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During the evolution of discrete nonlinear systems with dynamics dictated by the discrete nonlinear Schrödinger
equation, two quantities are conserved: system energy (Hamiltonian) and system density (number of particles). It
is then possible to analyze system evolution in relation to an energy-density phase diagram. Previous works have
identified a “thermalization zone” on the phase diagram where regular statistical mechanics methods apply. Based
on these statistical mechanics methods we have now assigned a specific equilibrium temperature to every point of
the thermalization zone. Temperatures were derived in the grand canonical picture through an entropy-temperature
relation, modified to suit the nonlinear lattice systems. Generally, everywhere in the thermalization zone of the
phase diagram, temperatures along a fixed system-density line, grow monotonously from zero to infinity. Isotherms
on the phase diagram are concave.
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Introduction. Temperature is a key statistical parameter
associated with physical systems that can be characterized by
statistical mechanics methods. Somewhat unexpectedly, such
are nonlinear systems with evolution dynamics dictated by the
ubiquitous discrete nonlinear Schrödinger equation (DNLSE).
Rasmussen et al. have identified a thermalization zone on the
phase diagram of DNLSE-governed systems in which regular
statistical mechanics methods apply [1]. In the thermalization
zone, self-trapping of energy does not occur and breathers are
not formed. Rather, in a nonequilibrated system, a process of
energy exchange starts, very slow at high nonlinearities, until
system equilibrium is reached with statistics that can be de-
scribed by the equipartition function. This thermalization zone
is bounded by zero and infinite temperature lines, as shown in
Fig. 1. A system placed at a specific point within the thermal-
ization zone, as determined by the initial excitation conditions,
will reach a statistical equilibrium with a unique temperature.

In this work we derive the system temperature between
the zero and infinite temperature lines, and generate a map of
temperatures in the strong nonlinearity (or strong interaction)
limit. We have divided the thermalization zone into a cold zone
and a hot zone and calculated entropies vs energy to derive
temperatures across the thermalization zone.

The general notion of temperature of DNLSE systems
has previously been applied in various studies: diffusion and
nonequilibrium [2–5], instabilities [6], phase transitions [7–9],
breather evolution [10–13], equation solution [14], trapped
ultracold atoms [Bose-Einstein condensate (BEC)] [10,15–
20], dynamics at low temperatures [21], Bloch oscillations
[22], beam steering [23], and waves localization [24]. Our
temperature expressions can therefore be useful to the study
and unification of a wide range of physical systems. Franzosi
derived an expression for temperatures in the microcanonical
picture given systems with two first integrals [25]. Our study
uses the common grand canonical picture.
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Equation and conserved quantities. The fields’ evolution
dynamics considered here is described by a normalized one-
dimensional (1D) periodic cubic [14] DNLSE [26]:

i
dUm(z)

dz
= −[Um−1(z) + Um+1(z)] − �|Um(z)|2Um(z).

(1)

Here Um is the complex field at site m at position (or time)
z. The array consists of N sites, assumed large, and periodic
boundary conditions are employed.

Correlations of two fields separated by k sites are defined
as

Ck (z) = 1

2N

N∑
m=1

[U ∗
m(z)Um+k (z) + Um(z)U ∗

m+k (z)]. (2)

To express energy quantities we apply the canonical trans-
formation and write the complex field Um as a product of
an amplitude um (a real non-negative number) and a phase
factor, exp(iφm), and define an angle difference θm : Um ≡
ume iφm ; Im ≡ UmU ∗

m = u2
m; θm ≡ φm − φm+1. We refer to

Im as site densities (with dimensions of energy).
The DNLSE [Eq. (1)] is nonintegrable [27,28], and has two

constants of motion [14,29,30]. The first is the Hamiltonian𝒽a ,
the sum of two unconserved quantities: 𝒽a = 𝒽2(z) + 𝒽4(z)
with

𝒽2(z) = 2

N

N∑
m=1

um(z)um+1(z) cos[θm(z)] = 2C1(z),

𝒽4(z) = �

2

1

N

N∑
m=1

u4
m(z). (3)

Here 𝒽2(z) is the “kinetic energy,” and 𝒽4(z) the “in-
teraction energy.” The Hamiltonian 𝒽a as defined above
is site-averaged. The second conserved quantity, wa =
1
N

∑N
m=1 Im(z), is the site-averaged density (or “norm” [2,26]

or “wave action” [31]).
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FIG. 1. Zones on the DNLSE phase diagram. The zone between
the T0 line (blue) and the T∞ line (red) is the thermalization zone [1].
The thermalization zone is further divided by the Li line (green) into a
“cold zone” (white) and a “hot zone” (light gray). In the present work
we limit the discussion mostly to systems with strong nonlinearity
(�wa � 1, that is, broadly to the right of the black vertical line at
wa = 6). The curves on the right are schematic representatives of
PDF curves for the densities for each line.

Zones of the DNLSE phase diagram. The DNLSE phase
diagram 𝒽a (wa ) (see Fig. 1) can be divided into three zones:
a lower inaccessible zone, a central thermalization zone, and
an upper negative temperature zone [1]. The thermalization
zone can be further divided into two: a lower cold zone
and an upper hot zone. To be more specific, three limiting
lines are defined as follows: zero temperature line (T0 line):
𝒽a (wa ) = −sgn(�)2wa + (1/2)�w2

a , an intermediate line (Li

line): 𝒽a (wa ) = (1/2)�w2
a , and an infinite temperature line

(T∞ line): 𝒽a (wa ) = �w2
a . The intermediate Li line is unique

in terms of excitation. To place a system on this line it can
be excited by equal amplitudes and fully random phases [32].
To place a system above this line, excitation amplitudes must
be unequal. To place a system below this line, excitation
phases cannot be fully random. The Li line also has a physical
meaning: it becomes the upper border of the thermalization
zone for � → 0 and it becomes the lower border of the
thermalization zone for � → ∞. Below we show that system
temperature along most of the Li line is T (wa ) ∼= 2wa/|�|.

Definition of temperatures in the strong nonlinearity limit.
According to the quantum phase model, the entropy of DNLSE
systems splits in the strong nonlinearity limit into a sum
of entropies sθ + sI [32,33]. We define the DNLSE system
temperature in the standard way (cf. the definition in [34]),
with a small modification,

TDNLSE(wa,𝒽a ) =
(

�
∂ssys (wa,𝒽a )

∂𝒽a

)−1

wa

, (4)

where ssys = sθ + sI and

sθ ≡ −
∫ 2π

0
Pθ (θ ) ln [Pθ (θ )]dθ,

sI ≡ −
∫ ∞

0
PI (I ) ln [hPI (I )]dI ; h = 1. (5)

Pθ (θ ) and PI (I ) are equilibrium probability distribution
functions (PDFs) for the relative angles (θm) or densities (Im)
across all sites of the large array. The value of the scale
parameter h, with units of energy, is set at 1.

The entropy sI of Eq. (5) is given by the Gibbs entropy equa-
tion [35], independent of the nonlinearity coefficient �. But in
the microcanonical picture, the number of states of a DNLSE
system grows exponentially with � (ignoring the typically
small kinetic-energy contribution), and thus the entropy grows
linearly with �. Here we keep the entropy dimensionless and
insert the nonlinearity coefficient � into the temperature defini-
tion [Eq. (4)]. The dimension of DNLSE system temperature is
thus energy2. Indeed, as discussed below and as was verified by
our ample numerical simulations across the high nonlinearity
region of the DNLSE phase diagram, temperature is essentially
equal to the density “variance,” also with units of energy2.
[If the PDF(I) is written as PI (I ) ∝ exp[−(a/2)I 2 − bI ],
then the density variance is 1/a]. Clearly, much like the
relations of temperature and the actual variance of |velocity| of
gas molecules – low temperature ↔ narrow Pv (v) or PI (I ),
high temperature ↔ wide Pv (v) or PI (I ).

Temperature calculation procedure. In the following sec-
tions we derive expressions for the DNLSE system temper-
atures, based on Eqs. (4) and (5). For that we need to find
the entropy, and therefore the equilibrium PDFs for I and θ

for each point on the phase diagram (wa,𝒽a ). We found it
convenient to start by assuming particular excitation conditions
that equilibrate to different regions of the phase diagrams, and
from these to calculate the resulting PDFs. With two specific
excitation profiles we are able to cover the entire thermalization
zone.

We show below that either exactly or to a very good
approximation, the temperatures are given by the variance
(σ 2

I ) of the equilibrium PDF of density PI (I ). Since the
variance is determined once the two parameters defining the
equilibrium PI (I ) are determined, the temperature can be
evaluated without calculating entropy and its derivative.

Equilibrium temperatures of systems in the cold zone. In this
section we first derive analytic expressions for two equilibrium
PDFs (density and phase-angle difference) and then, given
these PDFs, derive the temperatures. We note that at zero
temperature the system is in its ground state. The ground state
is characterized by uniform amplitudes and zero (� < 0) or
π (� > 0) relative phase between neighbors. At the ground
state, regardless of system density, the variance of the density
vanishes, σ 2

I = 0.

(i) PDF expressions for the cold zone. A convenient sta-
tistical excitation to place a system in the cold zone is to
excite all amplitudes uniformly with a value u0 and select the
phase angles randomly from a limited window of width φ0. For
� < 0 the phase window is set around 0 for all sites. For � > 0
the phase window is set around 0 for odd sites and around π

for even sites. A zero-width window (φ0 = 0) corresponds to
excitation of the ground state. Broadening the phase window
φ0 from 0 to 2π will translate the system vertically on the
phase diagram along a wa = u2

0 line from the T0 line up to the
Li line.

By maximize system entropy (similar maximization is
described in more detail in [36]) we have derived the following
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FIG. 2. System entropy and system temperature in the cold zone,
for a fixed system density wa = 20. (a) System entropy as the sum
ssys = scd

θ + scd
I . The fitted curve (light dashed cyan) is a log curve. (b)

System temperature. Magenta curve: calculated through Eqs. (5) and
(4). Dashed-dotted straight line: the derivative of the fitted log curve
of entropy. The dashed cyan line in Fig. 2(b) is given by the variance
of Pcd

I (I ), showing excellent match to the exact temperature. Inset:
temperature in the cold zone for the higher nonlinearity coefficient
(� = 2.5). The curve indicates that as the value of the nonlinearity
coefficient (� > 0) increases, while the area of the entire cold zone
shrinks relative to the total area of the thermalization zone, the slope
of the line of system temperatures in the cold zone decreases.

PDF expressions (superscript “cd” stands for “cold”):

Pcd
I (I ) = 1


I

e−(η�/2)(I−wa )2
,


I =
√

π

2η�

[
1 + erf

(
wa

√
η�

2

)]
, (6)

Pcd
θ (θ ) = 1

2πI0(2ηwa )
e−[2ηwa cos (θ )],

where I0(·) is the modified Bessel function of the first kind.
The parameter η is defined by

η

{
4wa

[∫ 2π

0
cos(θ )Pθ (θ )dθ + C0

]}
+ 1 = 0,

C0 = (1 − cos φ0)/
(
0.5φ2

0

)
, (7)

sgn(η) = sgn(�).

The PDFs of Eq. (6) are determined by only one pa-
rameter, φ0(wa,𝒽a ). System energy is related to this one
parameter by the monotonically rising function: 𝒽a (φ0) =
2waC0(φ0) + 0.5�w2

a . Inverting this equation (numerically)
yields φ0(wa,𝒽a ).

(ii) Equilibrium temperatures in the cold zone. Given the
expressions Pcd

θ (θ ) and Pcd
I (I ) from Eq. (6), entropies (scd

θ ,
scd
I ) are calculated via Eq. (5) and temperatures are derived

using Eq. (4). Entropy curves and temperature curves are
shown in Figs. 2(a) and 2(b), respectively. The dash-dotted
line of Fig. 2(b) is given by the variance of Pcd

I (I ), that
is, Tcd (wa,𝒽a ) = 1/(η�), showing an excellent match to the
exact temperature, represented by the continuous magenta line.

The sum of entropies curve can be well approximated
by a logarithmic function of the form ssys (wa,𝒽a ) =
ln[𝒽a − C1(wa )] + C2, as shown by the dashed line in
Fig. 2(a).

The derivative of this log-fitted curve results in a particularly
simple dependence of system temperature on the coordinates
in the cold zone:

Tcd (wa,𝒽a ) ∼= 𝒽a − C1(wa )

�
,

C1(wa ) ≡ −sgn(�)2wa + 1

2
�w2

a. (8)

For a fixed system density wa , Tcd (wa,𝒽a ) of Eq. (8) grows
linearly with energy: as system energy𝒽a is increased from the
T0 line to the Li line, the system temperature rises from zero to
2wa/|�|. This linear approximation is particularly good at low
temperatures, and is shown by the dash-dotted line in Fig. 2(b).

Equilibrium temperatures of systems in the hot zone. To
calculate temperatures in the hot zone, we assume a different
excitation statistic, with fully random phases and a non-
negative Gaussian distribution of amplitudes [34],

P (u > 0) = 1

Ru

exp

[
− (u − μ)2

2σ 2

]
(9)

with Ru appropriate normalization constant.
We have previously derived analytic equilibrium PDF ex-

pressions for such excitations. The lower part of the hot zone
is still characterized by strong correlations between the sites,
and we deal with it first. At higher temperatures, correlations
are weak and simpler analysis can be employed.

(i) Temperatures in the strong correlations region. On and
just above the Li line, the strong field correlations charac-
terizing systems in the cold zone persist [32,36]. Therefore,
for systems placed in this region the kinetic-energy term
[𝒽2(zs ) = 2C1(zs )] cannot be neglected and must be included
in the formulation of the temperature. As in the cold zone, both
angle-associated entropy ssc

θ , and density-associated entropy
ssc
I contribute, and the system’s entropy in the strong correla-

tions region is given by the sum ssc = ssc
θ + ssc

I [32,36]. Ex-
pressions for the PDFs in this strong correlation region,PI

sc(I )
and Pθ

sc(θ ), were derived [[36], Eq. (16)]. These are given in
terms of the two excitation parameters (μ, σ ) through the sta-
tistical excitation moments, [M1(μ, σ ),M2(μ, σ ),M4(μ, σ )]
[[36], Eq. (12)]. The conserved quantities are related to the
excitation moments as wa (μ, σ ) = M2(μ, σ ) and𝒽a (μ, σ ) =
0.5�M4(μ, σ ). To determine (μ, σ ), one needs to invert these
two relations for [M2(μ, σ ),M4(μ, σ )], and solve for (μ, σ )
and for ηsc(M1,M2,M3) [[36], Eq. (16)]. With those PDFs we
can calculate the related entropies and the related temperature,
Tsc(wa,𝒽a ).

(ii) Temperatures in the weak correlations zone. For points
above the Li line and toward the T∞ line, the interaction
energy dominates. Under the weak correlation approximation
(or “weak-coupling limit” [31]) the small kinetic-energy term
(𝒽2 = 2C1) can be neglected and the PDF for the intensity
becomes [31] -

PI
wc(I ) = 1

RI

e−εI 2−αI ; ε � 0 (10)

with RI an appropriate normalization constant. The two
parameters ε(wa,𝒽a ) and α(wa,𝒽a ) are fixed such that the
two conserved quantities (wa,𝒽a ) are given by the first and
second moments of this distribution.
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FIG. 3. A representative curve of temperatures of DNLSE sys-
tems at fixed system density (wa = 50). The inset is a zoom-in to low
system-energy values. The blue-green-red vertical markers mark the
crossing of the (T0, Li, T∞) lines. The vertical gray line marks the
position of switching from strong correlations to weak correlations in
the hot zone as applied to temperature calculations. The dashed line
is the variance of the density distribution (see text) that provides an
excellent approximation to the temperature over most of the energy
range.

The associated entropy is worked out to be swc(wa,𝒽a ) =
ln[πRI (wa,𝒽a )] + 2ε(wa,𝒽a )𝒽a

�
+ α(wa,𝒽a )wa . It turns out

that only one term contributes to the temperature, leading to

Twc(wa,𝒽a ) =
(

�
∂swc(wa,𝒽a )

∂𝒽a

)−1

wa

= 1

2ε(wa,𝒽a )
. (11)

Note the difference by a factor of 2 compared with the
temperature in Ref. [11]. We see from Eq. (11) that the
temperature in the weak correlations zone of the DNLSE
phase diagram is independent of the nonlinearity coefficient
�. Further, the temperature in the weak correlations zone
of the DNLSE phase diagram coincides with the variance
[1/2ε(wa,𝒽a )] of the grand canonical Gaussian distribution of
equilibrium densities PI

wc(I ). Here and in the text below we
use variance to stand for the variance of a given PDF(I � 0)
as if calculated for −∞ < I < ∞ and a renormalized PDF.

The two temperature curves Tsc(wa = C,𝒽a ) and
Twc(wa = C,𝒽a ) cross. The overall temperature curve for the
hot zone is obtained by switching from Tsc(wa = C,𝒽a ) to
Twc(wa = C,𝒽a ) at their crossing point.

Equilibrium temperatures of systems on the DNLSE phase
diagram. Figure 3 shows the overall curve of temperatures
from the T0 line to the T∞ line (for a fixed system density). It
is obtained by switching from derivation through Pcd

θ (θ ) and
Pcd

I (I ) between the blue and the green markers, to derivation
through P sc

θ (θ ) and P sc
I (I ) between the green and the gray

markers, to derivation through Pwc
I (I ) form the gray marker

and on. The result is a single continuous curve as shown in
Fig. 3. The dotted line shows the variance of the density PDF,
which provides a good approximation for the temperature over
most of the range. A full map of temperatures calculated for

FIG. 4. Equilibrium temperatures of systems in the strong non-
linearity zone of the DNLSE phase diagram (note the loge scale of the
map. Values below 1 were numerically raised to 1). Blue, green, and
red lines are (T0, Li, T∞) lines, respectively. The region below the
T0 line is inaccessible, and the one above the T∞ line is the negative
temperatures region. The black area next to the T∞ line represents
very high yet not numerically calculated temperatures. The dark line
crossing the map is a constant temperature line (T = 500). The inset
shows a curve of temperatures (on a loge scale) vs system energy for
a constant system density at the right edge of the map (wa = 50; cf.
Fig. 3). The curve shows very fast temperature rise getting closer to
the T∞ line.

the strong nonlinearity zone of the DNLSE phase diagram is
shown by Fig. 4.

Discussion and conclusion. We have seen that excitations
of the DNLSE system, depending on their initial values of
density and energy, thermalize to particular equilibrium
states. There is a set of nonstatistical excitations that
seems to violate this thermalization claim. Namely,
the set of eigenmodes of the linear system. These are
characterized by equal amplitudes, equally spaced phases, and
uniformly modified propagation wave numbers {Um,q (z) =
u0exp[(i(m − 1)αq )]exp(ikzqz); αq≡q2π/N ; kzq=2 cosαq

+ �u2
0; q = −N/2, . . . , 0, . . . , N/2 − 1}. Mathematically,

field amplitudes of these excitations will remain unaltered,
thus corresponding to a zero temperature. However, these
modes are unstable. If small noise is added (either amplitude
noise or phase noise), the perturbed modes will thermalize
according to their position in the thermalization zone.

We have demonstrated that the variance of the PDF of the
density provides an excellent approximation for the tempera-
ture. As can be observed in Fig. 3, the only region where this
approximation is less accurate is the transition region between
strong and weak correlations in the hot zone, a region where
our entropy-based derivation and PDFs are less exact. Note
that the variance is the true variance of the PDF in the lower
range of temperature, but broader than the actual variance in
the high-temperature region, where the variance is calculated
as if negative values for the density were allowed.

Our temperature analysis holds for both signs of the non-
linearity coefficient (�). In the temperature definition given
by Eq. (4) both � and ∂𝒽a appear. Now, it is clear from
the definition of the phase diagram, that if � changes signs,
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the entire diagram flips through the horizontal mirror line of
𝒽a = 0, i.e., 𝒽a → −𝒽a . Thus, as both � and ∂𝒽a change
signs simultaneously, temperatures remain positive and their
values are independent of the nonlinearity sign. Note also
that the temperature-related I 2 coefficients (η�) or α in the
PI (I ) expressions are always positive, independent of the
nonlinearity sign. Note that flip of the nonlinearity sign will not
in general place a system on an equivalent point of the flipped
phase diagram.

These results hold for all 1D nonlinear systems of equal sites
that evolve under the DNLSE dynamics: optical waveguides,

polymer chains, etc., including systems of trapped ultracold
atoms that evolve under the dynamics of the equivalent Gross
Pitaevskii equation, and they can be easily extended to higher-
dimensional systems.
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