φk,a (0+) �= φk,a (0−) and it
is therefore unclear how to properly interpret (33). A careful
way to proceed is to employ directly the Lippman-Schwinger
equation

φk,a (x) = eikx

√
2π

uk,a + 1√
2π

Kk,a (x)Wk,a, (34)

064304-6



SUPERLUMINAL MOVING DEFECTS IN THE ISING SPIN … PHYSICAL REVIEW B 98, 064304 (2018)

with Wk,a a two-dimensional vector coming from the (still)
unknown regularization of the δ function. Equation (34) on
its own is of course not a solution, being both φk,a and Wk,a

unknown, but we can provide an additional constraint from
a direct analysis of the Schrödinger equation (20). In fact,
the singularity of the Dirac δ must be balanced by the same
singularity in the derivative of the wave function. Matching
the most singular parts we deduce

iv∂xφk,a (x) + cδ(x)σ zφk,a (x) = 0, x → 0. (35)

This is immediately translated in a jump discontinuity in φk,a

around x = 0:

φk,a (0+) = ei c
v
σ z

φk,a (0−). (36)

Combining Eq. (34) with the knowledge of the discontinuity,
we can solve for Wk,a in terms of the (still unknown) limits of
the kernel Kk,a (0±),

Wk,a = [ei c
v
σ zKk,a (0−) − Kk,a (0+)]−1(1 − ei c

v
σ z

)uk,a. (37)

The scattering amplitudes are now accessible through Eq. (28)
with the regularization∫

dx e−iqxu
†
q,bσzδh(x)φk,a (x) → u

†
q,bWk,a. (38)

The last ingredient we need is Kk,a (0±), the latter being
straightforwardly computable from its very definition. The cal-
culations are somewhat lengthy but straightforward, following
closely those presented in Ref. [101]. Here, we simply quote
the result

Kk,a (0±) = ± i

2v
+

∑
b=1,2

P
∫

dq

2π

uq,b u
†
q,b

Ea (k) − Eb(q )

+
∑
b=1,2

∫ ∞

−∞
dq δ[Ea (k) − Eb(q )]

uq,b u
†
q,b

2i
,

(39)

where P means the singular points must be regularized via
principal values.

V. SEMICLASSICAL APPROXIMATION

Semiclassical methods are a very powerful tool, providing
even accurate predictions for quantum systems in certain
regimes of validity [108–113]. The semiclassical approach
in describing a moving defect was already applied in Ref.
[101] to the case of the XX model, but in that case no major
differences between the quantum and classical case arose (even
though purely quantum slow decaying corrections around the
defect were observed, but still negligible in the scaling limit).
Instead, in the case at hand a dramatic difference arises for
superluminal defects where the semiclassical LQSS is absent.
As discussed in Sec. III C, superluminal LQSS are eventually
due to the tunneling of a hole into an excitation, but such an
event is classically forbidden and the defect becomes purely
transmissive for v > vM .

The derivation of the semiclassical approximation is left to
Appendix B, hereafter we simply report the result.

In the hypothesis of weak inhomogeneity in space and
time, the state is pointwise described by a GGE whose

local momentum-dependent excitation density η(k, x) evolves
through the classical Liouville equation

∂tη(k, x) + {ω(k, x), η(k, x)}k,x = 0, (40)

where {. . . , . . .}k,x are the Poisson’s brackets and ω(k, x)
acquires a parametric dependence through the inhomogeneous
magnetic field

ω(k, x) =
√

[cos k − h(x)]2 + sin2 k. (41)

Therefore, η(k, x) behaves as a classical density of particles
evolving through the Hamiltonian ω, i.e., obeying the equation
of motion

k̇ = −∂xω(k, x), ẋ = ∂kω(k, x). (42)

At the semiclassical level, the system is thus described by a
classical gas of noninteracting particles, moving in a back-
ground force where the defect is placed. In the classical picture,
the change of reference frame is most easily addressed since in
the semiclassical regime a coarse-grain procedure is invoked
and the lattice structure disappears [albeit it is still recognizable
in the periodic k dependence of ω(k, x)].

In the moving reference frame, where the defect is at rest, the
scattering amplitudes are determined by the classical equation
of motion: a particle with momentum k comes from infinity,
scatters with the defect, and then continues in a free motion
with a new momentum. Being the classical equations fully
deterministic, the scattering amplitude is nonzero only for
a single scattering channel, determined by the equation of
motion.

Notice that, being excitations and holes decoupled at a
classical level, (i) if the system is initialized in the ground
state, then no LQSS is produced and (ii) a superluminal defect
does not create any LQSS.

In the defect reference frame, the particles are governed by
the following Hamiltonian:

Hcl(k, x) = −vk + ω(k, x). (43)

Even though classical, an exact solution of the equation of
motion can be challenging, but in the perspective of solving
the scattering problem only the trajectories in the phase space
(k, x), identified by the constant energy levels Hcl(k, x) = E,
are needed (see Fig. 4). For any incoming momentum kIN,
the proper outgoing momentum kOUT is then readily found.
The classical expression of the LQSS is then obtained simply
replacing in Eq. (29) ηscat with the excitation density of the
incoming momentum, i.e., assuming kIN scatters in kOUT we
simply have ηscat(kOUT) = η(kIN). The LQSS generated by a
smooth defect is tested with the semiclassical prediction in
Fig. 5(a), while the magnetization profile for a superluminal
smooth defect is displayed in Fig. 5(b).

VI. FRICTION

In the previous sections we saw how the traveling defect
affects the system as it moves, but the presence of the LQSS is
associated to an energy cost. This is particularly clear when the
system is initialized in the ground state, where any nontrivial
effect is due to the creation of new excitations by the defect,
which ultimately heats the system. Reverting this point of view,
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(a)

(b)

FIG. 4. Energy levels ω(k, x ) = const for a transmitted (a) and
a reflected (b) classical particle. The classical scattering is fully
determined by the energy levels: assuming the particle has initial
momentum kIN infinitely far from the defect, the lines at constant
level ω(k, x ) = ω(kIN,∞) starting from kIN and x = ±∞ (depending
on the direction of the incoming particle) determined whether the
particle is transmitted or reflected (dashed red line). Above, the case
of a Gaussian potential V (x ) = 0.5 e−Ax2/2 moving at v = 0.5 is
considered, with A = 0.04 and constant magnetic field h = 1.3. The
initial momentum kIN has been taken kIN = 2 and kIN = 1 in (a) and
(b), respectively.

we can equivalently say that the system exerts a friction force
on the moving impurity.

The general issue of studying the emergence of friction
forces on heavy impurities embedded in quantum thermody-
namic baths has been extensively studied (see, e.g., [114] for a
review), with several experimental implications. For example,
in actual experiments heavy impurities are ultimately slowed
down because of the recoil due to the scattering events (see,
e.g., Ref. [15]).

In our setup, the defect is considered as an external field and
therefore it does not have a dynamics on its own, nevertheless,
this can be regarded as the zeroth-order approximation of
a heavy impurity, which is only slightly affected by each
scattering event. The instantaneous dissipated power is nat-
urally defined as the derivative of the instantaneous energy of
the system P (t ) = ∂tE (t ) = ∂t 〈Ĥ (t )〉 where Ĥ (t ) is the full
Hamiltonian of the Ising spins, including their interactions with
the defect. From the dissipated power, we can readily define
the friction force as F = −P/v.

However, the instantaneous dissipated power is affected by
the microscopic dynamics around the defect, a region which
lays beyond any scattering approximation. A more physical
quantity which has a well-defined stationary regime is the time
average of the dissipated power

P̄ = −F̄ v = lim
τ→∞

1

τ

∫ τ

0
dt P (t ) = lim

τ→∞
E (τ ) − E (0)

τ

(44)

we can readily employ the results obtained so far. In fact,
computing P̄ only requires the total energy E (τ ) at a given
large time and, in the τ → ∞ limit, any (finite) region around
the defect can be entirely neglected. Therefore, Eq. (44) can
be computed simply looking at the system at large distances
from the defect, where (i) the LQSS (29) is valid and (ii) the
Hamiltonian reduces to the homogeneous one (1). In view

FIG. 5. (a) The analytic semiclassical prediction for the LQSS is compared with the numerics, in the case of the local magnetization 〈σ̂ z〉
and for a smooth defect. (b) Within the semiclassical regime, a superluminal defect does not produce a LQSS. Above, the magnetization profile
as a function of the lattice sites at a given time t = 150. At late time, the system is affected only in the neighborhood of the defect (rightmost
peak) where the scattering theory is no longer valid. At finite time, a transient included within the lightcone propagating from the initial position
of the defect is displayed. Semiclassically, this transient is due to the quasiparticle initially sat on the defect that experience a sudden change
of their energy and therefore of their velocity: a bunch of excitation starts traveling across the system leaving behind a hole. Parameters (a):
V (x ) = 0.5 e−Ax2/2 (A = 0.04), v = 0.5, and h = 1.3. At time t = 0 the system is initialized in a thermal ensemble with inverse temperature
β = 0.5, 1600 sites are used. Parameters (b): V (x ) = e−Ax2/2 (A = 0.04), v = 3, and h = 1.3. At time t = 0 the system is initialized in a
thermal ensemble with inverse temperature β = 0.5, 800 sites are used.
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FIG. 6. (a) The mean friction force F̄ is plotted as a function of the defect’s velocity v for a δ-like defect, showing excellent agreement
between analytic and numerics. We considered velocities v > 0.2 since the increasing number of singularities in Eq. (39) makes difficult its
practical evaluation for v → 0. Parameters: h = 1.15, c = 1, the initial state is the ground state. (b) The numerical mean friction force F̄ for large
velocities in the case of a δ-like and a smooth defect, their normalization has been chosen in such a way they share the same asymptotic decay
(47) (dashed black line). Parameters: h = 1.15, the strength of the δ defect is set c = 1. The smooth defect is chosen as δh(x ) = 0.56 e−0.98 x2

.
The system has been initialized in the ground state.

of these considerations, computing E (τ ) amounts to locally
consider the energy density using as excitation density that
of the local LQSS, then integrate on the whole space. This
immediately leads to the simple expression

P̄ =
∫

dζ

∫
dk

2π
ω(k)[ηζ (k) − η(k)]. (45)

Being ηζ (k) = η(k) for ζ outside of the LQSS, the mean power
is of course finite. Using the expression of ηζ Eq. (29), the mean
power is completely written in terms of the density of scattered
momenta

P̄ =
∫

dk

2π
ω(k)|v1(k)|[ηscat(k) − η(k)], (46)

which ultimately depends on the scattering data through
Eq. (30).

In Fig. 6(a) we compare the above analytic prediction
against the numerics for a δ-like defect, plotting P̄ as a function
of the defect velocity. Interestingly, in the limit of a very
fast defect all possible impurities share the same behavior,
decaying as ∼1/v. This can be readily seen solving the
Lippman-Schwinger equation (24) in the limit of large v (see
Appendix C), which ultimately leads to

P̄ � 1

v

∫
dk

2π
ω(k)

∣∣∣∣u†
k,1

∫
dx ′δh(x ′)σzuk,2

∣∣∣∣
2

[1 − 2η(k)].

(47)

This result must be commented in view of the semiclassical
approximation of Sec. V, which predicts exactly P̄ = 0 as soon
as the defect is superluminal, regardless its shape or the initial
excitation density. However, there is no contradiction since the
two results are valid in different regimes of approximation:
as commented in Sec. V and Appendix B, the validity of
the semiclassical approach requires weak inhomogeneities in
space and time. Of course, if we consider a defect of given
shape and strength and move it at higher and higher velocities,
we ultimately leave the validity region of the semiclassical
approximation, eventually ensuring the validity of Eq. (47)
(see Appendix C for the details). Actually, very fast defects are
ultimately close to the δ potential since they instantaneously
kick each spin much faster than the speed of the signal

between different sites (v  vM ). In fact, all the defects at
large velocities converge towards the same formula (47), which
is ultimately the large velocity limit of a δ-like defect, with
effective strength c = ∫

dx δh(x) [see Fig. 6(b)].
An opposite, interesting limit is of course v → 0. We con-

sider the case of a δ-like defect δh(x) = cδ(j − vt ): physically,
a moving defect in this form rotates a spin around the z direction
of an angle c/v at intervals �t = 1/v. While a direct analytical
or numerical evaluation of our formulas becomes cumbersome
because of the presence of infinitely many scattering channels,
we can forecast the v → 0 limit of F̄ based on simple physical
arguments. As a matter of fact, as v → 0, an infinite amount
of time passes between two consecutive spin flips and the
system manages to relax back to the initial state. Thus, in first
approximation, the dissipated power is simply P̄ = −�Ev,
with �E the energy needed to rotate one spin in the initial
state. Therefore, as v → 0, we get F̄ = −�E , which is readily
computed as

�E = 〈e−i c
2v

σ z
j Ĥ ei c

2v
σ z

j 〉 − 〈Ĥ 〉
= 1

2

〈[
[1 − cos(c/v)]σx

j + sin(c/v)σy

j

](
σx

j+1 + σx
j−1

)〉
.

(48)

Above, Ĥ is the Ising Hamiltonian in absence of the defect
(1) and the expectation value must be taken on the initial
translational invariant state, thus the expression is independent
on the actual choice of j . From the above, we clearly notice
the nonanalyticity of the v → 0 limit if c is kept constant,
as we could have guessed from Eq. (37). In particular, F̄

becomes zero each time c/v = 0(mod2π ). A more sensible
limit consists in sending v → 0, but keeping c/v fixed: in this
case, the rotation angle is kept constant as v → 0 and the force
tends to a constant value.

We end this section commenting on the nonmonotonicity
of the friction force. It is tempting to reinject this force in the
equation of motion of the impurity itself, thus investigating
the dynamics of the system coupled impurity. In particular,
if an external force F is acting on the impurity, we would
predict a drift velocity vd such thatF + F (vd ) = 0. Of course,
this result would require further investigation, as it strongly
relies on the possibility for the system to reach an LQSS,
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which contrasts with the impurity being a dynamical object.
A comparison with the behavior obtained in similar settings
(see for instance [114,115]) following a different methodol-
ogy could be useful to define the range of validity of our
approach.

VII. CONCLUSIONS

In this work, we analyzed a local quench, consisting in the
sudden activation of a localized defect moving at velocity v

in an otherwise homogeneous and thermodynamically large
system. While we considered the Ising model as a specific
example, the same techniques can be immediately extended to
arbitrary quadratic models (fermionic or bosonic), or systems
that can be mapped into this class, generalizing our previous
work [101].

Our main focus has been the late-time features far from
the defect, which we investigate by exploring the formation
of a local quasistationary state. We provided exact analytical
results for an extremely narrow impurity and in the case of
a smooth defect. Finally, we analyzed also the friction force
exerted by the medium on the moving impurity. All our results
have been tested against direct numerical simulations finding
perfect agreement.

Moving impurities are the perfect benchmark to probe
systems which possess a maximum velocity for the spread-
ing of information, leading to the natural question whether
or not the excitations of the system can cope with a fast
moving defect. The Ising model manages to produce a LQSS
even for superluminal defects, which nevertheless has rather
characteristic features. Indeed, the superluminal LQSS is flat
(i.e., ray independent) beyond the defect up to a ray v − vM

(vM the maximum excitation velocity). Apart from the Ising
model, the creation of a LQSS with the mentioned features
is expected in all the free models, among which Ref. [101]
constitutes a remarkable exception due to the presence of
additional symmetries. It remains open the difficult question
of studying moving impurities in truly interacting integrable
models. Based on the experience gained so far, a superluminal
LQSS is expected in general, even though the role of U(1)
symmetry in these cases would require further investigation.
A fundamental difficulty is that, in most cases, defects break
integrability: thus, a scattering approach to connect the root
densities on the two sides of the defect is only possible with
some level of approximation.

A promising approach consists in considering smooth de-
fects when generalized hydrodynamic [71,72] (see in particular
Ref. [74]) can be applied. However, in the free case GHD
reduces to the semiclassical approach, where no superluminal
LQSS is observed: in this perspective, it is unclear whether
GHD has any chance to capture the physics of superluminal
LQSS.

Finally, it is important to clarify how the behavior we
observed is affected by perturbations which break integrability.
In general, we do not expect ballistic transport, thus no LQSS
(either subluminal or superluminal) is expected. However, a
maximum velocity of information will still be present. This
ingredient can be at the root of universal phenomena, which
are our intention to investigate in the near future.
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APPENDIX A: SCATTERING THEORY

This appendix is devoted to some technical details needed in
the derivation of the LQSS formula (29). First of all, we enlist
some useful symmetries. Using that in the fermionic field ψ̂j

the first component is the Hermitian conjugate of the second
(and this is reflected on a symmetry of the Green function)
leads us to the conclusion

Ea (k) = −Eā (−k), va (k) = vā (−k), σ xuk,a = (u−k,ā )∗

(A1)

with a = 1 or 2 and ā = 2 or 1, respectively. In the Ising case,
this can be immediately checked by the very definitions, but
it holds true for any quadratic fermionic model. A similar
symmetry holds for the wave functions φk,a which must
ultimately obey

φk,a = σx (φ−k,ā )∗ (A2)

and leads to a useful symmetry of the scattering amplitudes

Sb,a (q, k) = [Sb̄,ā (−q,−k)]∗. (A3)

Other important constraints obeyed by the scattering ampli-
tudes are certain sum rules derived by the orthonormality
and completeness of the eigenfunctions φk,a . The two sum
rules involve a sum over the incoming and outgoing momenta,
respectively,

δ(k − k′)δa,a′ =
∑
b=1,2

∫
dq δ[Ea (k) − Eb(q )]δ[Ea (k′)

−Eb(q )][Sa,b(k, q )]∗Sa′,b(k′, q )|va (k)|2,
(A4)

δ(k − k′)δa,a′ =
∑
b=1,2

∫
dq δ[Ea (k) − Eb(q )]δ[Ea′

(k′)

−Eb(q )][Sb,a (q, k)]∗Sb,a′ (q, k′)|vb(q )|2.
(A5)

The first sum rule can be derived from the completeness rela-
tion [116] (21), while the second follows from orthonormality
(22). Even though not difficult, their derivation requires some
lengthy manipulations and will not be reported: the interested
reader can refer to Ref. [101] for similar identities in the closely
related (but simpler) case of the XX chain.

With the help of the sum rules, the late-time behavior of the
Green function can be extracted and from this the LQSS. Rather
than considering the Green function in the coordinate space,
it is more convenient to take a Fourier transform with respect
to the second coordinate. In this way, the connection between
the continuous and the lattice model is best displayed, as it is
clear from Eq. (17). Applying the desired Fourier transform to
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the decomposition (19), we reduce ourselves to compute

G ′
x,k =

∑
a=1,2

∫
dq

2π
e−iE(q,a)tφq,a (x)

∫
dx ′ φ†

q,a (x ′)eikx ′

(A6)

and we focus on the limit of large times and far from the defect.
In this assumption we can (i) compute

∫
dx ′ φ†

q,a (x ′)eikx ′

replacing the wave function with its approximation in the
scattering region and (ii) use the same approximation for
φq,a (x) as well. In computing the scalar product, we face the
Fourier transform of the Heaviside theta

∫
dx ′ φ†

q,a (x ′)eikx ′ � 1√
2π

(
iu

†
q,a

sgn(−va (q ))(k − q ) + i0+ +
∑
b=1,2

∫
dq ′ iδ[Ea (q ) − Eb(q ′)]θ (xvb(q ′))|vb(q ′)|S∗

b,a (q ′, q )

sgn(vb(q ′))(k − q ′) + i0+ u
†
q ′,b

)
,

(A7)

where “sgn” is the sign function. This scalar product must now be used in (A6): in the large-time limit all the smooth contributions in
k vanish, only the singular parts of the above scalar product matters. These singularities, combined with the oscillating exponentials
in φq,a (x), contribute again as Fourier transforms of Heaviside theta functions leading to the final result [in the same notation of
Eq. (17)]

G̃x,k (t ) �
∑
a=1,2

e−iEa (k)t

2π

[
(θ (−ζva (k)) + θ (ζva (k))θ (|ζ | − |va (k)|))eikxuk,a

+
∑
b=1,2

∫
dq δ[Eb(q ) − Ea (k)]θ (|vb(q )| − |ζ |)θ (ζvb(q ))|vb(q )|Sb,a (q, k)eiqxuq,b

]
u
†
k,a, (A8)

valid in the large-time limit, where ζ is the ray x/t in the
defect reference frame. The sum rule (A4) is crucial in the
simplification of the squared scattering amplitudes that arise
while evaluating Eq. (A6). The asymptotic form of the Green
function can now be used in the computation of the two-point
correlators and the large distance/time behavior extracted. It
must be said that corrections to the scattering wave function
(26) decay exponentially fast away from the defect and the
Green function (A8) is valid in the same regime, provided
the long-time limit has been taken. However, when the Green
function is used in the two-point correlators to derive the LQSS,
a further long-distance approximation must be invoked, in
order to get rid of space-oscillating terms. These oscillations,
coming from the interference of different scattering channels,
can be quite slowly damped in the distance from the defect,
nevertheless, they vanish in the LQSS limit (see Fig. 7 and
also Ref. [101]). With this caveat, recognizing in the two-point
correlator a local GGE with density root (29) is a matter of a
long and tedious (but straightforward) computation, where the
symmetries and the sum rules presented at the beginning of the
Appendix play a fundamental role in simplifying many terms.

APPENDIX B: DERIVATION OF THE SEMICLASSICAL
LIMIT

We derive the semiclassical limit directly in the more
general case of an arbitrary free-fermionic theory, where the
fermionic field ψ̂j is subjected to the linear equation of motion

i∂t ψ̂j =
∑
j ′

Hj ′ (L−1j )ψ̂j+j ′ , (B1)

where the matrix Hj ′ (x) is a smooth function of its argument,
the scale L is introduced in order to make the notion of weak
inhomogeneity limit precise, letting L → ∞. Thereafter, we

consider the two-point correlator C

C(xL−1, s) = 〈ψ̂x+s/2ψ̂
†
x−s/2〉 (B2)

which is a 2 × 2 matrix and we aim to follow its time evolution
in the limit L → ∞. Above, the coordinate s has integer values
and, in order to respect the underlying lattice, the coordinate x

should be (half-)integer in order to ensure x ± s/2 being a true
lattice label (thus, an integer). However, in the limit L → ∞
we will eventually face a coarse-graining procedure and we
can drop any specific requirement on x, considering it as if it
was a continuous real variable. Of course, in the limit of weak
inhomogeneity, a nontrivial time evolution needs longer times
to be observed. Therefore, we need to describe the dynamics
up to times t = Lτ , scaling with the regulator L. Three extra

FIG. 7. Oscillations of local observables can be present in proxim-
ity of the defect due to finite-time/-size effects. Above, we numerically
compute the local magnetization 〈σ̂ z〉. The same parameters of
Fig. 3(a) have been used, but at finite time t � 850. The defect,
activated in j = 0 at time t = 0, is now placed nearby site j � 500
where the discontinuity occurs.
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assumptions are needed on the two-point correlator: (i) C(y, s)
is initially locally described by a GGE, (ii) C(y, s) is smooth
in the first argument and in the rescaled time τ , and (iii) it
decays faster than any power in s, i.e., lim|s|→∞ C(y, s)|s|n =
0, for any y, n. These hypotheses are needed to justify the
derivative expansion we are going to use: they must be satisfied
by the initial condition and checked self-consistently through
the time evolution [117]. The two-point correlator satisfies the
Heisenberg equation of motion

i∂tC(y, s)

=
∑

j

[Hj (y + L−1s/2, j ) ⊗ Id]C(y + L−1j/2, j + s)

−
∑

j

C(y + L−1j/2, s − j )[Id ⊗ Hj (y − L−1s/2, j )],

(B3)

where with ⊗ we mean the tensor product. This is nothing but
an equivalent form of the Moyal equation used in Ref. [79] to
derive higher-order corrections to hydrodynamics in the XX
spin chain. In that case, a homogeneous post-quench Hamil-
tonian was assumed. For L → ∞, we can Taylor expand the
above equation and any derivative carries an extra L−1 factor.
Rather than using the two-point correlator in the coordinate
space, it is convenient to partially transform it and use the
Wigner representation [118,119]

C(y, s) =
∫ π

−π

dk

2π
eiksC(y, k), (B4)

and define

�k (y) =
∑

j

eikj H̃j (y). (B5)

In terms of these quantities, Eq. (B3) up to O(L−2) corrections
becomes (the explicit momentum/coordinate dependence is
dropped for simplicity)

i∂tC = � ⊗ Id C − C Id ⊗ �† + i

2L
∂y� ⊗ Id ∂kC

+ i

2L
∂kC Id ⊗ ∂y�

† − i

2L
∂k� ⊗ Id ∂yC

− i

2L
∂yC Id ⊗ ∂k�

†. (B6)

Thanks to our assumptions, the two-point correlator is initially
described by an inhomogeneous GGE, thus we pose

C(y, k) =
∑
a=1,2

ηa (y, k)uk,a (y)u†
k,a (y)

+ ξa (k, y)

L
uk,a (y)u†

k,ā (y), (B7)

where uk,a (y) are the local Bogoliubov orthonormal eigen-
vectors (always existing for a quadratic fermionic Hamilto-
nian), i.e., they are eigenvectors of �, thus �k (y)uk,a (y) =
ωa (k, y)uk,a (y). Above, ā = 1(2) if a = 2(1). ηl will be later
interpreted as the excitation/hole density, ξa (y, k) describes
the off-diagonal corrections.

Initially, is set ξa = 0 by hypothesis, but we need to show
(and we will) that it remains O(L0) during the whole evolution.

Even though we know the exact expressions for uk,a and ωa

for the Ising model, we can proceed in full generality. The
Bogoliubov eigenvectors (23) can always been parametrized
in terms of the Bogoliubov angle, being the details of the
model completely encoded in the dependence of the latter from
the momentum and the various couplings. However, this is
enough to say ∂μuk,a = i(∂μ γk )uk,ā where μ can be either the
momentum or the position. Using this information, plugging
(B7) in (B6) and projecting on the diagonal/off-diagonal parts,
we readily obtain the following two sets of equations:

∂tηa = 1

L
(∂yωa∂kη

a − ∂kωa∂yη
a ), (B8)

i∂t ξ
a = ξa (ωa − ωā ) + Fa, (B9)

where Fa is a polynomial of ω, γ, η and their derivatives, but
its explicit form does not matter in the forthcoming argument.
Equation (B8), once we rescale the time t = Lτ , is in the
Liouville form we where aiming for [Eq. (40)].

In order to be consistent with our assumptions, we should
ensure that ξa remains of order O(L0) up to times t = Lτ .
Notice that (B9) is in the form of an oscillating term plus
a ξ -independent driving: if the driving does not contain any
resonant frequency, then ξ remains bounded in time as we
desire. Since Fa is a polynomial of smooth functions of the
rescaled time τ = L−1t , the frequencies contained in Fa are
vanishing as L−1, therefore, no resonance occurs as long as
the system is gapped ωa �= ωā . The gapless case requires
more attention since from (B9) it is not guaranteed that ξ

remains bounded. In this case we should remember that we are
interested in the correlation rather than in the Wigner function
(B4): integrating over the momentum the net effect is that
a gapless equation (B9) makes larger the corrections to the
semiclassical regime and replacing the current O(L−1) with a
slower power-law decay.

APPENDIX C: FAST DEFECT LIMIT

This appendix is devoted to study the scattering theory in
the limit of fast defects v  vM at the leading order in v−1, but
for arbitrary potentials. In order to do that, we can start from
the Lippman-Schwinger equation (24), in particular, we can
consider the integration kernel which explicitly reads as[

1

Ea (k) − H0 + i0+

]
x,x ′

=
∫

dq

2π

∑
b

uq,bu
†
q,be

iq(x−x ′ )

Ea (k) − Eb(q ) + i0+ .

(C1)

In the limit of very fast defects we can approximate Ea (k) �
−vk: this approximation is reliable in the limit v  vM . In this
assumption, the kernel is readily worked out[

1

Ea (k) − H0 + i0+

]
x,x ′

� eik(x−x ′ )

vi
θ (x ′ − x). (C2)

Employing this kernel in the Lippman-Schwinger equation we
get the following approximation:

φk,a (x)� eikx

√
2π

uk,a+
∫

dx ′ e
ik(x−x ′ )

vi
θ (x ′ − x)δh(x ′)σzφk,a (x ′).

(C3)
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Of course, we do not really need to seek an exact solution:
the leading order in 1/v is readily obtained by mean of the
Born approximation, i.e., the wave function φk,a (x ′) in the
integral is replaced with the unperturbed solution. Employing
the Born approximation in the above equation and then reading
the scattering amplitudes by mean of a direct comparison
with Eq. (26), we get at first order in 1/v the following
excitation/hole scattering amplitude:

Sā,a (k, k) � 1

vi
u
†
k,ā

∫
dx ′δh(x ′)σzuk,a, (C4)

where, as usual, ā = 1(2) is a = 2(1). Of course, in our ap-
proximation the energy conservation Eā (k′) = Ea (k), which
establishes the connection between ingoing and outgoing mo-
menta, becomes trivial k′ = k. Of course, the momentum con-
servation has ∼v−1 corrections k′ = k + O(v−1), therefore,
the approximation is reliable if the defect cannot distinguish
between momenta whose difference is ∼v−1. This sets a bound
on the typical width of the potential: let � be the width of
the potential, then our approximation is justified as long as
�v−1 � 1. Finally, the Born approximation is reliable in the
small coupling limit, i.e., v−1

∫
dx δh(x) � 1.

Aiming to obtain the density of the scattered momenta
ηscat(k) through Eq. (30) we need the square of the scattering
amplitude, which is of course O(v−2):

|Sā,a (k, k)|2 � 1

v2

∣∣∣∣u†
k,ā

∫
dx ′δh(x ′)σzuk,a

∣∣∣∣
2

. (C5)

For what it concerns the excitation/excitation and hole/hole
squared scattering amplitudes, the Born approximation does
not give us access to the O(v−2) order. However, a rather
economic way to get |Sa,a (k, k)|2 up to the desired order is
to take advantage of the sum rules (A4) and (A5) which lead
to

|Sa,a (k, k)|2 � 1 − 1

v2

∣∣∣∣u†
k,ā

∫
dx ′δh(x ′)σzuk,a

∣∣∣∣
2

. (C6)

Plugging these scattering amplitudes in the definition of the
scattered density (30), we finally get the desired leading order
in v−1:

ηscat(k) � η(k) + 1

v2

∣∣∣∣u†
k,1

∫
dx ′δh(x ′)σzuk,2

∣∣∣∣
2

[1 − 2η(k)].

(C7)

APPENDIX D: NUMERICAL METHODS

In this appendix we describe the numerical methods used to
directly simulate the Ising chain with the moving impurity. We
took advantage of the mapping in free fermions and directly
solve the Heisenberg equation of motion (12). A natural
strategy would have been to write the equation of motion for
the two-point correlator 〈ψ̂j ψ̂

†
j ′ 〉 and then try to solve the time

differential equation through a Runge-Kutta method. However,
we experienced huge instabilities in this method and thus adopt
a transfer-matrix approach hereafter explained.

The whole dynamics is entirely encoded in the Green
function Gj,j ′ (t ) obeying the equation of motion (14): if we
can compute Gj,j ′ , we can then reconstruct the correlation
functions. For the sake of clarity, along this appendix we

slightly change the notation specifying two times in the Green
function Gj,j ′ (t2, t1), with the convention that it evolves the
system from t1 to t2. Of course, we are ultimately interested
in Gj,j ′ (t, 0). The Green function of course respects the
composition property

Gj,j ′ (t3, t1) =
∑

l

Gj,l (t3, t2)Gl,j ′ (t2, t1). (D1)

The presence of the moving defect surely breaks time transla-
tion, but we can notice that, after a time 1/v (where v is the
defect velocity), the defect is translated of one site. This implies
that G(t2 + nv−1, t1 + nv−1) and G(t2, t1) (n being integer)
are simply related by a translation of the spatial indexes

Gj,j ′ (t2 + nv−1, t1 + nv−1) = Gj−n,j ′−n(t2, t1). (D2)

Combining Eqs. (D1) and (D2) is an efficient way to quickly
reach large times. In fact, assume we know Gj,j ′ (v−1, 0)
(whose computation will be discussed soon), then we can
compute Gj,j ′ (2nv−1, 0) through the recursive relation

Gj,j ′ (2nv−1, 0)

=
∑

l

Gj−2n−1,l−2n−1 (2n−1v−1, 0)Gl,j ′ (2n−1v−1, 0). (D3)

Even though each step in the recursive relation is not re-
markably fast (∼N3), we can nevertheless reach large times
exponentially fast exactly within machine precision. As a
drawback, we cannot sample continuously the time evolution:
even though suitable modifications of the above relation give
us access to different times rather than t = 2nv−1, the high cost
of matrix products relegates us to a sparse sampling of the time
evolution if large systems are considered.

We now discuss the last step, i.e., the computation of
Gj,j ′ (v−1, 0). We will first address the case of the δ-like
impurity where the solution is exact up to machine precision,
then we will describe how to approximate arbitrary well a
smooth defect. Concerning the δ-like impurity, the evolution
is homogeneous apart from those instants when the impurity
travels through a lattice site. We assume at t = 0+ the impurity
is right after the lattice site at j = 0, then the evolution
proceeds free until t = v−1: we denote with G0

j,j ′ (v−1, 0) the
homogeneous Green function, exactly computable by means
of an exact diagonalization of the homogeneous Ising model.
At time t = v−1 the impurity suddenly kicks the system: the
Green function has a discontinuity in time similarly to what
the wave function (36) had in space and we get

Gj,j ′ (v−1, 0) = e−i c
v
δj,1σzG0

j,j ′ (v−1, 0), (D4)

that is exact. When an extended defect must be considered, we
can approximate it with a sequence of δ kicks. Given a smooth
defect δh(j − vt ) we pose

Gj,j ′ (n�t, (n − 1)�t ) = e−i�tσzh(j−nv�t )G0
j,j ′ (�t, 0),

(D5)

with �t = v−1/N , then Gj,j ′ (v−1, 0) is obtained composing
together these Green functions. Increasing the number of
steps used in the discretization N , any smooth potential is
approximated arbitrarily well.
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