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Geometry-induced motion of magnetic domain walls in curved nanostripes
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Dynamics of topological magnetic textures are typically induced externally by, e.g., magnetic fields or
spin/charge currents. Here, we demonstrate the effect of the internal-to-the-system geometry-induced motion of a
domain wall in a curved nanostripe. Being driven by a gradient of the curvature of a stripe with biaxial anisotropy,
transversal domain walls acquire remarkably high velocities of up to 100 m/s and do not exhibit any Walker-type
speed limit. We pinpoint that the inhomogeneous distribution of the curvature-induced Dzyaloshinskii-Moriya
interaction is a driving force for the motion of a domain wall. Although we showcase our approach on the specific
Euler spiral geometry, the approach is general and can be applied to a wide class of geometries.
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The deterministic manipulation of magnetic textures, e.g.,
domain walls (DWs) and skyrmions, in magnetic stripes is
a key practical task to realize high-speed, high-density, low-
power, and nonvolatile memory devices [1–4]. Typically, the
motion of DWs is realized externally by applying a magnetic
field [5–7] or electric current [8–10], including curvilinear
geometries [11,12]. The main hurdle on the way toward
achieving high translational speed for DWs is the appearance
of the Walker limit [13–15], which imposes a maximum
value of the driving force (magnetic field, current density) for
translational motion. Several approaches have been proposed
to achieve a high-speed translational DW motion: usage of
antiferromagnetically coupled magnetic nanowires [16,17],
application of spin currents perpendicular to the wire [18],
and application of spin-orbit torques for chiral DWs [19,20]. In
spite of the fact that maximum value of the driving force is zero
for the case of head-to-head (tail-to-tail) DWs in wires with
uniaxial anisotropy, one can realize DW motion with a high
and constant velocity in the precessional regime with a uniform
rotation of the DW phase [21]. Furthermore, it was shown
that the curvature has a drastic influence on the Walker limit
[22–27]. For example, under certain conditions, the Walker
limit can be suppressed in nanotubes [26,27]. An alternative
way to achieve the motion of DWs is based on the deformation
of the DW structure and known as automotion [28–31]. This
type of motion can be realized relying on the coordinate-
dependent cross-sectional area of a nanostripe [30,31],
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nucleation of DWs with inertial motion [29], or transformation
of DWs from the transversal to the vortex [28] by short current
pulses.

Here, we propose a concept of geometry-induced motion
of topological defects in a curved nanostripe. We demonstrate
that a DW performs a translational motion under the influence
of the gradient of the stripe curvature. As we do not observe a
transition to the precessional regime of motion in the case of
a biaxial as well as uniaxial anisotropy, the geometry-induced
motion is free of a Walker-type speed limit. We pinpoint
that the inhomogeneous distribution of the curvature-induced
Dzyaloshinskii-Moriya interaction (DMI) driven by the ex-
change [32,33] acts as a driving force for the motion of
transversal DWs in curved nanostrips. We propose a general
approach valid for a wide class of geometries. The analytical
results are confirmed by means of micromagnetic simulations.

We consider a flat narrow curved ferromagnetic stripe of
a rectangular cross section whose thickness and width are
small enough to ensure the magnetization uniformity along
a wire cross section. The stripe length is substantially larger
than the transversal dimensions. Thus, the magnetization is
described by the continuous and normalized function m =
M/Ms = m(s, t ), where Ms is the saturation magnetization,
s is the arc length coordinate, and t denotes time. Such a
stripe can be parametrized in the following way: r (s, ξ1, ξ2) =
γ (s) + ξ1eN(s) + ξ2eB(s). Here, the three-dimensional radius
vector r defines the space domain, occupied by the stripe,
γ (s) = γx (s)x̂ + γy (s) ŷ is a two-dimensional vector, which
lies within the xy plane and determines the stripe center
line (see Fig. 1). The parameters ξ1 ∈ [−w/2, w/2] and ξ2 ∈
[−h/2, h/2] are coordinates in the transversal cross section
w � h (see Fig. 1).

The magnetic properties of a narrow ferromagnetic stripe
are described using a model of a classical ferromagnetic wire
with a biaxial anisotropy. The easy axis is tangential to the
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FIG. 1. Geometry and notations: we consider a one-dimensional
curved ferromagnet of thickness h and width w with the easy axis eT

and easy plane TN anisotropies.

stripe central line γ , whereas the easy plane coincides with
the stripe plane (TN plane). The magnetic energy of the stripe
normalized by 4πM2

s reads

E = S
∫ ∞

−∞

{
Eex + ka

[
1 − (m · eT)2

] + kp(m · eB)2
}
ds.

(1)

Here, S = hw is the cross-section area. The first term in (1)
is the exchange energy density Eex = �2 ∑

i=x,y,z (∂im)2 with

� = √
A/(4πM2

s ) being the exchange length where A is the
exchange constant. The last two terms in (1) determine the
anisotropy energy density. Vectors eT and eB are unit vectors
along the anisotropy axes, which are assumed to be oriented
along the tangential and binormal directions [34]. Constants
ka = Ka/(4πM2

s ) + kms
a and kp = Kp/(4πM2

s ) + kms
p are di-

mensionless anisotropy constants of easy-tangential and easy-
plane types, respectively, with Ka > 0 and Kp > 0 being
magnetocrystalline anisotropy constants. Terms kms

a and kms
p

arise from the magnetostatic contribution. It is known [7,35,36]
that the magnetostatic energy of a straight and uniformly mag-
netized stripe with rectangular cross section can be reduced to
the effective shape anisotropy [36] with constants

kms
a =

1−δ2

2δ
ln(1 + δ2) + δ ln δ + 2 arctan 1

δ

2π
,

kms
p = 1

2
− 2kms

a , δ = w/h � 1. (2)

For thin, narrow, and curved stripes (ribbons) the approxima-
tion of the shape anisotropy is used also for inhomogeneous
magnetization states [37], including domain walls [15]. In the
limit case of square (w/h = 1) or circular cross sections, the
magnetostatic-shape-induced anisotropy coefficients (2) are
simplified to kms

a = 1/4 and kms
p = 0, which is a well-known

result [7,38] including the case of curvilinear wires [39].
The energy density (1) in terms of the angular parametriza-

tion m = eT cos θ + eN sin θ cos φ + eB sin θ sin φ has the
following form:

E = �2
[
(θ ′ + κ cos φ)2 + (φ′ sin θ − κ cos θ sin φ)2

]
+ sin2 θ (ka + kp sin2 φ), (3)

where the first term corresponds to the exchange energy density
in the curved wire [33] with κ being a curvature of the γ . In
(3) it is taken into account that a flat wire has zero torsion.

To analyze the dynamics of a DW in a curved magnetic
stripe we use a collective variable approach based on the q − �

model [5,40]

cos θ = −p tanh
s − q

�
, φ = �. (4)

FIG. 2. Illustration of a one-dimensional head-to-head DW
(p = +1 and C = −1) geometry in a stripe with the shape of an
Euler spiral described by two collective coordinates: the DW position
q and phase �. Red axes determine curvilinear basis; green arrows and
color scheme determine the magnetization distribution in the stripe
obtained by means of NMAG micromagnetic simulations. Simulation
is performed for the Permalloy stripe with h = 5 nm, w = 15 nm, and
χ�2 = 2 × 10−4 in an overdamped regime (α = 0.5).

Here, {q,�} are time-dependent conjugated collective vari-
ables, which determine the DW position and phase, respec-
tively (see Fig. 2); � is a DW width; p is a topological charge,
which determines the DW type: head-to-head (p = +1) or
tail-to-tail (p = −1). The model (4) coincides with the exact
DW solution for a rectilinear wire (κ ′ ≡ 0). In the following,
the curvature is considered as a small perturbation, which
results in the DW drift while keeping the form (4) unchanged.
The analysis is carried out in the approximation linear with
respect to the curvature and its gradient: κ�/

√
ka � 1 and

κ ′�2/ka � 1.
Substituting the ansatz (4) into (3) and performing integra-

tion over the arc length s, we obtain the energy of a DW in
a curved stripe in the form (up to an additive constant and
quadratic terms with respect to κ)

E
2S ≈ �2

�
+ �ka + �kp sin2 � + pπκ (q )�2 cos �, (5)

where the condition κ� � 1 was applied when integrat-
ing (3). The first three terms in (5) determine the competi-
tion of the isotropic exchange and anisotropy contributions,
while the forth term originates from the curvilinear-geometry-
induced DMI driven by the exchange [32,33]. The last term
in the energy (5) demonstrates the coupling between the
curvature, DW topological charge, and phase, i.e., exchange
energy is minimized when cos � = −sgn(pκ ). This allows
the following geometrical interpretation: the averaged nonuni-
formity of the DW magnetization structure can be controlled
by the DW wall phase � if the curvature is present (see Fig. 1
in Ref. [41]).

In terms of the collective variables, the equations of motion
take a form [42]

α

�
q̇ + p�̇ = −pπω0�

2 ∂κ (q )

∂q
cos �,

(6)
pq̇ − α��̇ = −pπω0�

2κ (q ) sin � + kp�ω0 sin 2�,

where α is the damping parameter, and ω0 = 4πγ0Ms de-
termines the characteristic timescale of the system with
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FIG. 3. Typical behavior of the DW position (a) and phase deviation (b) for a head-to-head DW (p = +1). Geometrical parameters of the
stripe are as follows: χ�2 = 2 × 10−4, w = 15 nm, h = 5 nm. Solid and dashed lines correspond to solutions of the collective variables equations
(6) and predictions of the linearized model [42], respectively. Asymptotic time calculated accordingly to (9) for ε = 0.9. Symbols show the
results of NMAG micromagnetic simulations. Central inset demonstrates the comparison of solutions of the collective variables equations (6)
and predictions of the linearized model of long-time dynamics. In all cases α = 0.01 and Ka = Kp = 0.

γ0 being the gyromagnetic ratio. The DW width is as-
sumed to be a slaved variable [7,22], i.e., �(t ) ≡ �[�(t )] =
�/

√
ka + kp sin2 �. The behavior of the DW width is discussed

in detail in the Supplementaly Material [42]. From (6) it follows
that the gradient of the curvature is a driving force for DWs.
The physical origin of this force is the curvilinear-geometry-
induced DMI driven by the exchange.

The ground state in a curved wire (κ ′ 
= 0) cannot be
strictly tangential: the magnetization vector m deviates from
the tangential direction by an angle ϑ ≈ χ�2/ka (for the case
κ ′ ≡ χ ) in the TN plane. This effect results in the modification
of Eqs. (6) up to corrections in curvature and its gradient of
the second order of magnitude [42]. Therefore, the carried out
analysis of the DW motion in the approximation linear with
respect to the curvature and its gradient is valid.

In the following we apply the general q − � equations of
motion (6) for a particular case of an Euler spiral [43], also
known as Cornu spiral or clothoid (see Fig. 2). The equation
for the central line of such a stripe has the form

γ (s) = x̂
∫ s

0
cos

(
χ

2
ζ 2

)
dζ + ŷ

∫ s

0
sin

(
χ

2
ζ 2

)
dζ. (7)

The curvature in this case is a linear function of the arc
length coordinate κ (s) = χs with χ being the gradient of the
curvature. It is necessary to mention that we are interested
in the stripes of a finite width w. Therefore, to avoid an
overlap between the neighboring windings of the spiral, the
distance between them must be bigger than the stripe width w.
The minimal distance between windings is determined by the
condition κw � 1.

Using a small-angle approximation for the DW phase
ϕ = � − �0 � 1 [44], we obtain the asymptotic expression
for the wall velocity [42]

V = −p Cπ�0ω0
χ�2

α
, (8)

where C = cos �0 = ±1 with �0 being the initial DW phase,
�0 = �/

√
ka . In the following it will be shown that the

initial value of the DW phase coincides with �(t → ∞).
Therefore, we can interpret C as the DW magnetochiral-
ity [45]. For a curved nanowire [46–48] with the curvature κ ∈

[0; 1/150] nm−1 the corresponding curvature-induced DW
velocity is expected to be about 80 m/s [49].

The curvature-induced dynamics are accompanied by the
DW motion in the area of bigger curvature. In this way, in the
energy (5) the last term becomes dominant. This term fixes
the DW phase � = 0 or � = π , which depends on the sign
of the product of the topological charge p and curvature κ (q ).
Therefore, the transition to the precessional regime becomes
suppressed. This effect can be interpreted as the curvature-
induced suppression of the Walker limit. This is in contrast to
the case of field-driven DWs in a straight wire, where the phase
of the DW is not fixed (Zeeman term in the energy of DW is
independent of the phase � [5,7]). Hence, a transition from
translational to precessional regime of DW motion is possible.

Remarkably, the DW velocity (8) is similar to the well-
known expression [50] V u = uβ/α in magnetic stripes with
biaxial anisotropy caused by the Zhang-Li mechanism [9,10],
where β is a nonadiabatic spin-transfer parameter. Current-
induced translational DW motion takes place only if u < uW,
where uW is Walker current [15,50]. However, for the case of
a geometry-induced motion, a Walker-limit-like effect of the
transition to the precessional regime does not appear and the
DW demonstrates a high-speed translational motion without
any external driving. The DW behavior (8) is also similar to
the dynamics of bubbles in a gradient magnetic field [5]. Still,
in our case the DW moves in the direction of the gradient of
the curvature, while bubbles are displaced in the perpendicular
direction to the gradient of the field.

The DW velocity (8) is independent of the easy-plane
anisotropy coefficient. However, this coefficient determines
the time needed for the DW velocity to reach the asymptotic
value (8). This time can be estimated as [42]

tas ≈ −1 + α2

ω0

ln[(1 + α2)(1 − ε)]

2αkp + χ�2
, ε = q̇/V , (9)

where ε < 1 is the asymptotic parameter, which deter-
mines how close the instant velocity is to the asymptotic
value (8). Additionally, the easy-plane anisotropy determines
the maximal DW phase value �max = �0 + ϕmax with ϕmax ≈
−Cπχ�2/(2αkp ) � 1 and kp > 0. At long timescale, the
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FIG. 4. DW velocity q̇ as a function of the gradient of the
curvature. Symbols show the instantaneous DW velocity at the
moment tas determined based on (9) for ε = 0.9. The data are obtained
from NMAG micromagnetic simulations for the stripe with w = 15 nm,
h = 5 nm, and Ka = Kp = 0 [42]. Solid lines show the dependence
q̇ = εV , where the asymptotic velocity V is determined based on
Eq. (8).

change of the DW phase can be written as [42]

� ≈ �0 + p
�0

αV t
, (10)

which results in the condition �(t → ∞) = �0. A typical time
evolution of the DW position q(t ) and phase deviation ϕ(t ) is
shown in Fig. 3.

In the no-damping approximation, the DW motion differs
from (8) and (10). For the case of zero damping, the DW phase
deviation reaches the value ϕ(α = 0) → −Cπ/2, while the
velocity of the DW increases exponentially with time within
the considered model [42]. Note that for the velocities larger
than the minimal phase velocity of magnons, the model should
be revised by including the Cherenkov-like effect [27].

We checked the theoretically predicted velocities for the
DW motion (8) by micromagnetic simulations of magnetically
soft stripes with material parameters of Permalloy [51] using
NMAG code [52] (see Figs. 3 and 4 and the Supplemental
Material [42] for details). The numerics agrees well with the
analytical prediction (8).

The resulting DW velocity as a function of the gradient of
the curvature is plotted in Fig. 4. The DW velocity increases
almost linearly with the gradient of the curvature. The direction
of the DW motion depends on the sign of the product of
the topological charge p, magnetochirality C of the DW,
and sign of the gradient of the curvature χ (q̇ ∝ p Cχ )[ see
Figs. 3(a) and 4]. In Fig. 3(a) the DW position is shown as a
function of time for walls with different sign of the product
of the topological charge and magnetochirality: for p C = −1,
the DW moves in the direction of the increasing curvature. For
the case p C = +1, DW moves in the opposite direction (in
both cases χ > 0) [53].

In conclusion, we predict the effect of geometry-induced
motion of a DW in a curved nanostripe: DWs are driven by the
gradient of the stripe curvature without any external stimuli
[see Eqs. (6) and (8)]. The physical origin of the driving force
is the curvature-induced DMI driven by the exchange [32,33].
Geometry-induced motion results in a high-speed transla-
tional motion of the DW position without transition into
the precessional regime. The latter effect can be interpreted
as a curvature-induced suppression of the Walker limit. We
show that the direction of the DW motion is determined by
the product of the DW magnetochirality, topological charge,
and gradient of the curvature q̇ ∝ p Cχ [see Eq. (8)], while
the change of the DW phase at long timescales results in
� − �0 ∝ 1/q(t ). Additionally, it is necessary to mention that
the coefficient of the easy-plane anisotropy determines the
time (9), which is needed for the DW to reach the asymptotic
velocity (8).

The linear model of the curvature-induced DW motion (6)
can be used also for a three-dimensional wire with small
torsion. The latter contributes to the negligibly small quadratic
corrections. However, the role of the torsion becomes signifi-
cant when the spin torques are applied [11].
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