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Lattice relaxations in disordered Fe-based materials in the paramagnetic state from first principles
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The first-principles calculation of many material properties, in particular related to defects and disorder, starts
with the relaxation of the atomic positions of the system under investigation. This procedure is routine for
nonmagnetic and magnetically ordered materials. However, when it comes to magnetically disordered systems,
in particular the paramagnetic phase of magnetic materials, it is not clear how the relaxation procedure should be
performed or which geometry should be used. Here we propose a method for the structural relaxation of magnetic
materials in the paramagnetic regime, in an adiabatic fast-magnetism approximation within the disordered local
moment (DLM) picture in the framework of density functional theory. The method is straightforward to implement
using any ab initio code that allows for structural relaxations. We illustrate the importance of considering the
disordered magnetic state during lattice relaxations by calculating formation energies and geometries for an
Fe vacancy and C insterstitial atom in body-centered cubic (bcc) Fe as well as bcc Fe1−xCrx random alloys
in the paramagnetic state. In the vacancy case, the nearest neighbors to the vacancy relax toward the vacancy
of 0.14 Å (−5% of the ideal bcc nearest-neighbor distance), which is twice as large as the relaxation in the
ferromagnetic case. The vacancy formation energy calculated in the DLM state on these positions is 1.60 eV,
which corresponds to a reduction of about 0.1 eV compared to the formation energy calculated using DLM but
on ferromagnetic-relaxed positions. The carbon interstitial formation energy is found to be 0.41 eV when the
DLM relaxed positions are used, as compared to 0.59 eV when the FM-relaxed positions are employed. For bcc
Fe0.5Cr0.5 alloys, the mixing enthalpy is reduced by 5 meV/atom, or about 10%, when the DLM state relaxation
is considered, as compared to positions relaxed in the ferromagnetic state.
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I. INTRODUCTION

The study of defects in crystals from first principles has
for a long time assisted the community with qualitative under-
standing and explanations of findings related to phase stability
[1], diffusion [2], electronic [3], and optical [4] properties.
Nowadays, advanced calculations are approaching quantitative
predictive accuracy [5,6]. Many investigations of structural
disorder in the form of vacancies, interstitial atoms, and
substitutional alloys are present in the literature: consistently,
local lattice relaxations around the defects or throughout the
crystal for alloys, are known to affect the energetics of the
system, and sometimes explicitly its properties. Algorithms
to perform lattice relaxations are commonly implemented in
many softwares for first principles calculations, and the main
working principle consists in moving the atoms according to
the forces to which they are subject, to obtain the equilibrium
structure of the system. These techniques work very well for
nonmagnetic (NM), ferromagnetic (FM), or antiferromagnetic
(AFM) materials; however, when it comes to magnetic mate-
rials in the high temperature paramagnetic phase (PM), there
is a methodological gap.

This gap is due to the difficulties in the treatment of the
PM phase from first principles. In the past, the PM phase has
sometimes been modelled as a NM phase, but this approach
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leads to wrong results if applied straightforwardly [7,8] in the
framework of density functional theory (DFT). The reason is
that, above the critical temperature, while the system does
not show any macroscopic magnetic field nor long range
magnetic order, the local spin polarization of the electron
density around the atoms is typically retained and do influence
the behavior of the material. To model appropriately this state
of matter, advanced methods need to be applied, and one of the
possibilities is the disordered local moment (DLM) approach
[9–11].

The applicability of the DLM model is motivated by the fact
that the real magnetization density in many magnetic materials
can be described in terms of quite robust magnetic moments
localized close to the atoms. In this case, its PM phase can
be viewed as a disordered distribution of such local moments
without long-range order. In DLM simulations, the direction
of the moments is assigned randomly, i.e., the correlation
function between the moments is ≈ 0. Since the model neglects
possible short-range-order, the PM state described corresponds
in principle to the high-temperature limit Jij

kBT
→ 0, where Jij

is the strongest magnetic interaction in the system. The DLM
model was originally implemented in a coherent potential
approximation (CPA) framework [11] but has since been used
also in supercell approaches [8,12]. The DLM picture is easily
implemented in DFT calculations; it can be combined with
techniques that include strong electron correlation effects (such
as the LDA+U scheme) [12] and can be employed both with
collinear and noncollinear magnetic moments.
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A further complication is that the PM state is also disordered
in time, meaning that the direction of the moments change
quickly compared to the jump rates of atoms and defects,
and often even compared to the vibrational frequencies of the
atoms. Thus, one must be careful when employing a static
DLM model for the PM state, in particular when the atoms are
allowed to move away from high-symmetry points like in the
case of lattice relaxations or during molecular dynamics (MD).

For the latter case, a particular method, DLM-MD, has
been developed [13–16] were the magnetic state is rapidly
changed between different disordered configurations during
the MD. Recently, an even more accurate model combining
atomistic spin dynamics with ab initio molecular dynamics
(ASD-AIMD) [17] has been suggested to include lattice
vibrations into the description of the PM state. However, very
little attention has been given to static lattice relaxations around
defects or in alloys [14].

Because of the lack of a method that performs lattice
relaxations for the paramagnetic state, the atomic positions
obtained from a relaxation performed with FM moments
are commonly employed [18–21]. If we neglect spin-orbit
coupling, the FM state do have the same lattice symmetry
as the PM state, but it is known that the interatomic bond
strengths can differ substantially [22] putting doubt on the
reliability of this approach. Nevertheless, formation energies
of vacancy [18–20] and many substitutional defects [23,24]
have been calculated for Fe in the paramagnetic phase, but
relaxed in the FM state. It has also been suggested that a
complete relaxation in each frozen DLM magnetic configu-
ration can be performed and that the artificial extra relaxation
can cancel out, at least when studying mixing enthalpies or
defect formation energetics [14,25]. Recently, the vacancy
formation energy in PM body-centered cubic (bcc) Fe has been
calculated also by means of DFT plus dynamical mean-field
theory (LDA+DMFT) relaxing the first two shells of atoms
neighboring to the vacancy by a manual energy-minimization
procedure [21]. The results do show a nonnegligible relaxation
energy compared to the FM relaxed geometry. Nonetheless, a
robust demonstration of force calculations in DMFT would
be needed before more complex relaxation problems could be
addressed with this computationally demanding approach.

For this reason, in the present article we propose a method,
based on the DLM approach within DFT, which allows to
obtain atomic structures relaxed in the PM phase. The method
can be performed with any first principles software which
allows for the reliable calculation of interatomic forces. The
key idea of the method is that the atoms are partially allowed
to relax according to different DLM states in sequence: as
a result, fluctuations in forces originating in the particular
magnetic states are averaged on-the-fly during the relaxation.
The symmetry of the underlying lattice is imposed when
applicable (e.g., not in the case of a substitutional alloy),
disregarding the disorder of the magnetic state. The procedure
is iterated until a steady displacement of the atoms from the
initial positions is achieved. The equilibrium positions are
finally obtained averaging over several atomic configurations
in the steady displacement regime.

We initially test the method on PM bcc Fe with a single
Fe vacancy, and we show the importance of lattice relaxations
according to the relevant magnetic state, both with and without

imposition of symmetry; then, we we perform the lattice
relaxation of defect free PM bcc Fe without imposition of
symmetry, to show the level of accuracy achievable. We finally
apply the method to the case of C interstitial in octahedral
position in PM bcc Fe, and PM bcc Fe1−xCrx alloys (x = 0.25,
0.5, 0.75). All of these cases are of high relevance for the
development of steels and motivate an attempt to increase the
quantitative accuracy of simulating their energetics.

The paper is organized as follows. In Sec. II A, the computa-
tional details are described. Section II B deals with the descrip-
tion of the PM state in terms of the DLM model, together with
a comparison between results from collinear and noncollinear
DLM calculations. In Sec. II C, the present method is outlined
following the illustrative case of the relaxation of bcc Fe with
a vacancy, and the uncertainty on the relaxed positions for
symmetryless relaxation is discussed with the case of defect
free bcc Fe. The results on the vacancy and the C interstitial in
octahedral positions in PM bcc Fe are presented in Secs. III A
and III B, respectively. The intermetallic alloy bcc Fe1−xCrx is
discussed in Sec. III C. In Sec. IV, we draw the conclusions of
the present work.

II. THEORETICAL METHODS

A. Computational details

The first principles calculations are carried out in the
framework of DFT using projector augmented wave (PAW)
potentials [26,27] as implemented in the Vienna ab initio

simulation package (VASP) [28] and a plane wave energy
cutoff of 400 eV. The accuracy of the self-consistent calcu-
lations is set to 10−4 eV/supercell. The PBE exchange and
correlation functional [29] is employed for all calculations. We
have chosen to perform all the calculations with the theoretical
0 K lattice parameter since we want to prove the importance of
lattice relaxations on the energetics of the system, rather than
aiming at accurate results mimicking a particular temperature.

Calculations of bcc Fe with and without defects are per-
formed using supercells composed of 3 × 3 × 3 bcc con-
ventional cells (54 Fe lattice sites) with lattice parameter of
2.84 Å, while sampling the first Brillouin zone with a 3 × 3 × 3
k-points mesh according to the Monkhorst-Pack scheme [30].
For bcc Fe1−xCrx alloys, the considered supercell consists of
4×4×4 bcc primitive cells, for a total amount of 64 atomic sites
per supercell, with atoms distributed in a special quasirandom
structure (SQS)[31]. In this case, the relaxation of the structures
in the DLM state was performed sampling the Brillouin zone
with a Gamma-centered 2 × 2 × 2 k-points mesh, whereas
the final DLM calculations on the obtained geometry were
performed on a 3 × 3 × 3 Monkhorst-Pack k-points mesh, as
in the other cases. The theoretical lattice parameter for each
composition of the alloy is derived from 0 K FM calculations.

To simulate the PM state, we employ the DLM method
using a supercell approach. The DLM calculations are carried
out using noncollinear magnetic moments, constrained in the
selected direction using the method developed by Ma and
Dudarev [32]. For bcc Fe, the constraining parameter λ was set
to 10, whereas in the case of bcc Fe1−xCrx alloys we started
with λ = 1 and increased the parameter to λ = 10 to facilitate
convergence of the electronic calculations.
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We show the applicability of the present method also with
collinear calculations in the case of defect free bcc Fe. The sym-
metry analysis is carried out with the Phonopy [33] package.

The calculations are performed according to the following
scheme: first, the DLM-relaxed positions are calculated as de-
scribed in Sec. II C; then, on these relaxed positions, magnetic
sampling method (MSM) calculations are performed (see Sec.
II B) and from here energies and forces are obtained as averages
over several different configurations of the magnetic moments.
In this work, we employ 200 MSM configurations for the final
calculations on fixed geometry of defects in bcc Fe, whereas
we use 150 configurations in the case of bcc Fe1−xCrx alloys.

The vacancy formation energy E
f

1v is calculated according
to

E
f

1v = E1v − (N − 1)E0(Fe), (1)

where E1v is the energy of a supercell with N lattice sites, of
which N − 1 are occupied by Fe atoms and one is vacant, and
E0(Fe) is the energy of one Fe atom in defect free bcc Fe in the
relevant magnetic state (FM or DLM). The C interstitial for-
mation energy E

f

octC is calculated with the following equation:

E
f

octC = EoctC − NE0(Fe) − E0(C), (2)

where EoctC is the energy of a supercell with N Fe atoms and
one C atom in octahedral position, E0(Fe) is the energy of one
Fe atom as described above, and E0(C) is the energy of one
C atom in diamond. We chose to use diamond as reference
state for C to avoid the technical complexities in calculations
of graphite (which is the ground state of C) due to van der
Waals interactions [34,35]. The mixing enthalpy �Emix of the
random alloy at concentration x is calculated as

�Emix(Fe1−xCrx )=E(Fe1−xCrx )−(1−x)E(Fe)−xE(Cr),

(3)

where E(Fe1−xCrx ) is the energy of the alloy at concentration
x, and E(Fe) and E(Cr) are the energies of the reference
states, which are bcc Fe in the relevant magnetic state, and
nonmagnetic bcc Cr.

In this work we do not calculate free energies. Since the
DLM state is the state with maximally disordered magnetic mo-
ments, its magnetic entropy will also be maximum. However,
when comparing calculations on different atomic positions or
calculations with and without defects with the same number
of atoms in the same magnetic state, this magnetic entropy,
within this DLM approximation, will not contribute to the free
energy difference because it cancels out.

B. Description of the paramagnetic state with collinear and
noncollinear DLM models

To correctly model the PM phase of the system under
investigation, we employ a magnetic sampling method (MSM)
[12], which consists in performing static calculations on fixed
geometries using a large set of DLM configurations of the
magnetic moments obtained with random number generation;
the property of interest is then obtained as an arithmetic average
over all the employed configurations. The error on the mean
value of the property P (σP̄ ) is calculated as the standard
error, i.e., ±2σP̄ = 2σP /

√
N , with confidence interval of 95%,

FIG. 1. (a) Individual and accumulated average of energies calcu-
lated on the ideal lattice positions of defect free bcc Fe with collinear
(red) and noncollinear (blue) magnetic moments. Two hundred
random MSM configurations are employed here. The zero is taken
as the calculated energy of FM bcc Fe. The dashed lines following
the accumulated averages denote the standard error, whereas the
dots are the calculated energies for a given magnetic iteration.
(b) Histogram of the energies, with areas of collinear and noncollinear
samples normalized to one. Average energies are marked with dashed
horizontal lines.

where σP is the standard deviation of the results associated to
the N DLM configurations.

We carry out MSM calculations of defect free bcc Fe on
the ideal lattice positions as a preliminary test to assess the
statistical accuracy of the results. N = 200 configurations are
employed in this case, and both collinear and noncollinear
magnetic moments are tested. The calculated energies and
forces for this system are represented in Figs. 1 and 2,
respectively. In the DLM framework, the energy Ei and forces
Fi of the system in a particular MSM configuration i can be
decomposed into two components, the first due to the average
DLM phase, and the second due to the specific configuration
employed, i.e.,

Ei = EDLM + Ẽi,

Fi = FDLM + fi , (4)

FIG. 2. Histogram of the x cartesian component of the forces cal-
culated on the ideal positions of defect free bcc Fe with collinear (red)
and noncollinear (blue) magnetic moments. Areas are normalized to
one.
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where, in the limit of infinite MSM configurations, 〈Ẽi〉 = 0
and 〈fi〉 = 0̄, so that, by averaging the energy and forces
of the system calculated with many different MSM states,
the corresponding values of the DLM phase are retrieved
as 〈Ei〉 → EDLM and 〈Fi〉 → FDLM. The same thing is true
for pair-correlation functions, which explains why the MSM
method yields the same results, within statistical error bars, as
an SQS description of DLM [12].

The average energy of DLM defect free bcc Fe calculated
with noncollinear magnetic moments, Fig. 1, taking the energy
of FM bcc Fe as reference, is 200 ± 1 meV/atom, whereas
for collinear calculations the result is 197 ± 2 meV/atom,
showing a small but distinguishable difference between the two
different representations. The energy converges to its average
value within 1 meV in 40 configurations for the noncollinear
case, as well as its confidence interval (dashed line around
the cumulative average). For collinear magnetic moments, the
energies of the individual DLM configurations are more spread
and convergence is slower. The forces on a specific atom in a
particular configuration can be as strong as 0.5 eV/Å, as shown
in the histogram in Fig. 2 (here only one cartesian component of
the force is considered); however, the distribution of the forces
is centered at 0 as expected from conservation of center of
mass (with standard error of 0.002 eV/Å). It is clear from here
that the distribution of the forces in the collinear case is larger
than in the noncollinear one. This means that in a relaxation
based on collinear forces, fluctuations would be larger than in
the noncollinear case and a larger degree of uncertainty would
be introduced in the process.

From these considerations, one can see that on average
the forces on an atom are null when symmetry considerations
can be applied; nevertheless, if one consider the atoms in the
supercell as not equivalent, and consequently the averages are
performed separately on each atom over the 200 different MSM
configurations, the resulting mean forces can be as high as
0.02 eV/Å per component. This is a statistical problem, so
that to obtain 0 forces one needs either to use a very large
amount of configurations or to impose the symmetry of the
underlying lattice to the system to recover the results shown in
Fig. 2. Such symmetry imposition is easily done for a perfect
lattice by averaging over all the atoms in the supercell, but
requires a more careful analysis for a system with defects, and
is not applicable to the case of a substitutional random alloy
where every atom is formally unique.

C. Relaxation method

In Fig. 3(a) an example of the relaxation procedure in the
case of bcc Fe with one Fe vacancy is shown, both with and
without imposition of symmetry (solid and semi-transparent
lines and points, respectively); here, the xy projection of the
trajectory of an atom nearest neighbor to the vacancy (which
is in a 〈111〉 direction in the bcc structure) is displayed for
illustrative clarity.

The relaxation procedure starts from an initial geometry
of the system, being it the ideal crystal structure or some
structure pre-relaxed by other means (e.g., FM-relaxed); in
this example, we start from the ideal lattice positions (black
empty circle at the origin, top figure). A noncollinear MSM
state is chosen randomly and a static calculation is performed

FIG. 3. (a) x-y projection of the trajectory of one atom being
nearest neighbor to the vacancy in the DLM-relaxation of bcc Fe
with one vacancy, starting from its ideal lattice position in the origin.
Solid and semitransparent lines and points correspond to relaxation
with and without imposition of symmetry, respectively. The red region
consists of the positions averaged to get the equilibrium position. The
final position using FM, DLM with imposition of symmetry, and DLM
without imposition of symmetry are marked with green, blue, and
light blue diamonds, respectively. (b) Displacement from ideal lattice
position as a function of the relaxation step. The black and red lines
correspond to the relaxation with imposition of symmetry in part (a),
and the blue dashed line indicates the displacement of the equilibrium
DLM-relaxed position. For comparison, the green lines illustrates the
same relaxation procedure but for the FM magnetic state.

on the initial geometry; from here, the forces are calculated
and symmetrized, and the atoms are moved [first black empty
circle on the right of the origin in Fig. 3(a)], according to

xj+1 = xj + αFj , (5)

where j indicates the current step of the relaxation, x and F
are positions and forces, respectively, and α is a rescaling
factor that will be further discussed later in this section.
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The symmetrization of the forces is performed by analyzing
the symmetry of the initial atomic geometry (in this exam-
ple, the ideal bcc crystal structure with one vacancy), and
storing the symmetry operations that connect equivalent atoms:
in this way, the lattice sites in the supercell are mapped onto
a smaller set of sites that are symmetrically independent from
each other. When the static calculation is performed, the forces
acting on each atom are projected onto the atom at the corre-
sponding independent lattice site by application of the relevant
symmetry operations and averaged to obtain one force per site
that respect the symmetry of the supercell. The symmetrized
forces are then projected back to the equivalent atoms with
the inverse symmetry operations. After the update of the
positions, another random MSM configuration of the magnetic
moments is taken, and the same procedure is repeated: the
forces are calculated and symmetrized, and the atoms are
moved according to Eq. (5). Iterating this scheme, the trajectory
indicated by the black line and circles in Fig. 3(a) is obtained.
In Fig. 3(b), the displacement of this atom from the ideal
position during the relaxation is shown (all the components of
the displacements are included here). After a first transient in
which the displacement increases almost monotonously [black
solid line in Fig. 3(b)], the relaxation comes to a stage where the
displacement is fluctuating around some mean value (red solid
line). This stage corresponds to the red area in Fig. 3(a), which
consists of the positions that are averaged to obtain the PM
equilibrium positions (blue solid diamond). As a comparison,
the FM-relaxed position is also shown in Fig. 3(a) (green
solid diamond), which is at a distance from the ideal structure
position denoted by the green dashed line in Fig. 3(b).

The procedure is terminated when the accumulated average
of positions [red dashed line in Fig. 3(b)] in the roughly con-
stant displacement regime, where the atoms span stochastically
the region around equilibrium thanks to the randomness of
the magnetic moments, converges. Moreover, the equilibrium
position obtained without imposition of symmetry (light blue
diamond) roughly respects the symmetry of the system. This is
due to the fact that the MSM configuration at each step of the
relaxation is chosen randomly, acting on average according to
the symmetry properties of the underlying crystal structure.

An important detail to take into account regards the size of
the steps with which the atomic positions are updated during
the relaxation, i.e. the magnitude of the parameter α in Eq. (5).
In the first stage of the process, the steps can be relatively
large since the system needs to relax considerably; later, the
size should be progressively reduced to sample adequately the
region of interest and avoid spurious local minima that are due
to a particular MSM configuration where the atoms could get
trapped. Nonetheless, we found that for Fe vacancy in PM bcc
Fe, larger steps in the last part of the relaxations give just larger
fluctuations around the same average value. The parameter α

depends on the software employed for the calculations: as an
example, in VASP α is proportional to the POTIM-tag. In the
case just shown, the value of POTIM started at 0.5 and then
was decreased to 0.1.

To assess the accuracy of the present method without
imposition of symmetry, we compare the position of an atom
in defect free bcc Fe obtained with the DLM relaxation, to
the ideal lattice site. In Fig. 4, the trajectory of one atom
during the relaxation is shown. In this case the FM-relaxed,

FIG. 4. x-y projection of the trajectory of one atom in the DLM-
relaxation of defect free bcc Fe without imposition of symmetry. The
red empty circles are the positions spanned by the atom during the
relaxation; the black solid circle indicates the ideal lattice position,
whereas the blue diamond is the resulting equilibrium DLM-relaxed
position. Note that the scale of the axes is smaller than in Fig. 3(a).

DLM-relaxed with imposition of symmetry and the ideal lattice
positions are coincident for symmetry reasons. As can be
seen from Fig. 4, the trajectory during the relaxation evolves
around the ideal lattice position on a scale much smaller than
in the vacancy case. When calculating energies on these two
geometries with the MSM method, the difference in energy is
<1 meV/supercell, below the accuracy of DFT, probably due
to the small difference between the positions and the flat energy
landscape resulting from the DLM state. Regarding differences
in DLM forces (related to corresponding atoms in the two
geometries), the largest difference results to be ∼0.015 eV/Å,
which is in the range of the statistical noise due to finite size
of the sampling.

III. RESULTS

A. Fe vacancy in PM bcc Fe

The displacement of each independent atom from its ideal
lattice position obtained from FM- and DLM-relaxation is
shown in Fig. 5(a) as a function of the coordination shell.
The first nearest neighbors relax towards the vacancy of
0.14 Å, which means that the distance from the vacancy
reduces from 0.866 a0 for the unrelaxed supercell to 0.815
a0, where a0 is the lattice parameter, which compares well
with previous DMFT calculations [21] (0.817 a0). It is obvious
that for the nearest neighbors to the vacancy, the change of
magnetic state affects importantly the atomic positions, since
the interatomic forces become weaker consequently allowing
larger relaxations; however, it is less obvious that for atoms
in farther shells relaxations may be considerable as well. In
this case, the atoms in the fifth shell are subject to a relaxation
towards the vacancy of 0.017 a0. This effect is a consequence
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FIG. 5. (a) Displacements from ideal lattice positions in units of
lattice parameter a0 and (b) DLM forces acting on atoms as a function
of their distance to the vacancy for FM- and DLM-relaxed positions in
bcc Fe with one vacancy. Negative values mean that the displacement
(force) is directed towards the vacancy, positive is directed outwards.
In (b), the red solid lines indicate a typical threshold for convergence
of forces of 0.01 eV/Å.

of the relaxation of the nearest neighbors to the vacancy, since
the atoms in the fifth shell are nearest neighbors to the atoms
in the first shell along the line from the defect.

The DLM forces on the atoms [Fig. 5(b)] in the DLM-
relaxed positions are considerably smaller than in the FM-
relaxed positions, below 0.01 eV/Å except for the nearest
neighbors to the vacancy (0.014 eV/Å). These small residual
forces on the DLM-relaxed atoms have little effect on the
energetics of the system, however they may lead to numerical
problems in phonon calculations. The inability to reduce the
forces arbitrarily close to zero is mainly due to statistical prob-
lems, both during the relaxation and in the final calculations
on the obtained relaxed positions. This is not a problem in the
defect free case because the number of symmetry operations
in the system are enough to ensure convergence (48 symmetry
operations per atom in a 54-atoms supercell), whereas in the
presence of a defect this number decreases consistently (48
symmetry operations for the atom with highest symmetry, 4-8

TABLE I. Vacancy formation energy for FM bcc Fe and PM bcc
Fe. PM bcc Fe is modeled in the present work with the DLM approach,
and the formation energy is calculated on FM- and DLM-relaxed
positions. In the DFT+DMFT investigation, the relaxed value was
calculated minimizing the forces acting on the first two coordination
shells. All values are in eV.

FM PM

FM-relaxed FM-relaxed DLM-relaxed

This work 2.20 1.70± 0.06 1.61 ± 0.06
DFT+DMFT a 2.45 1.66 ± 0.15 1.56 ± 0.13
DLM b 2.15 1.54 ± 0.16
SW c 2.13 1.98
Experimental d 1.8 1.6

aDelange et al. [21].
bSandberg et al. [20].
cDing et al. [19].
dAverage of several experimental results (FM from Refs. [36–38], PM
from Refs. [36–40])

for the other atoms in a 53-atoms supercell) leading to lower
statistical accuracy.

The relaxations of the atomic positions in the DLM state
have a clear effect on the vacancy formation energy. In Table I,
the present results are compared with previous theoretical
calculations obtained with different methods and experimental
measurements, for FM state and PM state with and without re-
laxation in the relevant magnetic state. Here, the experimental
value in the PM phase is the average of several experimental
positron annihilation spectroscopy measurements [36–40]. It
should be noted that an exact agreement between theoretical
formation energies and experimental measurements at elevated
temperatures is not to be expected due to, e.g., consequences of
anharmonic vibrations [5]. We include them in the comparison
to show the experimental trend resulting from change of
magnetic state.

The DFT+DMFT [21] and spin-wave (SW) [18,19] results
are calculated considering the experimental lattice parameter
at the Curie temperature, whereas the present results and the
DLM results in Ref. [20] are calculated with the theoretical
0 K lattice parameter. In general, one can expect that the
employment of the expanded lattice constant leads to a lower
formation energy. The results from the SW method give
considerably higher values of the formation energy compared
to the other theoretical results, even though the expanded
lattice parameter was employed. Although the SW method
has a firm theoretical basis, its overestimation could be due
to the fact that only ordered configurations of the magnetic
moments are employed there. The DLM results from Sandberg
et al. [20] give a low vacancy formation energy, despite the
fact that relaxation is done only with FM moments. This
underestimation is probably due to the fact that in Ref. [20]
many MSM configurations had been neglected because of spin-
flips during the electronic calculations, so that a statistically
biased subset of configurations were taken into account. In
the present investigation, we have carried out calculations in
a constrained framework also to avoid this technical problem,
and we do obtain more consistent results. Our result compares
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well with the DMFT result from Ref. [21], even though the
models to describe the PM phase are so different. Part of
the small difference between the formation energy calculated
with the two different methods is probably due to the different
lattice parameters employed. If we performed a calculation
with the present method at the same lattice parameter as in
Ref. [21], we would expect a lower formation energy due to
two reasons. The first is that in Ref. [21], only the first two
coordination shells were allowed to relax, wheras we allow for
full relaxation leading to larger relaxation energies and more
consistent results. The second is that our DLM magnetic state
corresponds to a maximally disordered magnetic state, whereas
the DMFT one correspond to a mean field approximation
of finite temperature: for this reason, we can expect that
our formation energy would be even smaller. To obtain fully
comparable results with experiments, the same workflow as
described in [41] should be employed, i.e., we should perform
the DLM relaxation at the experimental lattice parameter,
calculate on the resulting positions the vacancy formation
energy both in the FM and the DLM state, and finally perform
a weighted average of the two values according to the degree of
short-range order at the given temperature, but this is beyond
the scope of the present paper. Additionally, also the effect
of lattice vibrations should be taken into account to be fully
consistent with the experimental situtation.

B. C interstitial in octahedral position in PM bcc Fe

The carbon atom in interstitial position induces a change of
symmetry from cubic to tetragonal, so that the sites indepen-
dent from each other by symmetry are different from the ones
in the vacancy case. In Figs. 6(a) and 6(b) the displacement
from ideal lattice positions and the residual DLM forces
of the FM- and DLM-relaxed geometries are respectively
shown as a function of the coordination shell, where positive
(negative) displacement means that the atom goes away from
(towards) the interstitial, and similarly for the DLM forces.
The displacements from ideal lattice positions are on average
larger than in the case of the vacancy, for both FM- and
DLM-relaxed geometries. Also, here in the DLM-relaxation
we find consistent differences with respect to the FM-relaxed
positions, both for shells close to the defect and farther away.
Nonintuitive considerable displacement for shells far from the
interstitial atom (4th and 5th shells) due to the rearrangement
of the atoms in shells closer to the C atom are observed also in
this case. The residual DLM forces calculated on DLM-relaxed
positions are below 0.01 eV/Å for all the shells except for
the first two. The first shell displays a residual force which
goes against the displacement obtained from DLM-relaxation,
whereas for the second shell the displacement seems to be
underestimated. As discussed in the previous section, these
residual DLM forces are most probably due to finite statistical
sampling in both the relaxation procedure and in the final
MSM calculations. Here, the residual forces are larger than
in the case of the vacancy mainly because forces are larger
in the presence of an interstitial atom, therefore their value is
more difficult to converge. Nonetheless, residual forces of this
magnitude should not affect the energetics of the system, so
that the presented results are converged within the statistical
error bars given.

FIG. 6. (a) Displacements from ideal lattice positions in units
of lattice parameter a0 and (b) DLM forces as a function of the
coordination shell to the C interstitial for FM- and DLM-relaxed
positions in bcc Fe with one C interstitial in octahedral position.
Negative values mean that the displacement (force) is directed toward
the interstitial, and positive is directed outwards. In (b), the red
solid lines indicate a typical threshold for convergence of forces of
0.01 eV/Å.

In Table II, formation energy of the C interstitial in octahe-
dral position is reported for FM and DLM states, and for this
last state both results on FM- and DLM-relaxed positions are
shown. The supercell size is important in these calculations, at
least in the FM state, as it can be noted from the difference in C

TABLE II. Interstitial formation energy for C in the octahedral
position in FM and PM bcc Fe. PM bcc Fe is modeled in the present
work with the DLM approach. As a comparison, the formation energy
calculated with a 4 × 4 × 4 supercell in the FM state is also shown.
All values are in eV.

FM PM

FM-relaxed FM-relaxed DLM-relaxed

3×3×3 supercell 0.68 0.59 ± 0.07 0.41 ± 0.06
4×4×4 supercell 0.58 — —
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formation energy of 0.1 eV when calculated with a 3 × 3 × 3
or a 4 × 4 × 4 supercell. This consistent difference is due to
the fact that the larger supercell can accomodate the strain
introduced by the interstitial atom on a larger region of the
system, leading to a lower formation energy. The two different
supercell sizes are representative of different concentrations
of carbon in iron (0.7 at% and 2 at% for the larger and
smaller supercells, respectively). The solubility of C in the low-
temperature bcc phase of Fe is at most ∼ 0.1 at% [42], but other
phases in steels related to ferrite with larger concentrations of
carbon, e.g. martensite, are of high technological relevance so
that it is important to study also these high concentrations. For
this reason, we choose to investigate the smaller supercell in the
DLM state. In addition, the qualitative behavior is not expected
to change for the two different supercell sizes, but only the
quantitative results could be affected. The DLM-relaxation of
the octahedral C in the 3 × 3 × 3 supercell shows a decrease
in formation energy of 0.18 eV compared to the FM-relaxed
positions, which is larger than the decrease due to the change
of magnetic state from FM to DLM (0.09 eV).

Up to our knowledge, no theoretical investigation from
first principles of C interstitials in bcc Fe in the PM phase
has ever been performed with an accurate description of the
magnetic state, so that our results cannot be compared with
other theoretical calculations. Moreover, the present DLM
description of the PM phase can be considered as a good
description of the magnetism of Fe in the δ phase, so that
the present results should be compared with experimental
measurements in this high temperature phase to be consistent;
unfortunately, the δ-phase has not been studied as much as
the lower temperature phases of the Fe-C phase diagram, so
experimental estimations of the formation energies are not
available to assess our results. Nonetheless, a decrease in
formation energy is reasonable going from the FM to the PM
state.

As a final remark, we report that a relaxation of bcc Fe in the
DLM state with a C interstitial in octahedral position without
imposition of symmetry leads to a formation energy 30 meV
lower than in the symmetrized case. An accurate calculation
of the formation energy should investigate more in detail this
effect, going also toward the dilute limit.

C. PM bcc Fe1−xCrx alloy

In random alloys, lattice symmetry is on average retained,
but on the level of individual atoms, the symmetry is com-
pletely broken: thus, in the calculations of PM bcc Fe1−xCrx

alloys, one cannot rely on the increased statistics obtained
from symmetrization. Also in this case the DLM forces on
the atoms are substantially reduced when the DLM-relaxed
positions are employed, compared to the FM-relaxed and ideal
lattice structures, as shown in the case of bcc Fe0.5Cr0.5 alloy
in Fig. 7. It is interesting to notice here that the FM-relaxed
positions do not give clearly better DLM forces compared to
the ideal lattice ones, stressing the importance of the present
method for DLM-relaxations in this alloy.

In these DLM calculations, the magnetic moments on the
Cr atoms are fairly small (∼0.1 μB), whereas the Fe atoms
show larger moments in the range 1.5–2.2 μB .

FIG. 7. Average forces in DLM bcc Fe0.5Cr0.5 alloy calculated
on ideal lattice (red), FM-relaxed (green), and DLM-relaxed (blue)
positions. The area of each set is normalized to one.

In Fig. 8, the radial distribution function (RDF) for every
type of bond [Fig. 8(a) Cr-Cr, Fig. 8(b) Fe-Cr, and Fig. 8(c)
Fe-Fe] is shown for the first two coordination shells at every
composition. In general, the peaks become broader than in
the ideal lattice structure. If one focuses on the Cr-Cr first
coordination shell, it can be noticed that going from low to high
Cr content, the peak becomes more similar to the ideal one, as
it could be expected since for pure bcc Cr the ideal lattice
positions are also the equilibrium ones. The Fe-Fe distance,
Fig. 8(c), in first coordination shell follows a similar trend,
i.e., for increasing Fe content the nearest neighbors distance
becomes more similar to ideal lattice. The difference between
them is that for lower Cr content, the Cr-Cr distance becomes
smaller than in the ideal lattice structure, whereas the Fe-Fe
distance increases for decreasing Fe content.

It is interesting to see also the different behavior of the FM-
and DLM-relaxed nearest neighbors peaks. The RDFs of the
Fe-Fe bond FM-relaxed is closer to the ideal lattice peak than
the DLM-relaxed for every composition; the Cr-Cr bond, in
contrast, is farther from ideal position for FM-relaxed than
DLM-relaxed, especially for low Cr content.

Regarding the second-nearest neighbors, the peaks become
even broader, up to the point that for Fe0.75Cr0.25 there seems to
be two peaks. This could be an effect of the local environment,
and the appearence of a second peak could be due only to
the small size of the supercell; however, a more detailed
investigation with larger SQS cells would be needed to clarify
if there is a simple peak broadening or indeed a developed
two-peak feature.

The mixing enthalpy of bcc Fe1−xCrx alloys is known
[43,44] to show a qualitative difference between FM and
DLM state. FM alloys show, indeed, a region for small Cr
concentrations where the mixing of Fe and Cr is favorable, and
for larger concentrations the usual solubility gap is present.
The DLM state removes this small region of solubility and
in general decreases the magnitude of the positive mixing
enthalpy. In Fig. 9 the mixing enthalpy of bcc Fe1−xCrx is
shown for the composition considered in the present work,
where the lines are just a guide for the eyes. The reference

064105-8



LATTICE RELAXATIONS IN DISORDERED Fe-BASED … PHYSICAL REVIEW B 98, 064105 (2018)

FIG. 8. Radial distribution functions for bcc Fe1−xCrx alloys per
bond type. (a) Cr-Cr bond; (b) Fe-Cr bond; (c) Fe-Fe bond. All the
curves are rescaled with the height of the highest peak equal to 1.

states are here DLM bcc Fe and nonmagnetic bcc Cr for the
alloys in the DLM state, the latter being the magnetic result
when we start with a DLM bcc Cr. Analogously, for the alloys
in the FM state, FM bcc Fe and nonmagnetic bcc Cr are the
reference states. The small region of solubility for the FM
alloy is not visible here because it occurs at concentrations
lower than x = 0.10 [44]; however, its presence can be guessed
from the strongly asymmetric behavior of the FM curve. In
the DLM magnetic state, the employment of the DLM-relaxed
positions does not change qualitatively the curve compared
to the FM-relaxed positions, rather it introduces an energy

FIG. 9. Mixing enthalpy of bcc Fe1−xCrx alloys for x = 0.25,
0.50, and 0.75 in FM state on FM-relaxed positions (purple squares)
and in DLM state on FM-relaxed positions (green circles) and DLM-
relaxed positions (blue triangles). The lines are just guidelines for the
eyes.

correction to the mixing enthalpy. The correction is largest
at x = 0.50 (∼5 meV/atom or about 10%), whereas for the
other two compositions the effect is smaller (∼1 meV/atom).
This difference is due to the fact that the closer the alloy is to
the pure elements, the smaller are the relaxation energies per
atom.

IV. CONCLUSIONS

In this work we have developed a method that enables
performing local lattice relaxation of magnetic materials in
the PM phase from first principles within the disordered local
moments model in an adiabatic fast-magnetism framework.
The method is easy to implement with any ab initio code that
reliably calculates interatomic forces. We employ constrained
noncollinear magnetic moments in this work because they
give a more correct description of the real paramagnetic state;
moreover, we observe a difference of the DLM energy for bcc
Fe compared to collinear arrangement of the atomic magnetic
moments (ca. 3 meV/atom of difference). Noncollinear mo-
ments also lead to smaller standard deviations in properties
such as atomic forces, enabling a more accurate relaxation of
the systems. We first test the present method on the case of
a Fe vacancy in PM bcc Fe, a well-studied system, and we
obtain a vacancy formation energy of 1.60 eV, in good agree-
ment with recent DFT+DMFT results [21] and experimental
measurements. The C interstitial in octahedral position is then
investigated, and the formation energy of this defect in the
DLM state is 0.41 eV, where the difference from the value
in the FM state is given in large part by the DLM-relaxed
positions rather than the change of magnetic state itself. Finally,
we calculate the mixing enthalpy for bcc Fe1−xCrx alloys for
x= 0.25, 0.50, and 0.75; here, the DLM-relaxed positions lead
to a reduction of the mixing enthalpy of 5 meV/atom for
x=0.50 (∼10%). All systems relaxed with the present method
show lower DLM forces than the ferromagnetically relaxed
counterparts.
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