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Partial vibrational density of states for amorphous solids from inelastic neutron scattering

Dean A. J. Whittaker,1 Luigi Giacomazzi,2,3 Devashibhai Adroja,4,5 Stephen M. Bennington,4

Alfredo Pasquarello,2 and Philip S. Salmon1,*

1Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
2Chaire de Simulation à l’Echelle Atomique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

3Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270 Ajdovščina, Slovenia
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We introduce coherent inelastic neutron scattering with isotope substitution as a technique for measuring
site-specific information on the vibrational dynamics of amorphous solids. The technique is used to extract
experimentally the partial vibrational density of states Gα (E) for both Ge and Se in the prototypical network-
forming glass GeSe2, where α specifies the chemical species and E denotes the energy. The efficacy of the
approximations used in interpreting the experimental data is validated by using a first-principles model, for which
the set of true partial vibrational density of states is directly accessible. Our approach offers an opportunity for
exploring accurately the vibrational dynamics of disordered materials.
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I. INTRODUCTION

The vibrational density of states (VDOS) is an essential pa-
rameter for describing the collective excitations in amorphous
solids, where the absence of translational periodicity precludes
their description by using dispersion relations [1,2]. These ex-
citations are important for understanding many of the transport
and thermodynamic properties of disordered materials, and
govern their interaction with light. For example, the VDOS
provides essential information on a variety of thermodynamic
properties such as the vibrational contribution to the internal
energy, heat capacity, and entropy [3], where the latter is
required to find the configurational contribution to the total
entropy that is associated with glass relaxation via the Adam-
Gibbs formalism [4,5]. It is therefore desirable to maximize the
available experimental information by measuring the partial
VDOS for each chemical species in a glass. Such site-specific
information is accessible for Mössbauer nuclei such as 57Fe by
using inelastic x-ray scattering [3]. It has not been forthcoming,
however, from coherent inelastic neutron scattering (CINS),
which has been a mainstay technique for investigating the
dynamics of disordered materials [2,6–10]. A major drawback
originates from the employment of the extreme incoherent
approximation to analyze CINS spectra, where all of the
chemical species are treated as equivalent, which carries clear
shortcomings for most materials [6–8].

In this paper, we develop a technique involving CINS with
isotope substitution to measure the full set of partial VDOS
Gα (E) for an amorphous solid, where α denotes the chemical
species and E is the energy. The technique is illustrated via
its application to glassy GeSe2, a prototype for investigating
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the effect of network topology on the structure and dynamics
of disordered glass-forming materials [11,12]. The efficacy
of our experimental approach is examined by generating a
first-principles model for which the true partial VDOSs Zα (E)
are known, so that the effect of the approximations used in
interpreting the measured spectra can be rigorously tested.
From the model it is found that Gα (E) � Zα (E); that is, the
measured functions give an accurate representation of the true
partial VDOS for the glass. Our approach goes well beyond that
used for extracting structural information on amorphous solids
by using neutron diffraction with isotope substitution [13,14].

This paper is organized as follows. In Sec. II we summarize
the essential theory leading to the incoherent and extreme
incoherent approximations that are made in the analysis of data
collected during CINS experiments on amorphous materials.
The experimental work is described in Sec. III, and the data
analysis procedure is outlined in Sec. IV. The results are pre-
sented in Sec. V, and the efficacy of the experimental approach
is scrutinized in Sec. VI by employing a first-principles model.
Conclusions are drawn in Sec. VII.

II. THEORY

Consider an inelastic neutron scattering experiment on
an amorphous solid such as glassy AX2 that contains N

atoms [15,16]. Let k0 and k1 denote the incident and scattered
neutron wave vectors, respectively, and let 2θ be the scattering
angle between them. Let E0 = h̄2k2

0/2mn and E1 = h̄2k2
1/2mn

denote the incident and scattered neutron energies, respec-
tively, where k0 = |k0|, k1 = |k1|, h̄ is the reduced Planck
constant, and mn is the mass of a neutron. The magnitude of
the scattering vector Q = k0 − k1 is given by

Q =
√

k2
0 + k2

1 − 2k0k1 cos(2θ ), (1)
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and the energy transfer

E = E0 − E1 = h̄ω, (2)

where ω is an angular frequency. If the nuclear spins and
isotopes are randomly distributed over the atoms of each
particular element, the double-differential cross section per
atom is given by

d2σ

d�dE
= 1

N

k1

k0

1

2πh̄

∫ ∞

−∞
dt e−iωt

N∑
i=1

N∑
j=1

bibj

×〈e−iQ·Ri (0) eiQ·Rj (t )〉, (3)

where bi and bj are the scattering lengths of nuclei i and j ,
respectively; Ri (0) and Rj (t ) are the positions of nuclei i at
time t = 0 and j at time t , respectively; the brackets 〈· · · 〉
denote a thermal average; and the bar refers to an average over
nuclear spin orientations and isotope distributions.

If there is no correlation between the nuclear spins and
particle positions, and no correlation between the isotopes

and particle positions, then bibj = b
2 + (b2 − b

2
)δij , where

b = (1/N )
∑

i bi , b2 = (1/N )
∑

i b
2
i , and the Kronecker delta

δij = 1 if i = j or δij = 0 if i �= j . The coherent and incoher-
ent contributions to the scattering can then be separated so that

d2σ

d�dE
= d2σ

d�dE

∣∣∣∣
coh

+ d2σ

d�dE

∣∣∣∣
inc

= k1

k0
[Scoh(Q, E) + Sinc(Q, E)]. (4)

The coherent total dynamical structure factor

Scoh(Q, E) = 1

N

σcoh

4π

1

2πh̄

∫ ∞

−∞
dt e−iωt

N∑
i=1

N∑
j=1

×〈e−iQ·Ri (0)eiQ·Rj (t )〉, (5)

where σcoh = 4πb
2
, and the incoherent total dynamical struc-

ture factor

Sinc(Q, E) = 1

N

σinc

4π

1

2πh̄

∫ ∞

−∞
dt e−iωt

N∑
i=1

×〈e−iQ·Ri (0)eiQ·Ri (t )〉, (6)

where σinc = 4π (b2 − b
2
) ≡ 4πb2

inc. Coherent scattering in-
volves correlations between either the positions of distinct
nuclei at different times or the positions of the same nucleus
at different times. Incoherent scattering involves correlations
solely between the positions of the same nucleus at different
times.

The differential cross section for coherent scattering can
be obtained by making the static approximation, where it is
assumed that E0 � |h̄ω| so that k1 � k0. Then, on (i) making
a distinction between the nuclei of different chemical species
and (ii) subtracting the forward scattering, it follows that [13]

dσ

d�

∣∣∣∣
coh

=
∫ E0

−∞

d2σ

d�dE

∣∣∣∣
coh

dE = F (Q) +
∑

α

cαb
2
α, (7)

where F (Q) = ∑
α

∑
β cαcβbαbβ[Sαβ (Q) − 1] is the total

structure factor, α and β denote the chemical species,

cα = Nα/N is the atomic fraction of chemical species α, Nα

is the number of atoms of chemical species α, N = ∑
α Nα ,

bα = (1/Nα )
∑

i⊂α bi is the coherent neutron scattering length
of chemical species α, and Sαβ (Q) is a so-called Faber-
Ziman partial structure factor. The differential cross section
for incoherent scattering is, within the static approximation,
given by

dσ

d�

∣∣∣∣
inc

=
∫ E0

−∞

d2σ

d�dE

∣∣∣∣
inc

dE =
∑

α

cαb
2
α,inc, (8)

where b
2
α,inc = b2

α − b
2
α and b2

α = (1/Nα )
∑

i⊂α b2
i . The total

differential cross section is given by

dσ

d�

∣∣∣∣
tot

= dσ

d�

∣∣∣∣
coh

+ dσ

d�

∣∣∣∣
inc

= F (Q) + σtot

4π
, (9)

where the total scattering cross section σtot =
4π

∑
α cα (b

2
α + b

2
α,inc).

A. Multiphonon expansion

Consider an isotropic solid for which each atomic coordi-
nate Ri (t ) can be written in terms of a time-dependent displace-
ment ui (t ) about a time-independent equilibrium position Ri ,
such that Ri (t ) = Ri + ui (t ). If the displacements are small
and harmonic, a multiphonon expansion can be made [16].

In the case of coherent scattering, the multiphonon expan-
sion gives

Scoh(Q, E) = 1

N

σcoh

4π

N∑
i=1

N∑
j=1

〈e−iQ·(Ri−Rj )〉e−[Wi (Q)+Wj (Q)]

× 1

2πh̄

∫ ∞

−∞
dt e−iωt

∞∑
p=0

1

p!

×〈[Q · ui (0)][Q · uj (t )]〉p, (10)

where, for the ith nucleus, Wi (Q) = (1/6)〈u2
i 〉Q2 is the

Debye-Waller factor and 〈u2
i 〉 is the mean-square displacement.

In this expansion, p = 0 corresponds to elastic scattering,
p = 1 corresponds to one-phonon scattering, and the remain-
ing terms p > 1 correspond to multiphonon scattering. For
an isotropic solid it follows that the double-differential cross
section for coherent scattering can be written as

d2σ

d�dE

∣∣∣∣
coh

= Sel
coh(Q)δ(E)

+ k1

k0
[Scoh,1(Q,E) + Scoh,mp(Q,E)]. (11)

The first term describes elastic scattering, and on (i) making a
distinction between the nuclei of different chemical species and
(ii) subtracting the forward scattering, it gives the differential
cross section

dσ

d�

∣∣∣∣
el

coh

=
∫ ∞

−∞
Sel

coh(Q)δ(E)dE

= F (Q) +
∑

α

cαb
2
αe−2Wα (Q), (12)
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where Wα (Q) is the mean Debye-Waller factor for the atoms of
chemical species α. The second term in Eq. (11) describes one-
phonon scattering, and in terms of the one-phonon coherent
dynamical structure factors Sαβ (Q,E) for chemical species α

and β, it follows that

Scoh,1(Q,E) = b
2
ASAA(Q,E) + b

2
XSXX(Q,E)

+ 2bAbXSAX(Q,E). (13)

The third term in Eq. (11) involves the dynamical structure
factor Scoh,mp(Q,E), which describes multiphonon scattering.

In the case of incoherent scattering, the multiphonon ex-
pansion gives

Sinc(Q, E) = 1

N

σinc

4π

N∑
i=1

e−2Wi (Q) 1

2πh̄

∫ ∞

−∞
dt e−iωt

∞∑
p=0

1

p!

×〈[Q · ui (0)][Q · ui (t )]〉p. (14)

Again, p = 0 corresponds to elastic scattering, p = 1 cor-
responds to one-phonon scattering, and the remaining terms
p > 1 correspond to multiphonon scattering. For an isotropic
solid it follows that the double-differential cross section for
incoherent scattering can be written as

d2σ

d�dE

∣∣∣∣
inc

= Sel
inc(Q)δ(E)

+ k1

k0
[Sinc,1(Q,E) + Sinc,mp(Q,E)]. (15)

The first term describes elastic scattering and gives the differ-
ential cross section

dσ

d�

∣∣∣∣
el

inc

=
∫ ∞

−∞
Sel

inc(Q)δ(E)dE =
∑

α

cαb
2
α,ince

−2Wα (Q).

(16)
The dynamical structure factor Sinc,1(Q,E) describes one-
phonon scattering, and in terms of the one-phonon incoherent
dynamical structure factors Sα,inc(Q,E) for chemical species
α, it follows that

Sinc,1(Q,E) = b
2
A,incSA,inc(Q,E) + b

2
X,incSX,inc(Q,E).

(17)

The dynamical structure factor Sinc,mp(Q,E) describes multi-
phonon scattering.

The general motion of N quantized simple harmonic
oscillators in three dimensions arising from single-phonon
processes can be described by the superposition of 3N normal
modes. Within the framework of a normal-mode analysis, the
incoherent dynamical structure factors can be written as

Sα,inc(Q,E) = h̄2Q2

2Mα

e−2Wα (Q) 〈n(E) + 1〉
E

Zα (E). (18)

Here, Mα is the nuclear mass of chemical species α; 〈n(E)〉 =
[exp (E/kBT ) − 1]−1 is the Bose occupation factor at absolute
temperature T , and the displacement-weighted partial VDOS
for chemical species α is given by

Zα (E) = 1

3N

Nα∑
αi=1

3N∑
ν=1

|eν
αi |2δ(|E| − Eν ), (19)

where eν
αi is the displacement vector of the ith nucleus of

chemical species α in the νth normal mode and Eν is the energy
of that mode. The partial VDOS is normalized so that∫ Emax

0
Zα (E)dE = cα, (20)

where Emax corresponds to the maximum energy of a normal
mode.

For neutron energy loss, i.e., when E > 0 and a single
phonon is created, the corresponding incoherent dynamical
structure factor Sα,inc+1(Q,E) is given by Eq. (18) with

〈n(E) + 1〉 = exp(E/kBT )/[exp(E/kBT ) − 1]. (21)

For neutron energy gain, i.e., when E < 0 and a single
phonon is annihilated, the corresponding incoherent dynamical
structure factor Sα,inc−1(Q,E) is given by Eq. (18) with

〈n(E) + 1〉
E

= − 1

|E|
exp[−|E|/kBT ]

[exp(−|E|/kBT ) − 1]
= 〈n(|E|〉

|E| .

(22)

At low temperatures, 〈n(|E|)〉 � 0 for neutron energy gain,
and 〈n(E) + 1〉 � 1 for neutron energy loss; that is, the single-
phonon scattering will be dominated by Sα,inc+1(Q,E).

In the extreme incoherent approximation no distinction is
made between the different nuclei; that is, they are all assumed
to have the same incoherent scattering length binc, the same
nuclear mass M , and the same Debye-Waller factor W (Q). The
dynamical structure factor for one-phonon scattering becomes

Sinc,1(Q,E) = b2
inc

h̄2Q2

2M
e−2W (Q) 〈n(E) + 1〉

E
Z(E), (23)

where Z(E) is the total VDOS. For a sample of glassy AX2

containing N = NA + NX atoms, the total VDOS is given by

Z(E) = ZA(E) + ZX(E) = 1

3N

3N∑
ν=1

δ(|E| − Eν ), (24)

where the last equality follows from the normalization condi-
tion

∑N
i=1 |eν

i |2 = ∑NA
Ai=1 |eν

Ai |2 + ∑NX
Xi=1 |eν

Xi |2 = 1. The total
VDOS is normalized so that∫ Emax

0
Z(E)dE = 1. (25)

In practice, the incoherent scattering lengths, masses, and
Debye-Waller factors of all the nuclei will not be identical.
Then, the dynamical structure factor for one-phonon scattering
is often estimated by replacing b2

inc, M , and W (Q) in Eq. (23)

by the mean values 〈b2
inc〉 = ∑

cαb
2
α,inc, M = ∑

cαMα , and
W (Q) = ∑

cαWα (Q), respectively. The total VDOS in the
resultant expression is then an approximation of the true total
VDOS.

Within the extreme incoherent approximation, the overall
dynamical structure factor for inelastic incoherent scattering
in Eq. (15) can be rewritten as [17,18]

Sinc(Q,E) ≡ Sinc,1(Q,E) + Sinc,mp(Q,E)

= 〈
b2

inc

〉
e−2W (Q)

∞∑
p=1

1

p!

(
h̄2Q2

2M

)p

up(E). (26)
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In this equation, the dynamical structure factor for one-phonon
scattering corresponds to p = 1, where

u1(E) = 〈n(E) + 1〉Z(E)

E
, (27)

and the dynamical structure factor for multiphonon scattering
corresponds to the remaining terms for which p > 1, where
up(E) is given by the convolution relation

up(E) =
∫ ∞

−∞
up−1(E′)u1(E − E′)dE′. (28)

B. Incoherent approximation for coherent scattering

Consider the case when the incoherent scattering from a
sample of, e.g., glassy AX2 is negligibly small. A generalized
partial VDOS can still be accessed by making the so-called
incoherent approximation where it is assumed that only those
correlations involving the same nuclei (i = j ) contribute
towards the coherent dynamical structure factors. The term
SAX(Q,E) describes distinct nuclei and therefore vanishes
from Eq. (13), so that

Scoh,1(Q,E) = b
2
ASAA(Q,E) + b

2
XSXX(Q,E), (29)

where the partial dynamical structure factors for one-phonon
scattering can be written as

Sαα (Q,E) = h̄2Q2

2Mα

e−2Wα (Q) 〈n(E) + 1〉
E

Gα (Q,E). (30)

This equation defines a generalized partial VDOS Gα (Q,E)
for chemical species α, which gives an account of the distinct-
particle correlations that are neglected within the incoherent
approximation [19]. The corresponding partial VDOS follows
from the average

Gα (E) = 1

Qmax − Qmin

∫ Qmax

Qmin

Gα (Q,E)dQ, (31)

where Qmin and Qmax are the minimum and maximum scat-
tering vectors accessed by experiment when E is the energy
transfer.

In the present work on glassy GeSe2 we adopt this ap-
proach, where only self-particle motions contribute towards
the coherent scattering, and apply the method of CINS with
isotope substitution to samples of glassy 70Ge NSe2, NGe NSe2,
and 73Ge 76Se2, where N denotes the natural isotopic abun-
dance. If the corresponding partial dynamical structure factors
for one-phonon scattering are denoted by 70

N Scoh,1(Q,E),
N
NScoh,1(Q,E), and 73

76Scoh,1(Q,E), respectively, it follows that

⎡
⎢⎣

70
N Scoh,1(Q,E)
N
NScoh,1(Q,E)
73
76Scoh,1(Q,E)

⎤
⎥⎦ =

⎡
⎢⎢⎣

b
2
70Ge/M70Ge b

2
NSe/MNSe

b
2
NGe/MNGe b

2
NSe/MNSe

b
2
73Ge/M73Ge b

2
76Se/M76Se

⎤
⎥⎥⎦

×
[
S ′

GeGe(Q,E)

S ′
SeSe(Q,E)

]
, (32)

where S ′
αα (Q,E) ≡ MαSαα (Q,E). This overconditioned set

of equations can be solved by using the method of singular-
value decomposition [20].

The validity of the approximations leading to Eqs. (29)–(32)
has not been ascertained and will discussed in Sec. VI.

C. Extreme incoherent approximation for coherent scattering

In contrast to the approach given in Sec. II B, it is usual to
make the extreme incoherent approximation when performing
inelastic neutron scattering experiments on coherently scatter-
ing glassy materials [6,7]. Here, all nuclei are assumed to have

the same mean-square scattering length 〈b2〉 = ∑
cαb

2
α , the

same nuclear mass M = ∑
cαMα , and the same Debye-Waller

factor W (Q) = ∑
cαWα (Q). Then, Eq. (29) is rewritten as

Scoh,1(Q,E) = 〈b2〉 h̄2Q2

2M
e−2W (Q) 〈n(E) + 1〉

E
G1(Q,E),

(33)

which delivers the generalized total VDOS for one-phonon
scattering G1(Q,E) [19]. The effective total VDOS for one-
phonon scattering follows from the average

G1(E) = 1

Qmax − Qmin

∫ Qmax

Qmin

G1(Q,E)dQ. (34)

In this approach, the effect of the approximations on G1(E) is
obscured, and the contributions to the dynamics from different
chemical species are unknown.

Similarly, the overall dynamical structure factor for inelastic
coherent scattering in Eq. (11) can be written as

Scoh(Q,E) ≡ Scoh,1(Q,E) + Scoh,mp(Q,E) (35)

= 〈b2〉 h̄2Q2

2M
e−2W (Q) 〈n(E) + 1〉

E
G(Q,E),

(36)

where G(Q,E) = G1(Q,E) + Gmp(Q,E) and Gmp(Q,E)
is the multiphonon contribution. Hence, the corresponding
effective VDOS

G(E) = G1(E) + Gmp(E)

= 1

Qmax − Qmin

∫ Qmax

Qmin

G(Q,E)dQ (37)

has contributions from both single- and multiphonon scattering
events, where

Gmp(E) = 1

Qmax − Qmin

∫ Qmax

Qmin

Gmp(Q,E)dQ. (38)

We note that, within the extreme incoherent approximation,
the dynamical structure factor can be approximated by the
expression [see Eq. (26)]

Scoh(Q,E) � 〈b2〉e−2W (Q)
∞∑

p=1

1

p!

(
h̄2Q2

2M

)p

up(E), (39)

where, by comparing Eqs. (36) and (39), it follows that

G(Q,E) � E

〈n(E) + 1〉
∞∑

p=1

1

p!

(
h̄2Q2

2M

)p−1

up(E). (40)
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Here, the one-phonon contribution to G(Q,E) is given by the
p = 1 term, i.e.,

G1(Q,E) � E

〈n(E) + 1〉u1(E), (41)

where u1(E) is given by Eq. (27). The multiphonon contri-
bution to G(Q,E) is given by the remaining terms for which
p > 1, i.e.,

Gmp(Q,E) � E

〈n(E) + 1〉
∞∑

p=2

1

p!

(
h̄2Q2

2M

)p−1

up(E), (42)

where the terms up(E) (p > 1) are given by Eq. (28).
Equation (39) can be used to estimate the multiphonon

contribution to Scoh(Q,E). Then, the one-phonon dynamical
structure factor is given by

Scoh,1(Q,E) = Scoh(Q,E) − Scoh,mp(Q,E), (43)

where

Scoh,mp(Q,E) = 〈b2〉e−2W (Q)
∞∑

p=2

1

p!

(
h̄2Q2

2M

)p

up(E).

(44)

D. Differential cross section and the Debye-Waller factor

In an inelastic neutron scattering experiment, the elastic and
inelastic contributions to the measured signal can be separated.
For the elastic contribution, it follows from Eqs. (12) and (16)
that the total differential cross section is given by

dσ

d�

∣∣∣∣
el

tot

= dσ

d�

∣∣∣∣
el

coh

+ dσ

d�

∣∣∣∣
el

inc

= F (Q) +
∑

α

cα

(
b

2
α + b

2
α,inc

)
e−2Wα (Q). (45)

If the different chemical species have the same Debye-
Waller factor, i.e., WA(Q) = WX(Q) = W (Q), it follows that
dσ/d�|el

tot = F (Q) + (σtot/4π )e−2W (Q). By comparison, in a
diffraction experiment the measured total differential cross
section dσ/d�|tot is given by Eq. (9), where σtot is not weighted
by a term involving the Q-dependent Debye-Waller factor.
Hence, W (Q) can be extracted by comparing dσ/d�|el

tot from
an inelastic neutron scattering experiment with dσ/d�|tot from
a neutron diffraction experiment.

III. EXPERIMENT

Inelastic neutron scattering experiments were performed
on isotopically enriched samples of glassy GeSe2 [21,22]
using the high-count-rate spectrometer MERLIN at the ISIS
pulsed neutron source [23] with an incident neutron energy
E0 = 59.5(1) meV, which gives an energy resolution function
for elastic scattering of full width at half maximum �E =
3.65 meV. Each sample was loaded into a thin-walled annular
container made from Al foil within a He-filled glove box, and
the container was suspended at the end of the cooling stick
of a closed-cycle refrigerator. Measurements were made at a
temperature of 5 K for each sample within its container and for
an empty container. A low temperature was used to suppress
(i) anharmonic motion and (ii) the multiphonon contribution

to the measured signal. A measurement was also made for a
cylindrical vanadium standard.

The coherent neutron scattering lengths, taking into ac-
count the isotopic enrichments, are b70Ge = 10.0(1), bNGe =
8.185(20), and b73Ge = 5.09(4) fm versus b76Se = 12.2(1) and
bNSe = 7.970(9) fm [24]. Incoherent scattering was neglected
because its cross section for the different isotopically enriched
GeSe2 glasses is < 4% of the coherent scattering cross section.

IV. DATA ANALYSIS PROCEDURE

Let IE
sc(Q,E) denote the measured intensity for the sample

in its container, and let IE
c (Q,E) denote the measured intensity

for the empty container, where the measured time-of-flight
spectra for each scattering angle 2θ have been converted to the
variables Q and E and have been placed on a common scale by
reference to the scattering from the vanadium standard [25].
The scattering from the bare sample can be approximated by
the expression

Is(Q,E) = m

Asc,sc(Q,E)

[
IE

sc(Q,E) − IE
c (Q,E)

]
, (46)

where Asc,sc(Q,E) is the attenuation coefficient for scatter-
ing by the sample and container that is attenuated (through
absorption and scattering) by the presence of the sample
and container [26]. The normalization constant m ensures
that the intensity is placed on an absolute scale such that∫

Is(Q,E)dE � dσ/d�|tot , where the differential cross sec-
tion is given by Eq. (9).

In practice, Eq. (46) will not lead to an elimination of the
signal from multiple scattering. If the multiple scattering is
assumed to be isotropic, then for the (Q,E) region of the
measured spectra where resolution-broadened elastic scatter-
ing cannot be observed, Is(Q,E) at fixed energy transfer E

can be fitted to the expression

I fit
s (Q,E) = Ims(E) + B(E)Q2 exp[−2W (Q)]. (47)

Here, Ims(E) is an estimate of the multiple-scattering contribu-
tion to Is(Q,E), and the second term originates from making
the extreme incoherent approximation for Scoh,1(Q,E) and
neglecting the Q dependence of G1(Q,E) [see Eq. (33)]. The
residual contribution from multiple scattering can be obtained
for each energy transfer E by using Ims(E) and B(E) as fitting
parameters [27].

Last, the multiphonon contribution to the scattering can be
estimated by using an iterative procedure [17,18], where G(E)
is calculated from the measured data using Eq. (37) and the
effective VDOS for single-phonon scattering is obtained from
the expression

G
(i+1)
1 (E) = G(E) − G(i)

mp(E), (48)

where i (= 1, 2, 3, . . . ) denotes a step in the iterative proce-
dure. In the first iteration, u1(E) is calculated using Eq. (27) by
assuming that Z(E) = G

(1)
1 (E) = G(E); the up(E) (p > 1)

terms are then calculated using Eq. (28) to give G(1)
mp(Q,E)

from Eq. (42), and G(1)
mp(E) follows from Eq. (38). In the sec-

ond iteration, a new estimate G
(2)
1 (E) = G(E) − G(1)

mp(E) for
Z(E) is provided by Eq. (48), which is used to obtain revised
estimates for u1(E) and the up(E) (p > 1) terms, thereby
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FIG. 1. The total differential cross section dσ/d�|tot = F (Q) +
σtot/4π for different isotopically enriched samples of vitreous GeSe2

as obtained (i) from Is(Q,E) at 5 K by integrating over the energy
range accessible to the MERLIN spectrometer (−50 meV � E �
50 meV) at a given value of Q (black curves with vertical error bars)
or (ii) from neutron diffraction experiments on the same samples at
299(1) K (solid red curves) [21,22]. For clarity of presentation, the
curves for 70Ge NSe2 and 73Ge76Se2 are shifted vertically by 1 and 2
barns, respectively.

delivering G(2)
mp(Q,E) and G(2)

mp(E). The starting point for the

third iteration is provided by G
(3)
1 (E) = G(E) − G(2)

mp(E). At

the end of each iteration, G
(i+1)
1 (E) is compared to G

(i)
1 (E),

and unless the convergence criterion G
(i+1)
1 (E) = G

(i)
1 (E) is

achieved, the iterative procedure is continued. On convergence
at step i + 1, the final multiphonon contribution to the effective
VDOS is given by G(i)

mp(E); the multiphonon contribution to
the dynamical structure factor Scoh,mp(Q,E) can be calculated
from Eq. (44), and the single-phonon dynamical structure
factor Scoh,1(Q,E) follows from Eq. (43).

The multiphonon correction was tested by using model data
sets typical of those measured for glassy GeSe2, with up(E)
calculated to the fifth phonon (p = 5) term [28]. Typically,
convergence was achieved after a small number of iterations
with i = 3.

V. RESULTS

Figure 1 shows that the CINS data sets for glassy
70Ge NSe2,

N GeNSe2, and 73Ge76Se2 integrate to give an excel-
lent account of the total differential cross sections dσ/d�|tot =
F (Q) + σtot/4π as measured using diffraction [22]. The con-
trast between these cross sections originates from differences

between the coherent neutron scattering lengths of the Ge and
Se isotopes (Sec. III).

The Debye-Waller factor was measured by using MERLIN
to perform an additional CINS experiment on glassy NGeNSe2

but with E0 = 29.9(1) meV, which gives improved resolution
of the elastic line (�E = 1.59 meV). Then, dσ/d�|tot was
compared to the total differential cross section for elas-
tic scattering dσ/d�|el

tot = F (Q) + (σtot/4π ) exp[−2W (Q)],
wherein the Debye-Waller factors for Ge and Se are assumed to
be the same, i.e., WGe(Q) = WSe(Q) = W (Q) (Sec. II D). The
corresponding mean-square atomic displacement 〈u2〉/3 =
2W (Q)/Q2 = 0.002(1)Å

2
at 11(1) K, which compares to

〈u2〉/3 = 0.00188 Å
2

at 13(2) K from previous work [29].
Figure 2 shows contour plots of the measured G1(Q,E)

functions for the different isotopically enriched samples, as
obtained by making the extreme incoherent approximation
(Sec. II C). The results show three energy bands at ∼10.9, 26.5,
and 36.7 meV with peaks at various Q values (Table I). The
peak intensity for the band at ∼36.7 meV increases with the
coherent scattering length for Ge (see Sec. III) and is largest
for glassy 70Ge NSe2. In comparison, the peak intensity for
the band at ∼10.9 meV increases with the coherent scattering
length for Se and is largest for glassy 73Ge76Se2. The feature at

Q ∼ 3.0 Å
−1

and E ∼ 10.9 meV shows structure that is most
evident for glassy 73Ge76Se2. The first-principles model (see
Sec. VI) suggests that this structure originates from two peaks

at Q values of ∼3.1 and ∼1.9 Å
−1

, with a separation in energy
of ∼2.5 meV. The dissimilarity between the contour plots for
glassy 70Ge NSe2 and 73Ge 76Se2 originates from a breakdown
of the extreme incoherent approximation: Although the masses
of the Ge and Se isotopes are similar, there is contrast between
the coherent neutron scattering lengths with b70Ge > bNSe and
b73Ge < b76Se. In contrast, bNGe � bNSe, so the total effective
VDOS G1(E) obtained from G1(Q,E) for the NGeNSe2

sample (see Fig. 3) should give a good approximation of
the total effective VDOS Gtot (E) = GGe(E) + GSe(E) (see
below). The peaks in G1(E) originate from the energy bands
in G1(Q,E) at ∼10.9, 26.5, and 36.7 meV.

Figure 4 shows contour plots of the measured generalized
partial VDOS GGe(Q,E) and GSe(Q,E), as obtained by using
the method of singular-value decomposition to solve Eq. (32).
These plots show significant differences; for example, there is
an energy band in GSe(Q,E) at ∼26.8 meV that is suppressed
in GGe(Q,E) and therefore originates predominantly from the
motion of Se atoms. Such information cannot be backed out
from any of the individual G1(Q,E) functions presented in
Fig. 2: It is necessary to use the method of CINS with isotope
substitution to measure the Gα (Q,E) functions. The asso-
ciated averages 〈Gα (Q,E)〉 = ∫ E2

E1
Gα (Q,E) dE/(E2 − E1)

are shown in Fig. 5 for energy ranges corresponding to the
first three peaks in G1(E), where the Gα (Q,E) functions
are averaged in order to reduce the statistical error. The
peaks in Gα (Q,E) manifest themselves as oscillations in
〈Gα (Q,E)〉.

Figure 6 shows the measured Gα (E) functions, as obtained
by averaging Gα (Q,E) over Q according to Eq. (31). Fig-
ure 3 shows the sum Gtot (E) = GGe(E) + GSe(E), which
is compared to the G1(E) functions obtained in the present
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FIG. 2. Contour plots of the measured G1(Q,E) functions for
vitreous (a) 70Ge NSe2, (b) NGeNSe2, and (c) 73Ge76Se2.

and previous [29,30] work by analyzing the measured CINS
spectra for glassy NGeNSe2 within the extreme incoherent
approximation. As discussed above, G1(E) should give a good

TABLE I. The measured Q-space peak positions Qn (n = 1, 2, 3,
or 4) for the energy bands centered at 〈E〉 in the G1(Q, E) functions
shown in Fig. 2 for glassy 70Ge NSe2, NGeNSe2, and 73Ge76Se2 and
the Gα (Q,E) functions shown in Fig. 4.

〈E〉 (meV) Q1 (Å
−1

) Q2 (Å
−1

) Q3 (Å
−1

) Q4 (Å
−1

)

G1(Q,E) for 70Ge N Se2

11.3(5) 3.0(2) 5.9(2) 8.4(2)
26.7(5) 2.7(2) 4.4(2) 6.1(2) 7.4(5)
37.6(5) 4.7(2) 6.9(2)

G1(Q,E) for NGe NSe2

10.6(5) 3.0(2) 5.8(2) 8.5(2)
26.0(5) 2.7(2) 4.4(2) 5.9(2) 7.7(2)
36.2(5) 4.7(2) 7.0(2)

G1(Q, E) for 73Ge 76Se2

10.8(5) 2.9(2) 5.9(2) 8.3(2)
26.7(5) 2.7(2) 4.4(2) 6.0(2) 7.4(2)
36.4(5) 4.7(2) 6.9(2)

GGe(Q,E)
11.4(5) 3.1(2) 5.7(2) 8.4(2)
37.3(5) 4.5(2) 7.2(2)

GSe(Q,E)
10.7(5) 2.9(2) 6.0(2) 8.2(2)
26.8(5) 2.7(2) 4.4(2) 6.2(2) 7.5(2)
36.1(5) 4.5(2) 6.9(2)

approximation to Gtot (E), which is confirmed by the exper-
imental results. In this respect, glassy NGeNSe2 is atypical:
The extreme incoherent approximation does not hold for most
amorphous solids, including generic network-forming glasses
such as SiO2 and GeO2.

FIG. 3. The G1(E) functions measured using CINS for vitreous
NGeNSe2 in the present work at 5 K (solid black curve with vertical
error bars), in the work by Walter et al. [29] at 13(2) K (dash-dotted
green curve), and in the work by Sinclair et al. [30] at 18(1) K (solid
red curve). The results are compared to the sum Gtot (E) = GGe(E) +
GSe(E) (dashed blue curve with vertical error bars).
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FIG. 4. Contour plots of the measured Gα (Q,E) functions for
(a) α = Ge and (b) α = Se.

VI. FIRST-PRINCIPLES MODEL

A 180-atom model for the glass was generated using
classical molecular dynamics with the interatomic potentials
from [31,32] and a quench-from-the-melt protocol. The atomic
coordinates of the model were then optimized within a first-
principles framework [33] to give a network structure in
which chemical order prevails. This network is based pre-
dominantly on tetrahedral Ge(Se1/2)4 units, in accordance
with vibrational spectroscopy [29,30,34–36], with 33% of the
Ge atoms in edge-sharing conformations, in accordance with
diffraction [21,22]. The vibrational properties of the model
were calculated within the harmonic approximation through
a density-functional-based finite-difference scheme [9,10,33],
and the Zα (E) functions were extracted (Fig. 6). The functions
Gα (Q,E) and Gα (E) were also calculated for a temperature
of 4 K by adopting the same approximations as used in the in-
terpretation of the present CINS results for the same Q range
accessible to the MERLIN spectrometer and by adopting the
E-dependent energy resolution function of this instrument.
Hence, Eq. (32) provided the starting point for extracting

FIG. 5. The 〈Gα (Q,E)〉 functions for vitreous GeSe2, where the
average extends over a range of energies corresponding to (a) and
(b) the first peak, (c) and (d) the second peak, and (e) and (f) the third
peak in G1(E) (Fig. 3). The measured functions (points with vertical
error bars) are compared to those obtained from a first-principles
model (solid red curves). Peaks in the modeled functions are shifted
to smaller energies compared to experiment, so the integration ranges
are 8–18, 23–28, and 32–40 meV for experiment versus 6–16, 20–25,
and 28–36 meV for the model.

the Sαα (Q,E) functions from the simulated Scoh,1(Q,E)
functions for the different isotopically enriched samples. The
modeled 〈Gα (Q,E)〉 andGα (E) functions are shown in Figs. 5
and 6, respectively.

Figure 6 shows that the profiles of the modeled Gα (E)
functions are similar to those found from experiment, although
there is an energy downshift that is also reported in previous
first-principles molecular dynamics investigations of GeSe2

glass [37–40]. As per the CINS results, the model shows
that the A1 and Ac

1 modes for corner- and edge-sharing
tetrahedral Ge(Se1/2)4 units originate predominantly from the
motion of Se atoms [33]. These modes manifest themselves
as distinctive peaks at �24.6 and 26.7 meV, respectively, in
Raman spectroscopy experiments [34–36].

Figure 5 shows that the modeled 〈Gα (Q,E)〉 functions
display a Q-space pseudoperiodicity that matches experiment,
provided that an allowance is made for the energy downshift in
the theoretical results. According to the model, these Q-space
oscillations originate primarily from Ge-Se correlations. The
〈GSe(Q,E)〉 function of Fig. 5(d) originates from the motion
of Se atoms in the second peak region of G1(E), where there is
little contribution to the VDOS from the motion of Ge atoms.
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FIG. 6. The Gα (E) functions for (a) Ge and (b) Se for vitreous
GeSe2 at 5 K as measured using CINS (solid black curves with vertical
error bars) or calculated using a first-principles model (dashed red
curves). From experiment, there are peaks in GGe(E) at 11.7(2),
24.7(1), and 38.0(1) meV and a shoulder at 35(2) meV, and there
are peaks in GSe(E) at 9.9(1) and 26.8(1) meV followed by a broad
feature with peaks at 33.8(1), 35.5(1), and 38.4(1) meV. The inelastic
contribution to the measured signal could not be separated from the
resolution-broadened elastic scattering at E < 7.5 meV. From the
model, Gα (E) � Zα (E), where the Zα (E) functions are given in (a)
and (b) by the dash-dotted blue curves.

The observed pseudoperiodicity of ∼1.55 Å
−1

is comparable

to the periodicity of 2π/r̄SeSe = 1.6 Å
−1

calculated from the
Se-Se distance r̄SeSe = 3.89 Å for tetrahedral Ge(Se1/2)4

units [21,22]. In comparison, Fig. 6 shows that both Ge and
Se atoms contribute to the vibrational modes in the first and
third peak regions of G1(E). The associated 〈Gα (Q,E)〉
functions, shown in Figs. 5(a), 5(b), 5(e) and 5(f), display

a pseudoperiodicity of ∼2.7 Å
−1

, which is comparable to

the periodicity of 2π/r̄GeSe = 2.67 Å
−1

calculated from the
Ge-Se bond distance r̄GeSe = 2.36 Å for tetrahedral Ge(Se1/2)4

units [21,22].
Overall, the first-principles model gives a good account

of the vibrational properties of glassy GeSe2 [33] and is
sufficiently realistic to show that Gα (E) � Zα (E), where
discrepancies are small and comparable to the statistical error
on the measured Gα (E) functions (Fig. 6). This finding
demonstrates the validity of analyzing the CINS results by
using a scheme in which the incoherent approximation that

leads to Eq. (29) is combined with the Q-averaging procedure
of Eq. (31). The latter is important because the first-principles
model shows that the Q-dependent features in the measured
Gα (Q,E) functions have a major contribution from Ge-Se
correlations, along with a smaller contribution from correla-
tions between distinct atoms of the same chemical species.
For example, the calculated SSeSe(Q,E) function of Eq. (13)
leads to Q-dependent oscillations in GSe(Q,E) that vanish,
however, if SSeSe(Q,E) is separated into its contributions from
self- and distinct Se atom terms, and the contribution from
the distinct term is neglected. In both cases, the averaging
procedure of Eq. (31) leads to GSe(E) functions that are in
excellent agreement with ZSe(E). When Ge-Se correlations
are mixed in, as per the solution for SSeSe(Q,E) obtained from
the singular-value decomposition of Eq. (32), the resultant
Q-dependent features in GSe(Q,E) are significant [Fig. 4(b)],
but the averaging procedure of Eq. (31) again leads to a
GSe(E) function that is in excellent agreement with ZSe(E)
[Fig. 6(b)]. In short, distinct atom correlations do not provide
a significant contribution to the one-phonon density of states,
and the experimental procedure has the right ingredients to
deliver accurate partial VDOS.

The downshift in energy of the simulated Gα (E) functions
could originate from the procedure used to prepare the model
structure and/or the density functional adopted in the first-
principles framework for calculating its vibrational properties.
For instance, a calculation of the vibrational properties of
the diatomic molecule 74Ge80Se, using the same setup as in
the present work, delivers a stretching-mode frequency of
381 cm−1. This value is ∼6% smaller than the experimental
value of the vibrational constant ωe = 402.7 cm−1 [41], sug-
gesting a contribution to the downshift that lies with the density
functional. In comparison, several models of various sizes have
been generated for amorphous GeSe2 through the use of either
a classical or first-principles approach, and their vibrational
properties have been calculated with different density function-
als [33,39]. In all cases, a downshift in vibrational frequencies
is observed, which suggests a contribution to the downshift
that also lies in the procedure used to generate the model
structure. Here, the use of a quench-from-the-melt protocol
delivers an effective quench rate that is orders of magnitude
faster than in experiment, leading to amorphous models that
are inherently less relaxed. There is also the possibility of
a residual pressure effect [42]. Nevertheless, a full appraisal
of the origin of the energy downshift is beyond the scope of
the present computational work, which is aimed at testing the
validity of the experimental approach.

VII. CONCLUSIONS

The double-differential cross sections measured in the
CINS experiment on amorphous GeSe2 have a substantial
contribution from coherent distinct scattering that leads to
a rich landscape of features in the measured Gα (Q,E)
functions (Fig. 4). The results show, however, that the in-
coherent approximation of Eq. (29), when coupled with
the Q-averaging procedure of Eq. (31), delivers an accu-
rate description of the true partial VDOS. Here, the first-
principles model serves the purpose of validating the ex-
perimental approach over a broad range of energy transfers.
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The experimental method delivers results that transcend those
obtained from traditional CINS investigations in which the
measured spectra are analyzed within the extreme incoherent
approximation.

The CINS technique leads to the desired target of set-
ting experimental benchmarks for both the partial and total
VDOSs based solely on measured properties. In general, this
establishment of a fully experimental procedure is crucial for
exploring the nature of amorphous solids because the VDOS
depends on the interatomic interactions, and can therefore be
used to discriminate between conflicting theoretical models
for these materials. The method is applicable to amorphous
solids containing elements with isotopes for which the contrast
between the coherent neutron scattering lengths is sufficiently

large to enable the method of neutron diffraction with isotope
substitution to be employed [13,14].
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