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Ferromagnets in contact with a topological insulator have become appealing candidates for spintronics due to the
presence of Dirac surface states with spin-momentum locking. Because of this, bilayer Bi, Se;-EuS structures, for
instance, show a finite magnetization at the interface at temperatures well exceeding the Curie temperature of bulk
EuS. Here, we determine theoretically the effective magnetic interactions at a topological insulator-ferromagnet
interface above the magnetic ordering temperature. We show that by integrating out the Dirac fermion fluctuations
an effective Dzyaloshinskii-Moriya interaction and magnetic charging interaction emerge. As a result, individual
magnetic skyrmions and extended skyrmion lattices can form at the interfaces of ferromagnets and topological
insulators, the first indications of which have been very recently observed experimentally.

DOLI: 10.1103/PhysRevB.98.060401

Introduction. The spin-momentum locking property of
three-dimensional topological insulators (TIs) [1,2] makes
them promising candidate materials for future spin-based elec-
tronic devices. One important consequence of spin-momentum
locking in TIs is the topological electromagnetic response,
which arises from induced Chern-Simons (CS) terms [3] on
each surface [4]. This happens, for instance, when time-
reversal (TR) symmetry is broken, which renders the surface
Dirac fermions gapped. This can be achieved, for example, by a
proximity effect with a ferromagnetic insulator (FMI) [5-15].
Inthis case, a CS term is generated if there are an odd number of
gapped Dirac fermions, which is achieved only in the presence
of out-of-plane exchange fields [11]. The realization of several
physical effects related to the CS term that have been predicted
in the literature critically depends on growing technologies
required for the fabrication of heterostructures involving both
strong TIs and FMIs. Recently, high-quality Bi,Ses;-EuS bi-
layer structures have been shown to exhibit proximity-induced
ferromagnetism on the surface of BiySes [6,16,17]. Other
successful realizations of stable ferromagnetic TI interfaces
were demonstrated recently [18,19]. In addition, it was shown
that the interface of FMI and TI can have a magnetic ordering
temperature much higher than the bulk ordering temperature
[5], indicating that topological surface states can strongly affect
the magnetic properties of a proximity-coupled FMI.

These experimental advances motivate us to investigate the
effective magnetic interactions that result from the fluctuating
momentum-locked Dirac fermion surface states of a TI in
contact with an FMIL.

We show that even in the absence of any spontaneous
magnetization, at temperatures above the Curie temperature
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of the FMI, intriguing topologically stable magnetic textures,
i.e., skyrmions, are induced as a result of quantum fluctuations
of the Dirac fermions at the interface. In fact, we demonstrate
that integrating out Dirac fermions coupled to a FMI thin film
generates a Dzyaloshinskii-Moriya interaction (DMI), that,
depending on the form of the Dirac Hamiltonian, favors either
Néel- or Bloch-type skyrmions [20-23]. However, skyrmions
induced in TI-FMI structures feature in addition a ‘“charging
energy,” due to the generation of a term proportional to
the square of the so-called magnetic charge V - n, where n
denotes the direction of the magnetization [24]. An important
feature of our finding is that the Dirac fermions that are
integrated out are not gapped, since there is no spontaneous
magnetization above T, that would lead to a gap in the Dirac
spectrum. Furthermore, the generated DMI is only nonzero if
the chemical potential does not vanish. We obtain the phase
diagram for the skyrmion solutions and identify the region of
stability for skyrmion lattices in the presence of the magnetic
charging energy. We determine this region numerically by
analyzing the excitation spectrum of the skyrmion solution.
An important discovery is that the magnetic charging energy
modifies the phase diagram significantly in the case of DMIs
favoring Néel skyrmions, a situation relevant for Bi;Se;-EuS
interfaces. Our theoretical findings support conceptually the
recent experimental observation of a skyrmion texture at a
ferromagnetic heterostructure of Cr-doped Sb,Tes [19]. Hav-
ing a skyrmion profile on a TI surface will cause significant
changes in the conductance that may be observed in transport
measurements [25].

Interface exchange interactions. The Hamiltonian gov-
erning the Dirac fermions at the interface of a FMI/TI
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heterostructure has the general form
Hpirac(n(r)) = [d(—iAV) — Jon(r)] - o, (1)

wherer = (x,y), o = (04, 0y, 0;) is a vector of Pauli matri-
ces, and Jy is the interface exchange coupling. The operator
d is a function of the momentum operator —i%#V. Here, we
consider the two possibilities leading to a Dirac spectrum,

d, = —ifivpV, dy = —ihvpV x 2, 2)

with the latter arising in TIs such as Bi,Ses, Bi, Tes, and Sb, Tes
[26]. Experimentally, in order for the effective Hamiltonian
(1) to give a valid low-energy description of the physics at the
interface, the TI must be at least 7 nm thick. The end result
will be that d; induces a DMI of the type n - (V x n), which
is often referred to as a bulk DMI, but for clarity we call it
a Bloch DMI. Instead, d, leads to a different type of DMI,
~n-[(ZxV)xn]=m-V)n, —n,(V -n), in the magnetic
literature sometimes known as surface DMI, but to which we
refer to as Néel DMI.

The effective energy E.i of the system is obtained by
integrating out the Dirac fermions ¢ = (¢4, ¢, ) in the partition
function,

e PEm) _ e—ﬂmLdeS(Vxl)2
X / DCTDCe_foﬂ dt fd2rc"'[3, — i+ Hpjrac (n(r))]c (3)

where p, is the magnetization stiffness of the FMI, L is the
film thickness, and the integration is over the film area S. Due
to the nonzero z component of the magnetization, the above
model yields a gapped Dirac spectrum for 7' < T, with spin-
wave excitations, which give rise to a Chern-Simons term [10].
However, this gap does not occur for 7 > T,. In the following,
we assume that the gap vanishes for 7 > T, and we obtain the
corresponding corrections to the free energy after integrating
out the gapless Dirac fermions.

Effective free energy and induced DMI. The noninteracting
Green’s function for a spin-momentum locked system can be
written in general as

gaﬂ(wn’ k) = G(w,, k)(saﬁ + F(w,, k) - Oap, “4)

where w, = (2n + 1)m/B is the fermionic Matsubara fre-
quency.

From the Hamiltonian (1) and the functional integral in (3),
we have

_ iw, + 1
G(w,, k) = Gon T 1) — Bk 5
d(k)
F(w,, k) = (6)

o+ ) — (k)
where d(K) is either d; or d, from Eq. (2) in momentum space.
Integrating out the fermions and expanding the free-energy
expression up to J§, we obtain, after a long but straightforward
calculation, the following correction to the effective free-
energy density [27],

8 b = S{VR(E) + [V - n(e)P)

Dirac

—i—i%n(r) [d(=iAV) x n()], 7

where (Vn)? = Zi:X’M(Vni)2 defines the usual exchange

term, and we have defined s = ﬂJ02 /[247 cosh?(B/2)] and
a= JOZ(STL'hUF)_l tanh(Bu/2). We can drop the constant term
Fpirac(0) from the free energy, since it does not depend on
the field. Thus, we can safely write Fpiac = §FDirac- LThe
above expression features a DMI induced by Dirac fermion
fluctuations. In addition, a contribution ~(V -n)? is also
generated. We will see below that the presence of this term
leads to interesting physical properties when d, is replaced
for d in Eq. (7), modifying in this way the behavior of Néel
skyrmions. Note that differently from the case where the Dirac
fermion is gapped [15], no intrinsic anisotropy is generated by
the Dirac fermions. At the same time, we note that the form of
8 Fpis. including the DMI term will persist also below 7. as
long as the chemical potential is outside the gap, meaning that
the TI surface is metallic, despite the generated mass m for the
Dirac fermions.

Effective magnetic energy in an external field. The contri-
butions from the FMI and Dirac fermions allow one to recast
the effective energy for a thin ferromagnetic layer in the form

Eui =L / (AL(VA) + ¢(V -n)’]
S

+Dépw + MgH(1 —n,)}dS, ®)

where A = p; + 5/(2L) is the effective magnetization stiff-
ness including the fluctuations due to the Dirac fermions. We
assumed that the sample lies in the presence of an external
magnetic field H applied perpendicular to it. We have also
introduced the parameter € = s/(2AL) = s/(2psL + s). The
DM coupling is given by D = a/(2L). The DM interaction
has the possible forms &2, =n - (V x n)or&Y, =n,V -n —
n - Vn,, depending on whether d; or d, arises in the Dirac
Hamiltonian (1). The latter is more adequate for Bi;Se;-EuS
samples [13]. The ab initio results from Ref. [28] indicate that
Jo is largely enhanced due to Ruderman-Kittel-Kasuya-Yosida
(RKKY) interactions at the Bi,Se;-EuS interface, ranging
from 35 to 40 meV. Using Jy = 35 meV one can estimate
that at room temperature s € [0.05, 0.63) meV, and therefore
€ €[0.08,0.51) for a 1-nm-thick film and u € (0,0.1] eV
[29]. Note that € strongly depends on the value of w, which
can be reduced by doping.

Although the temperature fluctuations usually destroy
skyrmions in thin films, the individual skyrmions [30-32]
as well as skyrmion lattices [33] are observed in various
multilayer structures for room temperatures. Therefore, in
experiments, it is reasonable to use a multilayer structure in the
form of the periodically repeated stack TI/FMI/NI, where NI is
anormal insulator. In the following, we neglect the influence of
the thermal fluctuations on the magnetization structure, which
holds when model (8) is applied for a multilayer structure.

Before studying the energy functional ( 8), let us emphasize
that while the DMI is absent for the case of a vanishing
chemical potential, the term (V -n)? is always there, even
if w = 0. Thus, this term is a unique feature of thin-film
FMIs proximate to a three-dimensional TI. In fact, it has been
recently demonstrated that it is also induced for u = 0 at zero
temperature when the surface Dirac fermions are gapped by
the proximity effect to the FMI [15].
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Ground states of system (8) are well studied for the case
€ = 0 [34-38]. The uniform saturation along the field is the
ground state with E.y = O for large fields and weak DM
interactions, and a one-dimensional (1D) structure in the form
of a periodical sequence of 277 domain walls is the ground state
with E¢ < O for small fields and strong DM interactions. The
criterion for the periodical state appearance is negative energy
of a single domain wall, which reads d > d. = 8/m, where
d= ﬁD/ ~AMH is a dimensionless DM constant. In the
vicinity of the boundary d & d,, an intermediate phase in the
form of a two-dimensional (2D) periodical structure (skyrmion
lattice) forms the ground state [20,21,34,39]. An isolated
skyrmion [21,22,35,40] may appear as a topologically stable
excitation of the uniformly saturated state. The skyrmions
and domain walls are of Bloch and Néel types for the DM
interaction in the forms &5, and &3;, respectively.

Here, we study how the ground states and individual
skyrmions are changed when € > 0. Since V- n =0 for any
domain wall and skyrmion of the Bloch type (induced by 5)),
the influence of the term (V - n)? is not significant in this case.
However, it drastically changes the ground-state diagram and
stability of the static solutions for the case of &, In this case,
d. = d¥(e) = 8/n) [} /T + (262 — 1)2d¢ and the period
of the 1D structure is increased with € [27]. Energy per period
is E?’D(d, €)~ ALE(d, €), where £(d, €) is determined by the
implicit relation d/dY (¢) = E(4/E)+/—E /4, with E(k) being
the complete elliptic integral of the second kind [41] (note that
& < 0). For the case &5, the 1D periodical structure is not
affected by € andonehas d® = d(0)and E},(d) = E},(d, 0)
[27].

Skyrmion solutions. Here, we consider the topologically
stable excitations of the saturated state n = 2. First, we utilize
the constraint n> =1 by expressing the direction of the
magnetization in spherical coordinates, n = sin 6(cos ¢x +
siny) + cos 0Z. One can show [27] that for the case é%‘]MI the
total energy (8) has a local minimum if ¢ = x and function
6 = 6(p) is determined by the equation

+e€ n 69,2>

02

1
(1+¢€ 00529)V§9 — siné’cose(

+dsin2 ]

—sinf =0, 9

where we introduced the polar frame of reference {p, x} with
the radial distance p measured in units of £ = /2A/(M;H)
and V2 f =p~'9,(pd,f) denotes the radial part of the
Laplace operator. Equation (9) must be solved with the bound-
ary conditions 6(0) = m, 6(co) = 0. A number of examples
of skyrmion profiles determined by Eq. (9) for various values
of parameters d and € are shown in Fig. S2 [27]. Note that the
skyrmion size is mainly determined by the parameter d, while
the parameter € weakly modifies the details of the skyrmion
profile. For the case &5, the equilibrium solution is ¢ =
X + /2 and the corresponding equation for the profile 6(p)
coincides with (9) when € = 0. Note that in this case Eq. (9)
is reduced to the well-known skyrmion equation [23,34,40].
In order to analyze the stability of the obtained static
solutions we study the spectrum of the skyrmion eigenex-
citations by means of the methods commonly applied for
skyrmions [38,42] as well as for other two-dimensional
magnetic topological solitons [43—-47]. Namely, we introduce
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FIG. 1. Eigenfrequencies of two localized modes, namely, radi-
ally symmetric (m = 0) and elliptic (m = 2), are found by means
of a numerical solution of the eigenvalue problem for different DM
terms. Modes which do not demonstrate instability are not shown.
Stability/instability regions are indicated for the case € = 1.

small, time-dependent deviations 6 = 6y + ¥ and ¢ = ¢g +
¢/ sin Gy, where ¥, ¢ < 1 and 6y = 6y(p), and ¢y denotes the
static profile. The linearization of the Landau-Lifshitz equa-
tions, sinf 9,¢p = ﬁéEeff/SG, —sinf 9,0 = ML‘_SECH/M), in
the vicinity of the static solution results in solutions for the
deviations in the form ¢ = f(p)cos(wt +my + xo), ¢ =
g(p)sin(wt +my + xo), where m € Z is an azimuthal quan-
tum number and Y is an arbitrary phase. Here, T = 1 is the
dimensionless time, where 2o = y H is the Larmor frequency
with y being the gyromagnetic ratio. The eigenfrequencies w
and the corresponding eigenfunctions f, g are determined by
solving the Bogoliubov—de Gennes eigenvalue problem [27].
The numerical solution was obtained for a range of d and a
couple of values of €. A number of bounded eigenmodes with
w < 1 are found in the gap. Eigenfrequencies of the radially
symmetric (m = 0) and elliptic (m = 2) modes are shown in
Fig. 1, where we compare both types of DM terms [48]. If
€ = 0, the spectra are identical for both cases, in particular, the
well-known elliptical instability [35,38] takes place due to the
softening of the elliptic mode in the region d > d., where the
uniformly saturated state is thermodynamically unstable [38].
For the case &p); the € term shifts the elliptical instability to
the larger values of d with the conditiond > d" (¢) kept, while
in the case &5, the effect of the € term is negligible.
Remarkably, the € term influences oppositely on the breath-
ing mode (m = 0), for different DM types. For the case
&8 4 the eigenfrequency wy is increased and for small d the
breathing mode is pushed out from the gap into the magnon
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continuum. As a result, the small-radius skyrmions are free of
the bounded states. This is in contrast to the case &)} ;, when the
breathing mode eigenfrequency is rapidly decreased, resulting
in aradial instability for small d. In order to give some physical
insight into the latter effect, we consider the model where
the skyrmion profile is described by the linear ansatz [23,34]
0a(p) = (R — p)H(R — p),and ¢ = x + . Here, the vari-
ational parameters R and @ describe the skyrmion radius and
helicity, respectively, and H(x) is the Heaviside step function.
For this model, total energy (8) with &pyr = &y reads

E_f:; = eex + €€, cOs> D — 28 cos DR + Re (10)
mr AL — Cex € H»
where the constants e & 6.15 [49], e, = eex — w2 /4, and
eg=1-— 4/712 originate from the exchange, e-term, and
Zeeman contributions, respectively. Here, § = dmw /4. The
energy expression (10) shows that the equilibrium helicity ®
is determined by the competition of the € term, which tends to
® = £7/2 (Bloch skyrmion), and the DM term, which tends
to @ = 0 (Néel skyrmion). At the same time, the equilibrium
skyrmion radius is determined by the competition of the DM
and Zeeman terms, and for the Bloch skyrmion one has R = 0.
Thus, the skyrmion collapse is expected with the € increasing.
Indeed, the minimization of the total energy (10) with respect
to the both variational parameters results in the critical value
€, =82 /(ecen): If € < €., then the equilibrium values of the
variational parameters Ry = §/eyg and &y, = 0 determine the
Néel skyrmion; if € > €., the minimum of energy (10) is
reached for Ry = 0 and &y = +m /2. The latter corresponds
to a collapsed Bloch skyrmion. In other words, a stable Néel
slyrmion exists for the case € < €.. Surprisingly, there are no
intermediate states with 0 < &y < /2 when € > €,.
Skyrmion lattice. In order to estimate the region of existence
of the skyrmion lattice we use the circular cell approximation
[34], when the lattice cell is approximated by a circle of
radius R and the boundary condition 6(R) = 0 is applied.
The skyrmion profile is described by the same linear ansatz
as for the case of an isolated skyrmion. Minimizing the energy
(10) per unit cell EY, = EX /(7 R?), one obtains the following
equilibrium values of the variational parameters @ = 0,
R(I)\I (€) = (eex + €€.)/8, and the corresponding equilibrium
energy reads EN (€)= 2AL[en — 8%/(eex + €ec)]. For the
case &5, the same procedure results in the e-independent
values ®f = /2, RS = R} (0), and ES, = EX(0).
Comparing the energies of three states, namely, the energy
of the uniform magnetization along field E = 0, energy of
the 1D periodical state (per period) E|p, and energy of the
skyrmion lattice per unit cell E;p, we determine the phase
diagram of the ground states (see Fig. 2). Note that for € >
€0 ~ 0.98 the skyrmion lattice is not a ground state. Given the
dependence of € with the exchange coupling J, temperature,
and chemical potential, the skyrmion lattice phase is likely to
occur for a not too high-temperature range as compared to the
Curie temperature of EuS. The dimensionless DM parameter
d can then be tuned by the external field to attain the interval
shown under the green area of Fig. 2(a).

@ Ei=1n.V-n—n-Vn,
[] uniform saturation along field
6 [] periodical 1D modulation
[[] 2D skyrmion lattice
4t
2t -
T
_________ - Tk d
1 2 3 4 5
) ¢ g]f]\n =n- (V X n)
skyrmion (Bloch) excitations ‘
d

1 2 3 4 5

FIG. 2. Diagrams of the ground states for different kinds of DMI.
(a) The red line is determined by the condition d = dN(e), which
separates the uniform state and periodical 1D modulation. The green
region of the Néel skyrmion lattices is determined by the conditions
EX, < EY, and E}, < 0 to the right and to the left of the red line. The
gray dashed line is the line of collapse of the Néel skyrmions, which
is determined by the condition € = €.(d). (b) Colors have the same
meaning as in (a), but periodical helical state and skyrmion lattices are
of Bloch type. The excitations in the form of isolated Bloch skyrmions
are stable within the all-white region. If d, is used in the Hamiltonian
(1), the coefficient of the (V - n)? would be negative, which would in
turn make the Bloch skyrmion more stable.

Conclusions. We have shown that the effective magnetic
energy for a TI-FMI heterostructure exhibits a Dzyaloshinskii-
Moriya term induced by tracing out the surface Dirac fermions
proximate to the FMI. A unique feature of the effective energy
as compared to other DM systems is the presence of an addi-
tionally induced magnetic capacitance energy, given by a term
proportional to the square of the magnetic charge V - n. Despite
having a small magnitude in realistic samples, the interplay
between this term and the DM one yields a phase diagram with
interesting phase boundaries in the case of a Néel DMI, which
is the situation relevant for, e.g., BipSes; samples proximate to
a FMI. Our theory is directly relevant for very recently synthe-
sized TI-ferromagnetic thin-film heterostructures, in some of
which the formation of a skyrmionic magnetic texture has been
observed [19].
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