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Influence of substitutional atoms on the diffusion of oxygen in dilute iron alloys
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A multiscale approach including density functional theory (DFT) and atomistic kinetic Monte Carlo (AKMC)
simulations is applied to investigate the diffusion of interstitial oxygen atoms in bcc Fe under the influence of
substitutional foreign atoms (Al, Si, P, S, Ti, Cr, Mn, Ni, Y, Mo, and W). The substitutional atoms can be assumed
to be immobile since their diffusion coefficient is much smaller than that of oxygen. First, jumps of oxygen in
pure bee Fe between first-, second-, and third-neighbor octahedral interstitial sites are investigated. It is found
that the first-neighbor jump is most relevant, with the tetrahedral site as the saddle point. The second-neighbor
jump consists of two consecutive first-neighbor jumps. The barrier for a direct third-neighbor jump is too high
to be significant for the diffusion process. In the presence of substitutional atoms the most important migration
paths are first-neighbor jumps between modified octahedral sites with modified tetrahedral sites as saddle points.
Calculations show that Si, P, Ni, Mo, and W cause some modifications of the migration barriers of oxygen and
their interaction with O is mainly repulsive. Al, Cr, and Mn have a significant influence on the barriers and they
exhibit strong attractive interactions with O. The most important modification of the barriers is found for S, Ti,
and Y where deep attractive states exist. Based on the migration energies obtained by DFT, AKMC simulations
on a rigid lattice are employed to determine the diffusion coefficient of oxygen in a dilute iron alloy containing
the different substitutional atoms. It is found that Si, P, Ni, Mo, and W have almost no influence on the diffusivity
of O. The presence of Al, Cr, Mn, S, Ti, and Y causes a significant reduction of the mobility of oxygen. In
these cases the temperature dependence of the oxygen diffusion coefficient shows considerable deviations from
an Arrhenius law. These phenomena are discussed in detail by considering the occupation time for the different
states. The present findings on the strong dependence on the kind of substitutional atoms change the picture of

oxygen diffusion in dilute iron alloys substantially.

DOI: 10.1103/PhysRevB.98.064103

I. INTRODUCTION

Diffusion of foreign atoms such as dopants, impurities,
and alloying elements, which occurs during fabrication, pro-
cessing, and operation of functional materials, has a crucial
influence on materials properties. Most of the previous ex-
perimental and theoretical studies on this phenomenon were
focused on the migration of a single atomic species in a
pure host material. Different atomic-scale mechanisms were
found, such as diffusion via interstitial sites and by means
of intrinsic point defects, i.e., vacancies and self-interstitial
atoms. However, the migration of one foreign atom may be
influenced by the presence of other foreign atoms of the same
or another type, even if the concentration of foreign atoms of
different kinds is still rather low.

Iron-based ferritic alloys are widely used in industrial
applications. They always contain several foreign atoms or
solutes. Some of them are impurities; others are purposely
introduced in order to improve the mechanical properties,
the corrosion and radiation resistance, as well as the high-
temperature stability. Many research activities are focused

on the understanding of nanostructure evolution in these
materials, under thermal and/or mechanical load and under
irradiation. Multiscale modeling can substantially contribute
to improve the knowledge on these processes. The general
scheme is the following: First, data on migration barriers and
binding energies of foreign atoms in bce Fe are determined.
Most advantageous and correct is the determination of these
quantities by first-principles density functional theory (DFT).
In a second step kinetic Monte Carlo simulation or rate theory
is applied using the data determined in the first step as inputs.
Atomistic kinetic Monte Carlo (AKMC) simulation on a rigid
lattice is a very suitable method in order to gain insight
into many details of nanostructure evolution. Most of these
simulations use rather simplified models in order to describe
the migration barriers of foreign atoms (see, e.g., the review
paper of Becquart and Domain [1]). Since these barriers are the
most important ingredients to describe the kinetics of a system,
the results of that kind of simulations may be not sufficiently
correct. Even in a multicomponent ferritic alloy containing
foreign atoms with a rather low concentration the influence
of many different local atomic environments on the migration
barrier should be taken into account precisely. This requires
a huge effort since a very high number of barriers must be
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to overcome these problems. Previous DFT and AKMC work
on nanostructure evolution in bcc Fe was mainly related to
the diffusion of substitutional solutes which migrate via the
vacancy mechanism. Simonovic et al. [3] and Liu et al. [4]
performed combined DFT and AKMC calculations on the
effect of different substitutional solutes on the diffusion of
carbon in bec Fe via interstitial sites. Barouh et al. [5] and
Shang et al. [6] considered the influence of vacancies on the
migration barriers of the interstitial solutes carbon, nitrogen,
and oxygen by means of DFT. Ortiz et al. [7] investigated
the influence of carbon on He migration and clustering in bcc
Fe using DFT and rate theory. Grigorev et al. [8] studied the
mobility of H-He clusters in W using molecular dynamics
with interatomic potentials. In particular they considered the
influence of H on the mobility of He as part of the mixed
clusters. Besides these first-principles-based and atomistic
works, papers using a thermodynamics-based method with
material parameters from literature to treat the influence of
traps on interstitial diffusion are worth mentioning (see, e.g.,
Ref. [9] and references therein).

In the present paper DFT calculations and AKMC simula-
tions are applied to investigate the diffusion of oxygen in bcc
Fe under the influence of foreign atoms on substitutional sites,
such as Al, Si, P, S, Ti, Cr, Mn, Ni, Y, Mo, and W. This paper is
motivated by gaining fundamental diffusion data which are
hardly obtainable by experiments, and by several practical
applications. Oxygen plays a crucial role in the corrosion
of iron-based alloys. It is also an important element in the
formation and evolution of Y-Ti-O nanoclusters in nanostruc-
tured ferritic Fe-Cr alloys, which are considered as promising
candidates for structural materials of future fusion and fission
reactors [10]. It is known from literature that in bcc Fe the most
stable position of O is the octahedral interstitial site and the
tetrahedral interstitial site is the saddle point for first-neighbor
jumps [4,6,11-13]. In the present paper it is investigated how
the presence of foreign atoms modifies the O migration. First,
jumps of oxygen in pure bcc Fe between first-, second-, and
third-neighbor octahedral interstitial sites are investigated by
DFT. Then, DFT is applied to determine the binding energy
between oxygen and a foreign atom, for different neighbor
distances, and to calculate the modified migration barriers, i.e.,
for the oxygen jump between the first and the second neighbor
of a foreign atom, etc. Using the migration barriers obtained
by DFT the diffusion coefficients of oxygen are determined by
AKMC simulations considering a dilute iron alloy on a rigid
lattice. Finally, the influence of the different foreign atoms on
the oxygen diffusivity is discussed in detail.

II. DFT CALCULATIONS

A. Calculation method

The Vienna ab initio simulation package VASP [14—16]
was applied to perform the DFT calculations. This code
uses plane-wave basis sets and pseudopotentials generated
within the projector-augmented wave approach [17,18] as
well as the description of exchange and correlation effects
by the Perdew-Burke-Ernzerhof parametrization [19] of the
generalized gradient approximation. In all calculations the
spin-polarized formalism was applied and a plane-wave cut-
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FIG. 1. Octahedral interstitial sites for oxygen in the neighbor-
hood of a substitutional solute. The notation of oxygen positions
relative to the foreign atom is according to the scheme for a simple
cubic lattice that consists of the bec lattice sites and the octahedral
interstitial sites of the bcc lattice.

off of 500 eV was used. The Brillouin-zone sampling was
performed employing the Monkhorst-Pack scheme [20]. The
calculations were carried out for cubic bec Fe supercells with
128 lattice sites and 3 x 3 x 3 k points. For the integration in
the reciprocal space the Methfessel-Paxton smearing method
[21] was applied with a width of 0.2 eV. After introduction of
an oxygen atom on an octahedral interstitial site and of another
foreign atom on a substitutional site the positions of atoms as
well as the volume and shape of the supercell were relaxed so
that the total stress/pressure on the supercell became zero. Such
calculations were performed for different distances between
the oxygen and the foreign atom as illustrated in Fig. 1. The
notation of the neighbor positions of oxygen relative to the
foreign atom is according to the scheme for a simple cubic
lattice (see Ref. [S5]) which consists of the bcc lattice sites
and the octahedral interstitial sites of the bcc lattice. Note that
within this scheme oxygen cannot reside on third-neighbor,
fourth-neighbor, seventh-neighbor, eighth-neighbor, etc., posi-
tions since these sites are already occupied by iron atoms, and
note that there are two different ninth-neighbor sites (9a and
9b). The accuracy of DFT calculations is determined by two
criteria: (i) If the residual force acting on any atom falls below a
given threshold the relaxation calculation is stopped, and (ii) at
each relaxation step the energy minimization is performed until
the total-energy change falls below another threshold. In the
present paper threshold values of 1072 eV /A and 107 eV are
used, in the first and the second case, respectively. The binding
energy between a foreign atom X on a substitutional site and
the oxygen O on an octahedral interstitial site, at different
distances to the foreign atom (see Fig. 1), is defined by

Eyina =EX+ O0)+ Ey— E(X)— E(O). (1

E(X + 0), E(X), and E(O) denote the total energy of
(iron) supercells with the defect pair X + O and the monomers
X and O, respectively, while Ej is the total energy of the
supercell with perfect bcc Fe. By definition the value of Eyipg
is negative in the case of attraction between the X and the O
atoms.

The migration energy barriers and the minimum-energy
paths for oxygen migration in bce Fe were determined using the
nudged elastic band (NEB) method [22,23], as implemented
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in the vtsttools [24]. In this manner jumps of an oxygen atom
between different octahedral interstitial sites in bcc Fe (with
and without another foreign atom) were considered. In the
NEB procedure the minimum-energy states before and after
a jump are connected by a number of states or images that are
constructed along the reaction path. Then, for these images a
restricted relaxation is performed using the precision criteria
mentioned above. After determining the minimum-energy path
by the standard NEB procedure the climbing image NEB
method is employed to ensure that the exact saddle point is
found. The jump rate is given by

E,
v=yyexp| ——= ), 2
P\ T ,T

with the migration energy barrier E,, and the attempt frequency
vo. The latter quantity is determined by [25,26]

AFYb(T
kgT (_ mig( )>, 3

=T P kpT
where kg and h are the Boltzmann and the Planck constant,
respectively. The quantity in the exponential is the difference
between the vibrational free energy of the supercell with the
oxygen interstitial at the saddle point (SP) and that at the
equilibrium position (octahedral interstitial site):
AFY(T) = F(T) — Fy(T), (4a)
. N4 1 hvsp i
F§(T) = —hvsp; +kgTIn (1 —e” %7 )|, (4b
sp (T) ;[ZVSP,+B ( B)j| (4b)
. N3 1 MVmin i
Fan(T) =Y [Ehvmm,i +kgTIn(1—e &7 )}. (4¢)

i=1

vsp; and vpi,; are corresponding vibrational frequencies
calculated by VASP and N is the number of atoms in the
supercell.

In the high-temperature limit the Vineyard formula holds
[27]:

3N-3
_ IGZ)  Vmin,i

Vo = .
3N—4
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&)

Note that before the vibrational frequencies are calculated the
relaxation of the supercells must be performed with a very high
precision. In the present paper the above-mentioned threshold
values were 10~ eV/;\ and 1077 eV.

B. Migration barriers of oxygen in pure iron and the
attempt frequency

The octahedral interstitial site is the most stable site of
oxygen in pure bcc Fe [11-13,28-30]. It was shown that the
incorporation of O into the lattice leads to a local tetragonal
distortion and a corresponding change of the supercell shape
is observed if relaxation calculation is performed under zero
stress/pressure conditions [30]. Three different migration paths
of oxygen in pure bcc Fe were investigated in this paper:
between (i) first-neighbor, (ii) second-neighbor, and (iii) third-
neighbor octahedral sites. The results are shown in Fig. 2. The
first-neighbor jump consists of a linear migration path with
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FIG. 2. Tllustration of the minimum-energy paths for the jump of
oxygen between first-neighbor (a) and third-neighbor (b) octahedral
interstitial sites in pure bce Fe.

a barrier of 0.512 eV. This value is consistent with previous
DFT calculations of Fu et al. [11], Claisse and Olsson [13],
Shang et al. [6], and Barouh et al. [5], who obtained 0.6, 0.48,
0.526, and 0.56 eV, respectively. The saddle point situated in
the middle of the path corresponds to a tetrahedral interstitial
site of the bec lattice [see Fig. 2(a)]. Note that the data points
correspond to the calculated values which are used to obtain the
fit curve. It is worth mentioning that the tetragonal distortions
in the initial and the final state differ: While in the initial state
the elongation is along the z axis it is along the x axis in the
final state. A tetragonal distortion is also observed at the saddle
point. However, in this case the dimensions of the supercell in
x and z directions are equal and slightly higher than in the
y direction. It was found by NEB calculations that a second-
neighbor jump consists of two successive first-neighbor jumps.
This was also reported for carbon migration in bcc Fe [3]
which occurs in a similar manner as the oxygen diffusion, i.e.,
between octahedral interstitial sites. The third-neighbor jump
consists of a nonlinear migration path as shown in Fig. 2(b).
The saddle point, a thombohedral interstitial site, is in the
middle of the minimum-energy path, with a barrier height of
1.452 eV. This result is also similar to the findings for carbon
[3]. The barrier for the third-neighbor jump is considerably
higher than that for a first-neighbor jump. For such a jump
the probability of occurring is therefore much smaller than
that for three consecutive first-neighbor jumps. Based on the
above results, in the following only first-neighbor jumps are
considered. For a first-neighbor jump the attempt frequency
was determined according to the formalism outlined in Egs.
(4) and (5) and a value of 15.76 THz was obtained in the
temperature range relevant for diffusion (above 500 K).

C. Binding energy of pairs consisting of an oxygen atom
and a substitutional solute

The binding energies obtained after relaxation of a supercell
with a foreign atom on a bcc site and oxygen on an octahedral
interstitial site are summarized in Table 1. Si, P, Ni, Mo, and
W exhibit mainly repulsion and a few, very weak, attractive
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TABLE I. Binding energy of oxygen-solute pairs at different distances (cf. Fig. 1). Negative (positive) values mean attraction (repulsion).

DFT data from literature are given in brackets.

Evina (€V) 1 2 5 6 9a 9b 10
0-Al —0.243 0.047 —0.051 0.000 —0.04 —0.069  —0.030
0-Si —0.064 0.453 0.051 —0.003 0.009 —0.081 0.017
O-P 0.051 0.161 0.071 —0.059 0.044 —0.024 0.040
0-S ~0.361 —0.466 —0.066 —0.134 0.051 0.062 0.013
~0.372 —0.593 —0.052 —0.009 —0.037 0.094  —0.042
O-Ti (=026 [12],-0.23 [13],  (=0.55[12], —0.45 [13], (0.07 [13]) (0.14 [13]) (0.12 [13))
—0.27 [28]) —0.55[28])
—0.257 —0.085 0.092 0.025 —0.003 0.120 0.002
O-Cr (=0.25 [12], —0.1 [13]) (0.02 [121,0.06 [13]) 0.2[13)) (0.13 [13]) (0.09 [13])
O-Mn —0.246 —0.068 0.108 0.084 0.062 0.067 0.072
O-Ni 0.214 0.175 —0.02 0.015 —0.018 0.017  —0.028
0.031 ~1.010 —0.336 —0.035 —0.085 0217  —0.133
0-Y (0.35 [121,0.32 [13], (-1.01 [12],-0.73 [13], (0.04 [13]) (0.07 [13]) (0.11[13])
0.28 [28]) —0.85[28])
0-Mo 0.397 —0.048 0.057 0.056 —0.036 0.158  —0.037
o-W 0.555 0.075 0.075 0.065 —0.045 0.139  —0.042

interactions. In the case of Ni, Mo, and W highest repulsion
exists at the first-neighbor distance, whereas for Si and P
maximum repulsive interaction occurs at the second-neighbor
distance. Al, Cr, and Mn show the strongest attraction at the
first-neighbor distance while S, Ti, and Y show the highest
attractive interaction with O at the second-neighbor distance.
On the one hand Table I demonstrates that the interaction
between O and the solutes has a relatively long range. On
the other hand the trend is as expected, i.e., the interaction
decreases with distances and approaches zero at the tenth-
neighbor distance. An exception is the O-Y interaction that is
still considerable at this distance. This may be explained by the
large size of the Y atom which causes significant displacements
and distortions. DFT data from literature are also given in
Table 1. These values show a very similar trend as the present
results. However, the numbers are somewhat different, which
should be mainly due to the fact that the literature data were
obtained at constant volume of the supercell, whereas in the
present paper not only the positions of atoms but also the
size and shape of the supercell were relaxed until the total
stress/pressure reached zero. Furthermore, in the present paper
a newer version of VASP pseudopotentials (version 5.4) was
used which may lead to some additional differences. Details
on the volume change (compared to a supercell with perfect
bce Fe) and the distortion of the supercell by a single oxygen
octahedral interstitial and by single substitutional solutes are
given in the Supplemental Material [31]. The presence of oxy-
gen leads to a considerable volume increase and to a tetragonal
distortion. Most of the substitutional atoms cause an isotropic
expansion of the supercell, whereas isotropic contraction is
found for Si and P. Furthermore, the Supplemental Material
[31] shows the effective volume change and the supercell
distortion obtained for the different oxygen-solute pairs. The
effective volume change, which is defined by the difference
between the volume changes caused by the presence of the pair
and the sum of the volume changes due to the presence of a
single O atom and a single substitutional atom, can be positive

or negative. Tetragonal and orthorhombic distortions of the
supercell are observed which are caused by the presence of the
oxygen interstitial and the spatial orientation of the O-solute
pair. Tetragonal distortions are found for the first-, second-,
sixth-, and ninth-neighbor distances since the relaxation occurs
only in two spatial dimensions, because the initial geometrical
arrangement of the pairs according to Fig. 1 is along [100],
[110], [211], [221], and [300], respectively. On the other hand,
in the case of pairs at fifth- and tenth-neighbor distances
(oriented along [210] and [310]) orthorhombic distortions are
observed due to relaxation in three dimensions.

The dependence of the binding energy of the oxygen-solute
pair on the kind of the solute was investigated by studying
the following characteristic quantities: (i) partial density of
electronic states, (ii) magnetic moment, (iii) charge transfer,
(iv) volume change of the supercell, and (v) distance between
the two atoms belonging to the pair. It was found that the results
concerning the charge transfer determined by Bader analysis
[32] seem to be most suitable for a qualitative interpretation of
the trends found for the binding energy. If the pair is at the first-
neighbor distance in most cases attractive interaction occurs if
the following two criteria are fulfilled simultaneously: Oxygen
gains more than about 0.4 “electrons” and the solute loses more
than about 0.6 “electrons.” This indicates an ioniclike bond.
With the exception of the O-S and the O-Y pair, in the other
cases the ionic character of one of the partners is obviously
not sufficiently pronounced for an attraction. More details
about these investigations can be found in the Supplemental
Material [31].

D. Oxygen migration barriers in the environment of
a substitutional solute

Figure 3 shows the minimum-energy paths for the migration
of oxygen between first-neighbor octahedral interstitial sites
in the environment of different foreign atoms, up to the tenth
neighbor. Due to the atomic configuration shown in Fig. 1
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FIG. 3. Migration barriers for oxygen in the neighborhood of various substitutional atoms: Al (a), Si (b), P (¢), S (d), Ti (e), Cr (f), Mn (g),
Ni (h), Y (i), Mo (j), and W (k). The red and blue numbers show the barrier height and the binding energy, respectively. In AKMC simulations
the barriers must be modified according to the detailed balance. This is illustrated in the case of Cr (1) where the changes are marked by magenta
numbers and lines.
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only the following first-neighbor jumps are possible: between
neighbors 1 and 2, 2 and 5, 5 and 6, 5 and 10, 6 and 9, and
9b and 10. The migration barriers are higher or lower than
the value of 0.512 eV obtained for pure bcc Fe. At the largest
distance from the foreign atom the migration barriers approach
this value. However, some differences remain, in particular in
the case of Y which should be due to its atomic size. In the
figures the data points depict the calculated values that are
used to determine the fit curves. In the case of Ni most of the
barriers are smaller and only a few are slightly higher than
that in pure Fe. P, Mo, and W exhibit these kinds of barriers
outside the second-neighbor shell whereas such barriers exist
for Si outside the fifth-neighbor shell. However, in these cases
the barriers for jumps into the closer environment of the foreign
atom are relatively high (around 0.7 eV). Al, S, Ti, Cr, Mn, and
Y show rather high barriers for escape from neighbor shells
close to the solute, whereas the barriers for approaching are
often relatively low. In the vicinity of S and Ti the escape is
impeded by the combined action of the barriers for 2 — 5
and for 5 — 6 or 5 — 10 jumps. A similar situation exists
for Al, Mn, and Cr caused by the combination of the barriers
for the 1 — 2 and the 2 — 5 jump. Obviously, an impeded
escape is correlated with the existence of deep attractive states.
A special situation is found in the environment of Y. The
NEB calculation for the transition between neighbor 5 and
6 shows a local minimum related to the first image and a
local maximum related to the second image [see part of the
line in Fig. 3(i) marked by green color]. Complete relaxation
of the state corresponding to the local minimum led to the
second-neighbor configuration. Thus one can conclude that a
direct transition between neighbors 5 and 6 is not possible.
On the other hand it can be assumed that the local maximum
found between 5 and 6 is the barrier for a direct transition
between neighbors 6 and 2. In the vicinity of Y the escape
of the oxygen atom is strongly impeded by the combined
action of the barriers for the 2 — 5 and 5 — 10 transitions.
It should be noticed that calculations showed that O resides
in a (meta)stable state at the fifth-neighbor position, with a
shallow minimum which is hardly visible in Fig. 3(i). Note
that there is also a very small barrier for the transition 5 — 2.
With the exception of the peculiarities in the case of Y, in
general the migration path of O is similar to that in pure
bee Fe, i.e., from a modified octahedral site via a modified
tetrahedral site to another modified octahedral site. This is
illustrated in Fig. 4 for the oxygen jump between the first- and
second-neighbor position of Cr. In many plots shown in Fig. 3
the migration barrier corresponds to the middle data point in
the graphical representation of the respective jump. Exceptions
are the transitions between the first and second neighbors of Si,
Y, and W, between the second and fifth neighbors of Y, between
the fifth and tenth neighbors of S, between the fifth and sixth
neighbors of Cr and Mn, and between neighbors 6 and 9a as
well as 5 and 10 of Y. Also in these cases the saddle points
correspond to modified tetrahedral interstitial configurations.

III. AKMC SIMULATIONS

A. Simulation procedure

A simple cubic (rigid) lattice consisting of bcc lattice
sites as well as of the octahedral interstitial sites of the
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FIG. 4. Modified minimum-energy path for the jump of oxygen
between the first and the second neighbor of Cr.

related bece lattice is considered and three-dimensional periodic
boundaries are used. The bcc sites are occupied by Fe atoms
with the exception of one site that is occupied by a foreign atom.
This site is chosen randomly and the foreign atom is assumed to
be immobile since its diffusion coefficient (see Refs. [33,34])
is much smaller than that of oxygen. This assumption will
be verified below. The concentration of foreign atoms in the
alloy is determined by the size of the simulation cell. One
oxygen atom is introduced on a randomly selected octahedral
interstitial site. The AKMC step number and the physical time
are set to zero at the beginning of the simulation. Based on
the results presented in previous sections it is assumed that the
migration of oxygen consists of jumps between first-neighbor
octahedral sites. The main part of the AKMC code deals with
the determination of possible foreign-atom neighbors of the
oxygen atom before and after a jump. For this purpose linked
cells and neighbor lists are used which are determined at the
very beginning of the simulations. Based on the DFT data for
E,, and vy the jump rates for the four possible jumps of the
O atom from a given octahedral site to neighboring octahedral
sites are determined. Jumps from neighbor 9a, 9b, or 10 to
larger distances, from larger distances to these sites, or jumps
completely outside the ten neighbor shells are described as the
jumps in pure Fe. In cases where at neighbor shells 9a, 9b, and
10 the binding energy between oxygen and the substitutional
solute does not vanish, it is set to zero and the migration
energy barriers E)36, E105 10 and E109 are modified
according to

E,) — E}' = Ejpq — Ebjpa- (©6)

m

This relation describes the rule of detailed balance which
must be fulfilled in AKMC simulations (see Ref. [35]). Note
that Eq. (6) is always satisfied for transitions inside the tenth-
neighbor shell. For illustration the modifications of E;*©,
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ENS | E10 and E!0 in the environment of Cr are shown
in Fig. 3(1). Based on the jump rates v; (i = 1...4) determined
for the four possible jumps to neighboring octahedral sites the
cumulative function 23:1 v; as well as the probability p; =

dimivil Zj=1 v; are calculated. For all jumps the attempt
frequency vy is set equal to the value determined for a first-
neighbor jump in pure bee Fe (see Sec. II B). This introduces
only a small error since the jump rates are mainly determined
by the exponential function with the migration energy barriers
which depend on the local atomic environment. A jump event
k is selected using a random number r (uniformly distributed
between zero and one): py_i <r < pr. Then the jump is
carried out, i.e., the position of the oxygen atom is changed. The
AKMC step number is increased by 1 and the increase of the
physical time is determined by At = —In(r)/ Zj=1 v;j, where
r is another random number. Note that the migration of the O
atom in the rigid lattice formed by bcc and octahedral sites is
realized by changing the type of the occupation of octahedral
sites (not occupied to occupied and vice versa). The procedure
described above corresponds to the well-known rejection-free
AKMC algorithm (see, e.g., Ref. [36]). It is carried out many
times (MC steps) and the positions of the oxygen atom are
recorded as a function of time. The number of Monte Carlo
steps required for reliable results depends on the specific
“landscape” of the migrations barriers (see Fig. 3). In any case
several AKMC simulations were performed with increasing
numbers of MC steps. If the diffusion coefficient does not
further change, this value was considered to be the final result.
In the present paper 10° to 10'® MC steps were used. In order
to obtain good statistics the migration of the oxygen atom
is simulated many times, with different initial positions of
the oxygen and the foreign atom. The diffusion coefficients
presented in this paper were calculated by averaging of the
corresponding data that were determined in these independent
simulations.

After the simulation of the migration of a given oxygen atom
the diffusion coefficient is determined using the recorded data
on position and time. In the present AKMC code the Guinan
method [37-39] is used: The trajectory of the O atom is divided
into n, time segments 8¢, and for each segment m the squared
displacement sd(m) = [¥(ty) — X (tn—1)]?, with t,, = t,,_, +
8t, is determined, where X denotes the position of the O atom
at a given time. Applying the Einstein relation and averaging
over all segments n; leads to the O diffusion coefficient:

1 < sd(m)
Within certain limits, the size of the segments determined by
8t or ng can be chosen arbitrarily so that the calculation of
the diffusion coefficient can be performed for many different
subdivisions. It must be noticed that on the one hand &t
must be sufficiently high (6t > vy™!) to include all local
jump correlations, and on the other hand n; should be also
large enough to provide a statistically meaningful diffusion
coefficient. In the present AKMC code the maximum and
minimum values of ny are 7500 and 10, respectively. The
results show that too small (high) values of &z (ny) lead to
values of D which are not reliable, because correlations are

not included sufficiently. In contrast, too high (small) values
of 8t (ny) lead to large fluctuations of D which is due to poor
statistics. Therefore, those values of D are not considered in
the final averaging over the results for different subdivisions. In
the present code the averaging is performed over subdivisions
between n'** /3 and 2n* /3.

B. Diffusion coefficients of oxygen

AKMC simulations were performed to study oxygen dif-
fusion in alloys with concentrations of substitutional solutes
of 0.098, 0.231, 0.400, 0.781, and 1.852 at. %. As already
mentioned above, in the present paper an AKMC simulation
cell contains only one substitutional foreign atom, therefore the
size of thecell 8 x 8 x 8, 6 x 6 x 6, 5x5x%x5,4x4x4,
and 3 x 3 x 3 bcc unit cells, respectively) is related to the
solute concentration. With the exception of the case of highest
concentration (1.852%) dilute alloys are considered. In dilute
alloys the migration of the O atom cannot be influenced
at the same time, or “simultaneously,” by more than one
substitutional solute or its periodic image. After leaving the
region of influence of a certain solute atom, in a dilute alloy
the diffusing O atom migrates (long enough) through perfect
bce Fe before it enters another region of influence. In present
AKMC simulations the region of influence ends at the tenth-
neighbor shell (see Fig. 3 and the discussion related to the
detailed balance in the previous section). The concentration of
1.852% is already beyond that of a dilute alloy because there
may occur a kind of “simultaneous interaction” of the O atom
with the solute and its periodic image. This peculiar case will be
discussed in detail later. Figure 5 shows the dependence of the
diffusion coefficient on temperature in the range between 500
and 2000 K. It has to be taken into account that the presented
data are strictly valid only in the ferromagnetic phase, i.e.,
below the Curie temperature (1043 K). Furthermore, at about
1183 K the a (bcc) to y (fce) transition of iron occurs. The
main reason for showing a temperature scale up to 2000 K is
to verify the expected convergence of the diffusion coefficient
to the value for pure bee Fe at sufficiently high temperatures.
It must be also mentioned that in the present paper the
temperature dependence of the spontaneous magnetization in
the ferromagnetic state is neglected, i.e., it is always assumed
that the magnetization of bulk iron corresponds to its ground-
state value. According to the influence on the diffusion of
oxygen the foreign atoms can be categorized into three groups,
which is similar to the classification discussed concerning the
migration barriers in Sec. IID. The first group consists of Si,
P, Ni, Mo, and W. These solutes have a very small effect on the
diffusion coefficient. The reason for this behavior is due to the
size and combination of the migration barriers as depicted in
Figs. 3(b), 3(c), 3(h), 3(j), and 3(k). The majority of barriers
in the vicinity of Ni is somewhat lower than the barrier in pure
Fe. Therefore, the diffusion coefficient increases slightly with
concentration [see inset in Fig. 5(h)]. In the case of P, Mo, and
W the barriers for oxygen jumps from the second to the first
neighbor are rather high while the other barriers are not very
different from that in pure iron. Similar conditions exist in the
environment of Si with a high barrier between the fifth and the
second neighbor. Such a combination of migration barriers,
with a reduced accessibility of positions close to the solute,

064103-7



X. WANG, M. POSSELT, AND J. FABBENDER

PHYSICAL REVIEW B 98, 064103 (2018)

107 107

—a— pure Fe —a—pure Fe
(a) —o—0.098% 108 (d) —o—0.098%
1078} —4—0.231% . TN —4—0.231%
—v—0.400%) 107k aPure Fe  —v—0.400%
107° 0.781%) 10710 5 0.781%)
WPureFe ——1.852% F o <— 1.852%
—-10 10 F o
0 1072
107" 109E
o Al o
-15
102 1077k
107°F
107" L L s s 10717 B s s s
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
—7 —7
~ 10 o pure Fel —~ 10 —a— pure Fe
) (b) —o—0.098% o 108 (e) —o—0.098%
o 10°° 0.231% of R 4~ 0.231%
é —v—0.400%) §, 107k —v—0.400%
= 10°F 0.781% = 1010 0.781%
S pureFe 4 1.852% % 4 —<— 1.852%)
‘S 107 10fw ) 107" P
% 1 % 10712 3
10° -13
8 g 1w
5 1072 S 107
g 10713 \\ g 10715 L
£ ; £ 107
[ JPPY S| . . O 407k : ) .
0.5 1.0 1.5 2.0 0.5 1.0 15 2.0
7 -7
10 —o— pure Fe| 10 —a— pure Fe|
. (C) —o—0.098% . (f) —o—0.098%
107°F 0.231%| 107 F % 4—0.231%)
—9—0.400% —v—0.400%
109} 0.781% 10°L 0.781%
ure Fo—— 1:852% ——1.852%
10710 [ 100L
10" 10"
102 1077
107"} 103k
107" ‘? o 2P N ' 107 La L 1 A
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

1000/T (K1) 1000/T (K1)

7
10 —o—pure Fe|
" (g) —o—0.098%
107 F —4—0.231%
X 0.400%
10°° pure Fe e
—a—1.852%
1070
10"
1072
107
107 Lo L L s
0.5 1.0 1.5 2.0
_7 -7
‘/T\ 10 —a— pure Fe| 10 H —a—pure Fe
7] 8 (h) —o0—0.098%| g (J) —o—0.098%
NE 107 k% 0.231%] 107 F 0.231%|
= X —v—0.400% —v—0.400%
— 1079 0.781%) 1079 L pure Fe 0.781%|
QC, N pure Fe < 1:852% —a—1.852%
S 1070k 1070w
% —11 —11 Mo
o 10 F o 10"
o »
c -12 o ~12
S 10 “F I 10
% =
S5 10" € 10"
Ia) 10,14 [ te 18 20 § 10,14 16 s 20 X X
0.5 1.0 1.5 20 % 0.5 1.0 1.5 2.0
—7 7
10 " 8 10 k —o— pure Fe]
= (l) pus . ( ) —0—0.098%
107%F & pure Fe o 107k 0.231%|
\§, < o —9—0.400%
BN ~ S q0°f 0.781%|
107§ \\D\n = ——1.852%
b O ygtofw
107 N
~ W
r \%\ Y 10"
107" ——pure Fe S\ h
——0.098% N\ 10712
1077 [ ——0231% AN
I ——0.400% 13
0.781% \§w 1077
10710 F ——1852% A3 10 T 2
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
1000/T (K1) 1000/T (K1)

FIG. 5. Diffusion coefficient of oxygen in several dilute Fe alloys in dependence on temperature and solute concentration (in at. %).

may cause the so-called labyrinth mechanism [3,4], which
leads to a slight reduction of the diffusion coefficient with
increasing solute concentration [see insets in Figs. 5(b), 5(c),
and 5(j)]. The second group of solutes with Al, Cr, and Mn
exhibits a considerable reduction of oxygen mobility. Taking
Cr as an example, 0.098% (1.852%) Cr decreases the diffusion
coefficient by 44.3% (95.2%) at 500 K and by 2.6% (43.4%)
at 1000 K, compared to the values for pure Fe. The reason for
this behavior is the so-called trapping mechanism [3,4,9,40]
caused by the existence of a pronounced attractive state at
the first-neighbor distance and by high escape barriers from
this state [see Figs. 3(a), 3(f), and 3(g)]. Such a trapping
mechanism is also responsible for the huge decrease of the
diffusion coefficient observed in the case of the third group with
S, Ti, and Y. For example, the oxygen diffusivity decreases by
99.97% (99.99%) at 500 K and by 78.9% (97.05%) at 1000 K
if the alloy contains 0.098% (1.852%) Ti. The foreign atoms S,
Ti, and Y exhibit deep attractive states at the second-neighbor
distance and the barriers for escape from these positions are
very high [see Figs. 3(d), 3(e), and 3(i)]. However, in all cases
considered in this paper the oxygen diffusion coefficient is still
some orders of magnitude higher than that of the corresponding
foreign atom (see Refs. [33,34,41]). Therefore, the assumption
that the substitutional solute can be considered to be immobile
in the AKMC simulations is justified.

It is not surprising that the influence of foreign atoms on
the oxygen mobility leads to deviations from the Arrhenius

behavior of the diffusion coefficient. This is clearly visible
for solutes of the second and third group. The reason is the
inhomogeneous distribution of the barrier heights: Specific
barriers exist in the vicinity of the substitutional atom, while
beyond the tenth-neighbor shell the migration barriers are
equal to that in pure bcc Fe. The pronounced difference
between all these barriers leads to a temperature dependence
of the ratio between residence times in the various states. For
a detailed study the ratio between the residence or occupation
time of the oxygen atom at different neighbor distances and the
total time of the simulation was determined. Figure 6 illustrates
the residence time ratio for oxygen at the first-neighbor site
of Cr and the second-neighbor site of Ti. Both sites are
related to the highest absolute values of binding energy (see
TableI). A strong variation with temperature and concentration
is visible in Fig. 6. In the case of Cr the occupation time ratio
continuously increases with concentration both at low and high
temperature while it decreases with increasing temperature.
The latter is due to the fact that with increasing temperature
the ratio of the residence time in the deepest state to that in
other states decreases because of the higher mobility of the
diffusing atom. The reduction of the diffusion coefficient with
concentration and the concave shape of the curves in Fig. 5(f)
are related to the behavior of the occupation time ratio as shown
in Fig. 6(a). The dependencies of the diffusion coefficient due
to the presence of Al and Mn can be explained similarly to the
case of Cr. The occupation time ratio for Ti [Fig. 6(b)] strongly
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FIG. 6. Residence time ratio for oxygen at the first-neighbor site
of Cr (a) and at the second-neighbor site of Ti (b).

differs from that of Cr. While this quantity also decreases
with temperature, with increasing concentration a pronounced
trend towards saturation is found at low temperature. This is
the reason for the saturation of the reduction of the diffusion
coefficient with increasing concentration observed at these
temperatures [Fig. 5(e)]. Atlow temperature the residence time
of oxygen at the second-neighbor site of Ti is much larger than
at all other sites, even at the rather low concentration of 0.098%.
The explanation of the influence of S and Y on the mobility
of oxygen in terms of the residence time ratio is similar to the
above discussion for Ti.

As already mentioned above, the case of the highest con-
centration (1.852%, one solute in a simulation cell consisting
of 3 x 3 x 3 bce unit cells) does not correspond to a dilute
alloy since there may be a kind of simultaneous interaction
of the diffusing oxygen atom with the solute and its periodic
image. This is illustrated in Fig. 7 by comparison with the
situation in a AKMC cell containing 4 x 4 x 4 bce unit cells.
Due to periodic boundary conditions the environment of the
tenth-neighbor site in Fig. 7(a) differs from that in Fig. 7(b).
In the 4 x 4 x 4 cell as well as in larger cells this site has
one neighbor with a fifth-neighbor distance to the solute,
one neighbor with a ninth-neighbor distance (9b), and two
neighbors with a distance to the foreign atom larger than
the tenth-neighbor distance (denoted by 13 and 17b). In the
smaller cell the considered site has only one neighbor with a
distance to the solute larger than the tenth-neighbor distance
(13) and one neighbor with a ninth-neighbor distance (9b),
but two neighbors with a fifth-neighbor distance. This leads
to a modification of the ratios between the jumps from and
to the tenth-neighbor site while the ratios for the other sites
within the tenth-neighbor shell remain unchanged. The ratio
of the number of jumps between 10 and 5 to the number
of jumps between 10 and 9b is depicted in Fig. 8, for the
solutes of group 2 and 3 at a temperature of 600 and 800 K.
For concentrations up to 0.781% this ratio has a constant

(a)
¢ 9% ¢ ¢
k.T ¢4 ?
| | | |
¢ Y Py T !
D T
(b)
¢ G ¢ ¢
¢ ¢ o ¢ ¢+
Cn gy ¢
. « e .
¢ ¢ o ¢

FIG. 7. Different environments of the tenth-neighbor octahedral
site in a simulation cell consisting of 4 x 4 x 4 (a)and 3 x 3 x 3 (b)
bee unit cells. The figure illustrates the extensions of the simulation
cell in one direction. In larger simulation cells the situation is similar
to panel (a).

value which is determined by the given relation between the
corresponding jump barriers. However, due to the situation
discussed above, at the concentration of 1.852% the ratio
becomes equal to two times the value obtained for the lower
concentrations. At this concentration the highest ratio is found
for Y and Ti. This leads to the intersection of the curves
for the diffusion coefficient in Figs. 5(e) and 5(i). Such an
intersection is not observed for the other solutes considered
in Fig. 8. Obviously, the ratio of jump numbers at 1.852%
is too low in these cases. Note that in Fig. 8 the data points
are relevant whereas the lines are only shown to guide the
eye. The above discussion illustrates a rather artificial example
of a nondilute alloy and shows that in this case the diffusion
coefficient may be higher than at lower concentrations. The

Ratio

SO=NIwWA

.04 <0j5 A 110 1;5 2.0
Concentration (%)

FIG. 8. Ratio of the number of oxygen jumps from 10 to 5 to
the number of jumps between 10 and 9b as function of the solute
concentration at 600 K (a) and 800 K (b).
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general case of a nondilute alloy is not the subject of this
paper. Here a huge number of additional barriers would have
to be determined. These barriers concern all cases of possible
simultaneous interactions of the oxygen atom with more than
one substitutional solute.

Few experimental data on the diffusion of oxygen in iron are
available, and they were already obtained many years ago. All
of them were determined by internal oxidation measurements
[42—45]. This method is based on the observation that solutes
with a higher chemical affinity to oxygen than iron are
preferentially oxidized. This leads to the formation of tiny
precipitates or inclusions. In an oxygen-containing ambient,
a layer with these precipitates is formed, starting from the
sample surface. At a given temperature the square of the layer
thickness increases linearly with time, and the rate depends on
temperature according to an Arrhenius law. This suggests that
the internal oxidation is mainly controlled by the diffusion
of oxygen, and the diffusion coefficient can be determined
by a theoretical analysis of the measured data. Al [42,44], Si
[43], and Ti [45] solutes were considered, with concentrations
between 0.1 and 1 wt. %. The experiments were performed
mainly above the Curie temperature. In the temperature range
between 1023 and 1173 K Takada er al. [43-45] obtained
very similar data for the oxygen diffusion, independently of
whether Al, Si, or Ti was used as the oxide forming solute.
They described the oxygen diffusion coefficient by a simple
Arrhenius formula with activation energy between 0.89 and
0.95 eV. In their investigations of the internal oxidation of
Al solutes in bcc Fe Swisher and Turkdogan [42] used a
different experimental procedure than Takada et al. and found
an activation energy of about 1 eV. The experimental values
of the diffusion coefficient of oxygen determined by internal
oxidation are considerably lower than the theoretical results
of the present paper. Also, the experimental activation en-
ergy is higher than the corresponding temperature-dependent
values which can be obtained from Fig. 5. The fact that the
measured data could be fitted to a simple Arrhenius relation
might be due to the narrow temperature range which was
investigated. The very weak dependence on the kind of solute
is more surprising since a significant difference between Al,
Si, and Ti is found by present theoretical investigations [see
Figs. 5(a), 5(b), and 5(e)]. Therefore, one might conclude that
the slow diffusion of oxygen observed in the internal oxidation
experiments is dominated by the same type of strong traps
which are not considered in the present paper. Such traps
could be, e.g., dislocations. Assuming a dislocation density of
10'> m~2 the areal density per atom is about 0.000008%. This
value is much lower than the concentration of solutes per atom
considered in the cited experiments. However, the trapping
efficiency of a dislocation is not yet known. Its calculation and
the consideration of other traps should be the subject of future
studies. On the other hand, in the polycrystalline samples used
in experiments the grains were relatively large, and there was
no evidence for an influence of grain boundaries on diffusion
and internal oxidation [42]. Furthermore, in the analysis of the
internal oxidation data it was assumed that all oxygen atoms
from the ambient are consumed for oxidation of the solute. This
is mainly because this part of the oxygen atoms can be detected
by the analytical methods that were applied in the experiments.
However, another part which does not contribute to oxidation

but takes part in diffusion may also exist. In order to clarify
the open questions mentioned above it is suggested to perform
new experimental investigations using single-crystalline bcc
Fe samples with high purity and a well-defined concentration of
substitutional atoms, as well as low or varying dislocation den-
sity. In these measurements high-resolution analytical methods
such as secondary ion mass spectrometry in combination
with x-ray photoelectron spectroscopy [46] should be applied.
In this manner the understanding of the complex processes
involving diffusion of atoms and oxidation could be improved
significantly.

IV. SUMMARY AND CONCLUSIONS

The effect of substitutional foreign atoms on oxygen dif-
fusion in bec Fe was investigated by a combination of DFT
calculations and AKMC simulations. At first DFT was used
to investigate three different migration paths of oxygen in
pure bee Fe, i.e., between first-neighbor, second-neighbor, and
third-neighbor octahedral interstitial sites. Most relevant is
the first-neighbor jump with a linear migration path and the
tetrahedral interstitial site as the saddle point. The second-
neighbor jump consists of two successive first-neighbor jumps.
The third-neighbor jump has a nonlinear migration path and
the saddle point corresponds to a rhombohedral interstitial site,
but the barrier for such a direct jump is too high to be relevant
for O diffusion. In the presence of a substitutional solute the
migration path is rather similar to that in pure bcc Fe, i.e.,
from a modified octahedral site via a modified tetrahedral site
to another modified octahedral site as the first-neighbor jump.
The interaction of oxygen with Si, P, Ni, Mo, and W is primarily
repulsive. The corresponding migration barriers are not very
different from that in pure Fe, with the exception of a high
barrier close to the substitutional atom. Al, S, Ti, Cr, Mn, and
Y exhibit strong attractive interactions with oxygen, associated
with large barriers for escape from neighbor shells close to the
solute. The barriers for approaching the substitutional atom are
frequently relatively low. In the vicinity of S and Ti the escape
is impeded by the combined action of the barriers for 2 — 5
and for 5 — 6 or 5 — 10 jumps, while for Al, Mn, and Cr
the combination of the barriers for the 1 — 2 and the 2 — 5
jump impedes the escape. Some peculiarities were found in
the case of Y: A direct transition between neighbors 5 and 6
is not possible and a direct second-neighbor jump between 6
and 2 was considered. In the vicinity of Y the escape of the
oxygen atom is strongly impeded by the combined action of
the barriers for the 2 — 5 and 5 — 10 transitions.

AKMC simulations were applied to study O diffusion in
dilute alloys with concentrations of foreign atoms up to 0.781
at. %. Si, P, Ni, Mo, and W have a very small effect on
the oxygen diffusion coefficient. Al, Cr, and Mn cause a
considerable reduction of oxygen mobility. The reason for
this behavior is the so-called trapping mechanism due to the
attractive interaction between the substitutional solute and O.
Such a mechanism is also responsible for the huge decrease of
the diffusion coefficient observed in the case of S, Ti, and Y. In
all cases investigated the oxygen diffusion coefficient was still
some orders of magnitude higher than that of the corresponding
foreign atom. Therefore, the assumption that the substitutional
solute can be considered to be immobile throughout the AKMC
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simulations is justified. The influence of Al, Cr, Mn, S, Ti, and
Y leads to strong deviations from the Arrhenius behavior of
the oxygen diffusion coefficient. This is due to the significant
temperature dependence of the ratio between residence times
in the respective states. At the concentration of 1.852% a
simultaneous interaction of the diffusing oxygen atom with the
solute and its periodic image may occur. In this rather artificial
example of a nondilute alloy a higher diffusion coefficient than
at lower concentrations may be observed.

The results of the present investigations show a strong
dependence of the oxygen diffusion coefficient on the kind of
the substitutional atom. This changes the picture of oxygen
diffusion in dilute ferritic iron alloys importantly. Future
experimental work is required to study these dependencies
in detail and to consider other trapping mechanisms which
might compete with those considered in the present paper. In
this context theoretical studies on the modification of oxygen

diffusion by other traps than substitutional solutes may be
useful.
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