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Spin transport in half-metallic ferromagnet-superconductor junctions
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We investigate the charge and spin transport in half-metallic ferromagnet (F ) and superconductor (S)
nanojunctions. We utilize a self-consistent microscopic method that can accommodate the broad range of energy
scales present, and ensures that proximity effects that account for the interactions at the interfaces are accurately
determined. Two experimentally relevant half-metallic junction types are considered: The first is an F1F2S

structure, where a half-metallic ferromagnet F1 adjoins a weaker conventional ferromagnet F2. The current is
injected through the F1 layer by means of an applied bias voltage. The second configuration involves an SF1F2F3S

Josephson junction whereby a phase difference �ϕ between the two superconducting electrodes generates the
supercurrent flow. In this case, the central half-metallic F2 layer is surrounded by two weak ferromagnets F1

and F3. By placing a ferromagnet with a weak exchange field adjacent to an S layer, we are able to optimize the
conversion process in which opposite-spin triplet pairs are converted into equal-spin triplet pairs that propagate
deep into the half-metallic regions in both junction types. For the tunnel junctions, we study the bias-induced
local magnetization, spin currents, and spin-transfer torques for various orientations of the relative magnetization
angle θ in the F layers. We find that the bias-induced equal-spin triplet pairs are maximized in the half metal for
θ ≈ 90◦ and, as part of the conversion process, are anticorrelated with the opposite-spin pairs. We show that the
charge current density is maximized, corresponding to the occurrence of a large amplitude of equal-spin triplet
pairs, when the exchange interaction of the weak ferromagnet is about 0.1EF . For the half-metallic Josephson
junctions we often find that the spin current flowing in the half metal is equivalent to the charge supercurrent
flowing throughout the junction. This is indicative that the current consists of spin-polarized triplet pairs. The
conversion process of the opposite-spin triplet pairs to the equal-spin triplet pairs in the weaker magnets is clearly
demonstrated. This is exemplified by the fact that the supercurrent in the half metal was found to be relatively
insensitive to its thickness.
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I. INTRODUCTION

Superconductor (S) and ferromagnet (F ) hybrids have
opened up many new possibilities for further advancements
in spintronics devices whose purpose is to manipulate the flow
of charge and spin currents [1]. Central to their functionality
is experimental control of the spin degree of freedom while
enjoying the dissipationless nature of the supercurrent. This
control is typically afforded through magnetization rotations
of one of the free ferromagnetic layers, achieved via weak
in-plane external magnetic fields, or by the spin-transfer torque
(STT) effect. The most commonly studied transport structures
based on superconductors and ferromagnets are equilibrium
Josephson junctions or voltage-biased superconducting tunnel
junctions. In any case, the underlying junction architecture
often involves spin and charge transport through a spin-valve
configuration. A basic superconducting spin valve consists of
two or more ferromagnets adjacent to a superconductor [2–4],
where rotation of one of the F -layer magnetizations modifies
the induced oscillatory singlet pairing in the ferromagnets.
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If the F layers are half metallic, these oscillations rapidly
dampen out due to their incompatible nature. If however the
ferromagnetic regions have noncollinear magnetizations, as
will be discussed shortly, triplet pairs with parallel projection
of spin can be created that extend deep within the half metal.
In Ref. [5], it is also suggested that magnon excitation plays
a role in the conversion between singlet and triplet pairs.
These spin-polarized triplet pairs are thus of great interest, and
their signatures have been theoretically predicted [6–8] and
experimentally observed [9] in the superconducting critical
temperature of half-metallic spin valves when rotating one
of the F -layer magnetizations. Transport measurements in
a half-metallic Josephson junction [10,11] demonstrated a
supercurrent through the half metal CrO2, also indicating the
current is carried by equal-spin Cooper pairs since singlet pairs
are blocked by the half metal. Because control of the transport
of dissipationless spin currents is a major objective of low-
temperature spintronics devices, superconducting junctions
that merge half-metallic ferromagnets and superconductors are
increasingly being recognized as valuable platforms to study
these two competing orders.

Spin currents can flow within superconducting junctions
with two or more F layers due to the ferromagnetic exchange
interactions. They can also flow with the help of induced
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equal-spin triplet pairing correlations, where the Cooper pairs
have a net spin of m = ±1 on the spin quantization axis. The
generation of these long-range triplet correlations in super-
conducting heterostructures with magnetic inhomogeneities
has been well studied theoretically [12] and experimentally.
By introducing magnetic inhomogeneity, e.g., inclusion of
multiple magnets with misaligned exchange fields [13], or
via spin-active interfaces [14,15], the Hamiltonian no longer
commutes with the total spin operator, and equal-spin triplet
correlations can be induced. Due to the imbalance between
majority and minority spins in a ferromagnet, conventional
singlet pairing correlations decay over short distances within
the magnetic region. However, Cooper pairs with electrons that
carry the same spin (m = ±1) are not subject to paramagnetic
pair breaking and can in principle propagate for large distances
inside the ferromagnet, limited only by coherence-breaking
processes. Such long-range m = ±1 triplet correlations thus
play an important role in Josephson and tunnel junctions
containing ferromagnets with noncollinear magnetizations.

While there has been extensive work towards isolating
and detecting the triplet pairing state, it can be difficult to
disentangle the equal-spin triplet and opposite-spin singlet and
triplet correlations. It is therefore of interest to investigate
heterostructures that restrict the formation of opposite-spin
pairs while retaining the desired equal-spin triplet correla-
tions. The pinpointing of triplet effects can be exploited with
the use of highly polarized materials such as half-metallic
ferromagnets, where only a single spin channel is present
at the Fermi level. The ordinary singlet pairs and opposite-
spin triplet pairs are consequently suppressed, as the magnet
behaves essentially as an insulator for the opposite-spin band.
Half-metallic ferromagnets are thus finding increasing use in
superconducting spin valves. Several half-metallic materials
are considered in connection with superconducting hybrids
and spintronic applications. These include the manganese
perovskite La2/3Ca1/3MnO3 [9,16–19], as well as the Heusler
compounds such as Cu2MnAl, which are favorable experi-
mentally, since they can be grown by sputtering techniques
[20]. The conducting ferromagnet CrO2 [10,11,21] is also
a candidate for use in half-metallic spin valves, although it
cannot be grown by sputtering methods, and is metastable.

Experimental signatures of triplet correlations in half-
metallic SF1F2 spin valves have been demonstrated in tran-
sition temperature Tc variations that occur when rotating the
magnetization of the free ferromagnet layer [9,21]. Measuring
the corresponding maximal change in the critical temperature,
�Tc, can represent the emergence of spin-polarized triplet
pairs as the singlet superconducting state weakens and is sub-
sequently converted into opposite-spin and equal-spin triplet
pairs. Most experiments for these types of spin-valve structures
involved weak ferromagnets for the outer F2 layer and in-plane
magnetic fields, yielding �Tc sensitivities from a few mK to
around 100 mK [22–26]. When the F2 layer is replaced by a
half-metallic ferromagnet such as CrO2, a larger �Tc of �Tc ≈
800 mK was measured [21] using a large out-of-plane applied
magnetic field. If La0.6Ca0.4MnO3 is used as the half-metallic
ferromagnet, a much weaker in-plane magnetic field suffices to
rotate the magnetization in one of the F layers [9], resulting in
�Tc ≈ 150 mK, which again is a stronger spin-valve effect
compared to experiments involving standard ferromagnets

[25,26]. These types of improvements were shown to be
consistent with theoretical work [6,7,27] which demonstrated
that when the exchange field in F2 varies from zero to half
metallic, the largest �Tc arises when F2 is a half metallic. This
experimental evidence further established the advantages of
utilizing half-metallic elements in superconducting spintronics
devices.

Although critical temperature measurements give valuable
information regarding half-metallic spin valves, for spintronics
devices it is important to also investigate the transport of
charge and spin in these types of spin-valve structures. By
placing the spin valve between two superconducting banks
with a phase difference �ϕ, a half-metallic-based Josephson
junction with spin-controlled supercurrent can be generated.
Interest in Josephson junctions with ferromagnetic layers has
grown due to their use in cryogenic spintronic systems, in-
cluding superconducting computers and nonvolatile memories
[5,11,14,15,28–37] where their use in single flux quantum
circuits can improve switching speeds [38–40]. To determine
whether Josephson structures can serve as viable spintronic
devices, it is crucial to understand the behavior of the spin
currents that can flow in such systems. The interaction between
the spin currents and the magnetizations in ferromagnetic
Josephson junctions is important for memory applications
since the magnetization orientations in the F layers dictates
the storage of information bits. Controlling the magnetization
rotation can be achieved by a torque from the spin-polarized
currents flowing perpendicular to the layers. Some of the
spin angular momentum of the polarized current will be
transferred to the ferromagnets, giving rise to the STT effect
[1,41–45]. This effect can result in a decrease of magnetization
switching times in random access memories [46–48]. The STT
effect is known to occur in a broad variety of ferromagnetic
materials, including half metals, making it widely accessible
experimentally.

In the past, half-metallic Josephson junctions were theo-
retically studied by using circuit theory [49], the recursive
Green’s function method [33,34], and quasiclassical theory
[7,35,50–52]. Results presented in most of the above works
concern the impact of triplet pairs on the current-phase relation
due to either magnetic inhomogeneity or interfacial spin-flip
scattering. In contrast to previous work, we consider half-
metallic Josephson junctions in the clean limit by solving
the self-consistent Bogoliubov–de Gennes (BdG) equations,
thereby guaranteeing that important conservation laws are
obeyed [53]. Such an approach is appropriate because the BdG
equations are suitable for the parameter space spanning the
nonmagnetic interaction limit to the half-metallic limit. In this
paper, we focus on SF1F2F3S Josephson junctions where the
central F layer is half metallic. Unlike the relatively uncon-
trollable spin-flip scattering at the interfaces, the built-in spin
valve in SF1F2F3S Josephson junctions offers the advantage of
being easily controlled in experiments by applying an external
magnetic field.

Since in these half-metallic Josephson junctions the triplet
pairs are responsible for the spin supercurrents [10,11], we
establish in this work the connection between spin/charge
transport and induced triplet correlations to provide insights
into the interplay between these important physical quantities.
An essential mechanism responsible for supercurrent flow
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in a half-metallic Josephson junction is Andreev reflection
that occurs at the ferromagnet and superconductor interfaces
[54–57]. In addition to continuum states, the superposition
of localized quasiparticle wave functions in the ferromagnet
regions results in subgap bound states that contribute to the
total current flow. For strong ferromagnets, the corresponding
spin-polarized Andreev bound states can be strongly affected
by the supercurrent, directly influencing the spin currents and
STT when varying the relative in-plane magnetization angle.
Although the charge current is conserved, remaining uniform
throughout the sample, the spin current often varies spatially,
making comparisons between the two types of current difficult.
Moreover, since manipulating the angle between the magneti-
zation vectors can generate long-ranged spin-polarized triplet
supercurrents [53], these triplet correlations also correlate with
spatial variations in the spin currents responsible for the mutual
torques acting on the ferromagnets.

As demonstrated in Refs. [58,59], these equal-spin triplet
pairs result in a more robust Josephson supercurrent that
is relatively insensitive to F -layer thicknesses due to their
long-ranged nature. If one of the ferromagnets in the junc-
tion is half metallic, the equal-spin triplet correlations are
expected to play an even greater role in the behavior of the
charge and spin currents. This was shown experimentally [10]
where a spin triplet supercurrent was measured through the
half metal CrO2, and whose direction was switchable via
magnetization variation. Even in the diffusive limit, it was
shown that spin-flip scattering events at the interfaces of a
half-metallic Josephson junction also allow penetration of the
equal-spin pairs into the half metal [60]. A triplet current can
also be generated when resonantly tuned microwave radiation
impinges on a half-metallic Josephson junction, causing a pre-
cessing magnetization [5]. Considering the potentially greater
control of spin currents afforded by Josephson junctions with
strongly spin-polarized ferromagnets, it would be illuminating
to systematically investigate the interplay of the triplet pair
correlations with the charge and spin transport throughout
half-metallic Josephson structures with spin valves separating
two superconducting banks.

Another way to produce charge and spin currents in half-
metallic spin-valve structures involves establishing a voltage
difference between the ends of an F1F2S tunnel junction,
resulting in an injected current into the F1 layer. The charge-
and spin-transport properties for these types of nonequilib-
rium tunnel junctions with relatively weak ferromagnets was
previously studied [61–63] as functions of bias voltage using a
transfer matrix approach that combines the Blonder-Tinkham-
Klapwijk (BTK) formalism and self-consistent solutions to the
BdG equations. The use of this technique was also extended to
accurately compute spin transport quantities, including STT
and the spin currents, while ensuring that the appropriate
conservation laws are satisfied [61–63]. If the F1 layer is half
metallic, the current can become strongly polarized, leading
to a relatively large transfer of angular momentum to the
F2 layer for noncollinear magnetizations, via the STT effect.
Also, the angularly averaged subgap conductance in this case
arises mainly from anomalous Andreev reflection [19,61,64],
whereby a reflected hole with the same spin as the incident
particle is Andreev reflected, generating a spin-polarized triplet
pair.

The BTK approach applied to either tunneling structures or
Josephson junctions with the presence of half metals has been
adopted in the past [36,37,64,65]. The scattering approach is
also a useful scheme to study the conductance of tunneling
junctions when a half metal is present [66–68]. The effects
of applied bias on spin-polarized tunneling conductance and
STT have also been previously studied in superconducting
tunnel junctions [69] in the small-bias regime. By applying
an external magnetic field, or through switching via STT,
it is again possible to control the relative orientation of the
intrinsic magnetizations and investigate the dependence of the
charge and spin currents on the misorientation angle θ between
the two ferromagnetic layers. Thus, when a half-metallic
layer is present in an F1F2S tunnel junction, we can have
greater control and isolation of the spin currents and spin-
polarized triplet pairs that are critical for viable spintronics
platforms. The systematic investigation into the transport and
corresponding triplet correlations of half-metallic spin valves
for nonequilibrium tunnel junctions is another main focus of
this work. By extending the formalism adopted in Ref. [61],
we have successfully computed the bias dependence of the
induced equal-spin triplet pair amplitudes and identify their
relationship with the charge transport.

When considering spin transport in superconducting junc-
tions, it is beneficial for the structure to contain both weakly
polarized and strongly polarized ferromagnets. This is because
the singlet and the opposite-spin triplet correlations in weaker
ferromagnets extend over greater lengths, dictated by the in-
verse of the exchange field, making them much more effective
at hosting opposite-spin pairs. The weak ferromagnet serves
as an intermediate layer between the superconductor and half
metal, facilitating the generation of opposite-spin pairs that
will eventually become converted into the longer ranged equal-
spin triplet pairs. A hybrid ferromagnetic setup also creates
an avenue for the systematic investigation into the interplay
and ultimate control of all triplet channels. We therefore are
interested in two types of superconducting junctions with
spin-valve structures in this paper. The first consists of a
single superconductor in contact with two ferromagnets (the
F1F2S structure), with the inner F2 ferromagnet having a weak
exchange field, and the outerF1 being half metallic. The current
in this nonequilibrium case is injected by means of a voltage
difference between two electrodes.

As alluded to earlier, the other scenario involves a Joseph-
son junction containing a half metal flanked by two weaker
conventional ferromagnets. The current is established in the
usual way by a macroscopic phase difference �ϕ between
the two outer superconducting banks. For both junction ar-
rangements, we investigate the charge and spin transport within
the ballistic regime using a microscopic self-consistent BdG
formalism that is capable of accommodating the broad range
of energy scales set by the exchange field h of the conven-
tional ferromagnets (h/EF � 1) and the half metal (h = EF ).
Of crucial importance towards the theoretical description of
these types of transport structures is to accurately be able to
account for the mutual interactions between the ferromagnetic
and superconducting elements, i.e., proximity effects. This
requires a self-consistent treatment, which ensures that the
final solutions minimize the free energy of the system and
satisfy the proper conservation laws. This numerical approach
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is a time-consuming but necessary step to reveal the self-
consistent proximity effects that govern the nontrivial charge
and spin currents that flow within these structures. Indeed,
the tunneling conductance in F1F2S junctions was shown to
differ substantially from that obtained via a non-self-consistent
approach [61]. Therefore, our microscopic, self-consistent
treatments enable us to especially focus on the connections
between spin and charge transport and the long-ranged nature
of superconductivity.

This paper is organized as follows: In Sec. II A, we present
the general Hamiltonian and self-consistent BdG methodol-
ogy that is applicable for both junction configurations. In
Sec. II B, the transfer-matrix approach for tunnel junctions
that combines the Blonder-Tinkham-Klapwijk (BTK) for-
malism and self-consistent solutions to the BdG equations
is established. The charge continuity equation and current
density are also derived. In Sec. II C, the relevant details for
the characterization of equilibrium half-metallic Josephson
junctions and the expression for the associated current density
are given. In Sec. II D, we outline how to calculate the induced
triplet correlations for equilibrium Josephson junctions and
nonequilibrium tunnel junctions. In Sec. II E the techniques
used to compute the spin-transport quantities including magne-
tization, spin-transfer torque, and the spin current are derived
for both types of junctions. Throughout Sec. II, we discuss
how to properly satisfy the conservation laws for charge and
spin densities in our formalism. In Sec. III A we present
the results for half-metallic tunnel junctions. Results for the
spatial dependence to the bias-induced magnetizations, the
spin-transfer torque, the spin currents, and triplet correlations
are presented as functions of the magnetization misalignment
angle as well as the applied bias. We also report how to take
advantage of the induced triplet correlations by choosing the
optimal exchange interactions in F layers. In Sec. III B, we
present the results for the half-metallic Josephson junctions,
including the current-phase relations for a variety of half-metal
thicknesses. The spatial dependencies to the spin currents and
triplet correlations are given, and a broad range of misalign-
ment angles is considered to demonstrate the propagation of
spin-polarized triplet pairs through the half metal. The positive
correlations between the equal-spin triplet correlations and the
spin-polarized supercurrents are also discussed. We conclude
with a summary in Sec. IV.

II. METHODS

A. Description of the systems

Two types of half-metallic junctions are considered in this
paper: tunnel junctions and Josephson junctions. The effective
Hamiltonian that is applicable to both types of junctions is

Heff =
∫

d3r

{∑
s

ψ†
s (r )H0ψs (r )

+ 1

2

[∑
s s ′

(iσy )ss ′�(r )ψ†
s (r )ψ†

s ′ (r ) + H.c.

]

−
∑
s s ′

ψ†
s (r )(h · σ )ss ′ψs ′ (r )

}
, (1)

FIG. 1. Illustration of the F1F2S tunnel junction that is infinite
and translationally invariant in the yz plane. It has finite size along
the x axis. F1 is a half metal and the associated exchange field is fixed
along the z direction. The direction of the exchange field in F2 is in the
yz plane, and makes an angle θ with the z axis. Such a misorientation
can be achieved experimentally via an external magnetic field.

where H0 is the single-particle part of Heff , h describes the
ferromagnetic exchange interaction, s and s ′ are spin indices,
and σ are Pauli matrices. �(r ) ≡ g(r )〈ψ↑(r )ψ↓(r )〉 is the su-
perconducting pair potential and g(r ) is the coupling constant.
In ferromagnets where there is no intrinsic superconducting
pairing, g(r ) is taken to be zero. Similarly, h vanishes in the
intrinsically superconducting regions. Following Ref. [61], we
utilize the generalized Bogoliubov transformation [70],
ψs = ∑

n(unsγn + ηsv
∗
nsγ

†
n ), where ηs ≡ 1 (−1) for

spin-down (-up), to write the BdG Hamiltonian equivalent
to Eq. (1):⎛
⎜⎜⎜⎝

H0 − hz −hx + ihy 0 �

−hx − ihy H0 + hz � 0

0 �∗ −(H0 − hz) −hx − ihy

�∗ 0 −hx + ihy −(H0 + hz)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

un↑
un↓
vn↑
vn↓

⎞
⎟⎟⎟⎠

= εn

⎛
⎜⎜⎜⎝

un↑
un↓
vn↑
vn↓

⎞
⎟⎟⎟⎠, (2)

where uns and vns in the generalized Bogoliubov
transformations can be identified as the quasiparticle and
quasihole amplitudes, respectively.

For layered tunnel junctions and Josephson junctions con-
sidered in this work, we assume each F and S layer is infinite in
the yz plane and the layer thicknesses extend along the x axis
(see Figs. 1 and 7). As a result, the BdG Hamiltonian [Eq. (2)]
is translationally invariant in the yz plane, and it becomes
quasi-one-dimensional in x. The single-particle Hamiltonian is
H0 = −(1/2m)(d2/dx2) + ε⊥ − EF , where we have defined
the transverse kinetic energy as ε⊥ ≡ (k2

y + k2
z )/2m, and EF

denotes the Fermi energy. Although in this work, we do not
consider Fermi energy mismatch between distinct layers, it
is straightforward to include such an effect. Throughout this
paper, we take h̄ = kB = 1, and all energies are measured
in units of EF . We numerically determine the pair potential
by using fully self-consistent solutions to Eq. (2). The itera-
tive self-consistent procedure has been extensively discussed
in previous work [61,71]. Since our BdG Hamiltonian is
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quasi-one-dimensional, the pair potential is only a function
of x. By minimizing the free energy of the system, and making
use of the generalized Bogoliubov transformation, the pair
potential can be written as

�(x)= g(x)

2

∑
n

′
[un↑(x)v∗

n↓(x)+un↓(x)v∗
n↑(x)] tanh

( εn

2T

)
,

(3)

where T is temperature and the prime symbol means that a
Debye cutoff energy, ωD , is introduced in the energy sum.
Additional details of our formalism used in this work can also
be found in Refs. [53,61].

B. Tunnel junctions

We begin first with tunnel junctions depicted in Fig. 1
where a ferromagnet and half metal are in contact with a
superconductor. The ferromagnet that is not adjacent to S is
labeled F1, and the one next to S is F2. As shown in Fig. 1, the
exchange field in F1 is h1 ẑ, and in F2 it is h2(sin θ ŷ + cos θ ẑ).
Here h1 and h2 are the magnitudes of the exchange fields in F1

and F2, respectively. In general, we consider F1 as a fixed layer
where the exchange field is pinned and F2 as a free layer where
the relative angle θ can be controlled by an applied magnetic
field experimentally [23]. In this work, we take the fixed layer
F1 to be a half metal and h1 = EF .

In previous work [61], a formalism based on the BTK ap-
proach [72] was generalized to study spin-transport quantities.
In Ref. [72], it was shown, starting from the Boltzmann equa-
tion, that the conductance associated with the tunnel junction is
a function of the transmission and reflection amplitudes in the
linear response regime. Therefore, to compute the tunneling
conductance, one should start by writing the appropriate wave
functions in each distinct region. The details of this procedure
are given in Appendix A. Following this procedure, the formula
for the spin-dependent conductance, normalized to that of the
normal state in the low-temperature regime, is given by

Gs = 1 + k−
↑1

k+
s1

|as↑|2 + k−
↓1

k+
s1

|as↓|2 − k+
↑1

k+
s1

|bs↑|2 − k+
↓1

k+
s1

|bs↓|2,

(4)

where |as↑|2 and |as↓|2 are the amplitudes of the Andreev
reflected waves, and |bs↑|2 and |bs↓|2 are the amplitudes of
the normally reflected waves. In the above expression, the
subscript s denotes the spin type of the incident wave into
the F1 region. For example, a↑↓ corresponds to the process
whereby a spin-down hole is reflected when a spin-up particle
is incident. Here, the k’s represent the corresponding wave
vectors, with the + (−) superscript dictating the particle (hole)
nature of the reflected wave, and the subscript 1 denoting the
F1 region. For example, k−

↑1 is the wave vector of a spin-up
hole wave function in F1.

In Ref. [61], the BTK formalism has been generalized
to study transport quantities such as spin currents and spin-
transfer torques. By applying the transfer matrix method
outlined in the Appendix A, these position-dependent quan-
tities can be properly computed. For a nonzero bias, V ,

across the electrodes of an F1F2S junction, a nonequilibrium
quasiparticle distribution is generated. In the excitation picture,
it is clear that all states with energies ε < eV incident from
the electrode in F1 to the electrode in S should be taken into
account in the low-T limit [61]. Hence, the respective charge
density and current density are given by

ρ = −e
∑
ns

|vns |2 − e
∑

εk<eV

∑
s

(|uks |2 − |vks |2), (5)

Jx = − e

m
Im

⎡
⎣ ∑

εk<eV

∑
s

(
u∗

ks

∂uks

∂x
+ v∗

ks

∂vks

∂x

)⎤
⎦, (6)

where we sum over states labeled by their momenta k with en-
ergies less than the bias voltage. It is easy to see from the above
equations that when V = 0, Jx = 0, and ρ is just the ground-
state charge density, as one would expect. In nonequilibrium
situations, the conservation law for charge flow [see Eq. (B2)
in Appendix B] contains a source term, which in the presence
of the bias becomes −4eIm[�

∑
εk<eV (u∗

k↑vk↓ + vk↑u∗
k↓)].

We emphasize here that � vanishes in the intrinsically non-
superconducting region since the coupling constant is taken
to be zero there. Hence, on the F side the divergence (spatial
derivative) of the current vanishes and the current is a constant.
On the S side, where � exists, the derivative of the current
does not vanish. This does not mean that the conservation law
for charge current is violated, as the right-hand side describes
the process of interchange between the quasiparticle current
density and the supercurrent density, as clearly discussed in
Refs. [61,72].

C. Josephson junctions

We next discuss the pertinent aspects of the half-metallic
Josephson junctions that we shall investigate. As shown in
Fig. 7, we consider S1F1F2F3S2 type junctions, where the
central half-metallic layer F2 is surrounded by two ferromag-
nets F1 and F3. We will show below in Sec. III B that it
is important for the ferromagnets to be thin (relative to ξF ,
the superconducting proximity length) and for them to have
relatively weak exchange fields so that their placement near
the superconducting banks allows for the generation of triplet
correlations and the associated phase-coherent transport. The
exchange fields in each of the junction layers reside in-plane
and are written

hi = hi (sin θi ŷ + cos θi ẑ), for i = 1, 2, 3. (7)

To compute the dc Josephson current where the bias across the
junction is absent, we again numerically look for solutions
by iteratively solving Eq. (2), which is very general and
can be applied to both the F1F2S tunneling and S1F1F2S2

Josephson junctions. Since we wish to determine the current-
phase relation for the Josephson junctions, the initial input
for the pairing potential is taken to be the bulk gap, �0, in
S1 and �0 exp(i�ϕ) in S2. With this input, Eq. (2) is then
numerically diagonalized and the new pair potential, �(x), is
computed from Eq. (3) throughout the entire junction except
for small regions (around one coherence length, ξ0, from the
sample edges) considered as boundaries of the junctions. In
these regions, the pair potential is fixed to its bulk absolute
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value, with phases 0 and �ϕ, respectively. The newly yielded
�(x) is then used in the BdG equations and the above process
is repeated iteratively until convergence is achieved. When
current is flowing through the junction, the self-consistently
calculated regions are always found to possess the necessary
spatially constant current. The important distinction between
tunneling and Josephson junctions is the presence of the
external bias. For dc Josephson junctions, the bias is absent
and the source term of the continuity equation should always
vanish in order to not violate the conservation law. One can
also write down the charge supercurrent associated with a fixed
nonzero phase difference between S1 and S2. The expression
for the current density in a Josephson junction is given by

Jx = − e

m

∑
ns

Im

[
uns

∂u∗
ns

∂x
fn + vns

∂v∗
ns

∂x
(1 − fn)

]
, (8)

where fn is the Fermi function. If the phase of the order
parameter is a constant throughout the junction, the current
density vanishes as can be seen from Eq. (8). We emphasize
here that Eq. (8) is applicable only when the external bias is
absent. Nevertheless, both Eqs. (6) and (8) are derived using
the Heisenberg approach.

D. Triplet correlations

As discussed in the introduction, for half-metallic supercon-
ducting junctions, the induced spin-triplet Cooper pairs play
an important role in both equilibrium and transport properties.
These triplet pairing correlations are defined as

f0(r, t ) = 1
2 [〈ψ↑(r, t )ψ↓(r, 0)〉 + 〈ψ↓(r, t )ψ↑(r, 0)〉], (9a)

f1(r, t ) = 1
2 [〈ψ↑(r, t )ψ↑(r, 0)〉 − 〈ψ↓(r, t )ψ↓(r, 0)〉], (9b)

f2(r, t ) = 1
2 [〈ψ↑(r, t )ψ↑(r, 0)〉 + 〈ψ↓(r, t )ψ↓(r, 0)〉], (9c)

where the subscript 0 corresponds to ms = 0, and the sub-
scripts 1 and 2 refer to the ms = ±1 projections on the spin
quantization axis. It was shown in previous work that using this
approach to find both the opposite-spin and equal-spin triplet
pairs satisfies the Pauli exclusion principle, and that the triplet
pairs vanish at t = 0 [73,74]. If the exchange fields between
F layers are not collinear, or equivalently, θi 
= 0, the total
spin operator of the pairs does not commute with the effective
Hamiltonian [Eq. (1)], and the long-ranged, spin-polarized
components f1 and f2 can be induced [73,74]. By using the
generalized Bogoliubov transformation and the Heisenberg
equations of motion, it is possible to write the field operators
in Eqs. (9) as

f0(x, t ) = 1

2

∑
n

[un↑(x)v∗
n↓(x) − un↓(x)v∗

n↑(x)]ζn(t ),

(10a)

f1(x, t ) = −1

2

∑
n

[un↑(x)v∗
n↑(x) + un↓(x)v∗

n↓(x)]ζn(t ),

(10b)

f2(x, t ) = −1

2

∑
n

[un↑(x)v∗
n↑(x) − un↓(x)v∗

n↓(x)]ζn(t ),

(10c)

where ζn(t ) ≡ cos(εnt ) − i sin(εnt ) tanh(εn/2T ) and we have
assumed zero bias for the junctions. The triplet amplitudes
in Eqs. (10a)–(10c) pertain to a fixed quantization axis along
the z direction. In situations where it is more convenient to
align the spin quantization axis with the local magnetization
direction, we rotate it using the transformations in Appendix C.
The exchange field orientations in each layer are described by
the angle θi , and thus we write

f ′
0 = cos θif0 + i sin θif2, (11a)

f ′
1 = f1, (11b)

f ′
2 = cos θif2 + i sin θif0, (11c)

where the prime denotes the rotated system.
The triplet correlations given in Eqs. (10) are only applica-

ble to both static and dynamic equilibrium situations when
the external bias is absent. When V 
= 0 and in the limit
T → 0, Eqs. (9) are bias-dependent and we have the following
contributions in addition to Eqs. (10):

δf0(x, t ) = 2i
∑

εk<eV

[uk↑(x)v∗
k↓(x) − uk↓(x)v∗

k↑(x)] sin(εkt ),

(12a)

δf1(x, t ) = 2i
∑

εk<eV

[uk↑(x)v∗
k↑(x) + uk↓(x)v∗

k↓(x)] sin(εkt ),

(12b)

δf2(x, t ) = 2i
∑

εk<eV

[uk↑(x)v∗
k↑(x) − uk↓(x)v∗

k↓(x)] sin(εkt ).

(12c)

Apparently, the bias dependence of Eqs. (9) is entirely given
by Eqs. (12).

E. Spin transport

We now discuss the appropriate expressions for spin-
transport quantities. We expect that with either an external bias
or a macroscopic phase difference �ϕ between two S banks,
there will be a leakage of magnetism due to a spin-transfer
torque [53,61]. The local magnetization is related to the spin
density and defined as

m(r ) = −μB 〈η(r )〉 ≡ −μB

∑
ss ′

〈ψ†
s (r ) σ ss ′ψs ′ (r )〉, (13)

where η(r ) is the spin density operator and μB the Bohr
magneton. Again, by using the generalized Bogoliubov trans-
formation, each component of m can be written in terms of the
quasiparticle and quasihole wave functions:

mx = −2μB

∑
n

Re[un↑u∗
n↓fn − vn↑v∗

n↓(1 − fn)], (14a)

my = 2μB

∑
n

Im[un↑u∗
n↓fn + vn↑v∗

n↓(1 − fn)], (14b)

mz = −μB

∑
n

[(|un↑|2 − |un↓|2)fn

+ (|vn↑|2 − |vn↓|2)(1 − fn)], (14c)

where we have suppressed the x dependence.
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The expression for the spin current density can be again
derived from the Heisenberg equation (see Appendix B). It
is reduced from a tensor to a vector due to the quasi-one-
dimensional nature of our geometry. Therefore, the three
components of the spin current vector are associated with
those of spin densities and spin current flowing along the x

direction, which is perpendicular to the interfaces. These three
components can also be expressed in terms of the quasiparticle
and quasihole amplitudes:

Sx = μB

2m

∑
n

Im

[(
u∗

n↑
∂un↓
∂x

+ u∗
n↓

∂un↑
∂x

)
fn

−
(

vn↑
∂v∗

n↓
∂x

+ vn↓
∂v∗

n↑
∂x

)
(1 − fn)

]
, (15a)

Sy = −μB

2m

∑
n

Re

[(
u∗

n↑
∂un↓
∂x

− u∗
n↓

∂un↑
∂x

)
fn

−
(

vn↑
∂v∗

n↓
∂x

− vn↓
∂v∗

n↑
∂x

)
(1 − fn)

]
, (15b)

Sz = μB

2m

∑
n

Im

[(
u∗

n↑
∂un↑
∂x

− u∗
n↓

∂un↓
∂x

)
fn

+
(

vn↑
∂v∗

n↑
∂x

− vn↓
∂v∗

n↓
∂x

)
(1 − fn)

]
. (15c)

When the junctions are in static equilibrium, the spin cur-
rent does not necessarily vanish because any inhomogeneous
magnetization leads to a nonzero spin-transfer torque thereby
causing a net spin current [53,61]. The spin current S is a

local physical quantity, and τ is responsible for the change in
local magnetizations due to the flow of spin-polarized currents
[see Eq. (B5) in Appendix B]. As we shall see in Sec. III, this
conservation law (with the source torque term) for the spin
density is a fundamental relation, and one has to ensure that it
is not violated when studying these transport quantities.

The above expressions, Eqs. (14) and Eqs. (15), are appli-
cable only when the external bias is zero. Let us now go back
and discuss the bias dependence of spin-transport quantities
for F1F2S tunnel junctions. As in the discussion on the triplet
correlations, we first define the bias-induced magnetization as
δm(V ) ≡ m(V ) − m0, where m0 is given by Eqs. (14) and
m(V ) is the total magnetization with the presence of a finite
bias. In the low-T limit, the bias-induced magnetization reads

δmx = −μB

∑
εk<eV

(u∗
k↑uk↓ + vk↑v∗

k↓ + u∗
k↓uk↑ + vk↓v∗

k↑),

(16a)

δmy = −iμB

∑
εk<eV

(u∗
k↑uk↓ + vk↑v∗

k↓ − u∗
k↓uk↑ − vk↓v∗

k↑),

(16b)

δmz = −μB

∑
εk<eV

(|uk↑|2 − |vk↑|2 − |uk↓|2 + |vk↓|2).

(16c)

Similarly, we can define the corresponding bias-induced
spin currents, δS(V ) ≡ S(V ) − S0, where S0 is identical to
Eqs. (15). The bias-induced spin currents are given by

δSx = −μB

m
Im

⎡
⎣ ∑

εk<eV

(
u∗

k↑
∂uk↓
∂y

+ vk↑
∂v∗

k↓
∂y

+ u∗
k↓

∂uk↑
∂y

+ vk↓
∂v∗

k↑
∂y

)⎤
⎦, (17a)

δSy = μB

m
Re

⎡
⎣ ∑

εk<eV

(
u∗

k↑
∂uk↓
∂y

+ vk↑
∂v∗

k↓
∂y

− u∗
k↓

∂uk↑
∂y

− vk↓
∂v∗

k↑
∂y

)⎤
⎦, (17b)

δSz = −μB

m
Im

⎡
⎣ ∑

εk<eV

(
u∗

k↑
∂uk↑
∂y

− vk↑
∂v∗

k↑
∂y

− u∗
k↓

∂uk↓
∂y

+ vk↓
∂v∗

k↓
∂y

)⎤
⎦. (17c)

In short, the finite bias leads to a nonequilibrium quasiparticle
distribution for the system, and results in nonstatic spin current
densities that are represented by Eqs. (17). Finally, we note that
the spin-transfer torque has to vanish in the superconductor
where the exchange field is zero.

III. RESULTS

A. Tunneling junctions

We begin this section by first discussing our numerical
results on F1F2S tunnel junctions as illustrated in Fig. 1.
The thicknesses of the F1, F2, and S layers are taken to be
300/kF , 10/kF , and 130/kF , respectively. These thicknesses
are fixed throughout this subsection. The superconducting
coherence length is also fixed to be 100/kF . We consider clean

interfaces between these layers. In other words, interfacial
scattering events are not taken into account in this subsection
(the main consequence from these events would be to reduce
the proximity effects). For our half-metallic tunnel junctions,
the exchange fields in F1, the layer that is farthest from the
superconductor, is h1 = EF (see Fig. 1). All energy scales
are measured with respect to the Fermi energy. As will be
demonstrated below, the spin-valve effect is maximized when
the exchange field of the ferromagnet F2 is relatively weaker,
approximately on the order of h2 = 10−1EF .

Most of the previous theoretical work based on either
BTK approach or scattering matrix formalism focuses on the
tunneling conductance of half-metallic superconducting spin
valves [61,64–66]. It is found that the tunneling conductance
in the subgap region is governed by the same-spin Andreev
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reflection. As a result, the subgap conductance vanishes at zero
bias and grows linearly in the subgap region. Since results on
the tunneling conductance of half-metallic superconducting
spin valves have been extensively studied in the literature,
we are mainly interested in spin-transport quantities includ-
ing magnetization, spin current, and spin-transfer torque. As
clearly explained in Ref. [61], even in the static limit where
the bias across the junction is absent, the spin current and the
spin-transfer torque in general do not vanish near the interface
between two F layers as long as the magnetic configuration
is noncollinear. Since dynamical transport properties are the
main concern in the current work, and in order to clearly see the
bias dependence of these spin-dependent quantities, for most
of our results in this subsection we will restrict ourselves to the
dynamic part that is induced by the external bias. For example,
the “induced” magnetizations, δm(V ), are defined in Eqs.
(16). We conveniently normalize the magnetization by −μBne,
where ne = k3

F /3π2 is the electron number density. Similarly,
the induced spin currents, δS(V ), and the induced STT, δτ ≡
τ (V ) − τ (V = 0), are normalized by −μBneEF /kF and by
−μBneEF , respectively. Below we shall discuss the position
dependence of all spin-transport quantities. For convenience,
we measure lengths in units of k−1

F and use X ≡ kF x to denote
positions.

In Fig. 2, we present the angular dependence of the induced
magnetizations, spin currents, and spin-transfer torques for the
half-metallic spin valve shown in Fig. 1. The half-metallic layer
F1 is adjacent to a thinner and relatively weak ferromagnet with
h2 = 10−1EF . We begin by giving simple physical reasons for
choosing these parameters. The thickness of F2 is chosen to
be thin compared to F1 and S in order to take advantage of
the superconducting proximity effects. For the same reason,
the exchange field in F2 also needs to be weak enough to
study the interplay between the superconducting proximity
effects and spin-valve effects. In our coordinate system, X = 0
corresponds to the interface between F2 and S. Therefore,
in Fig. 2, the half metal F1 lies in the range X < −10, the
superconductor is in the region X > 0, and the F2 layer is in
the region −10 < X < 0. The bias across the junction is set to
be 2�0 in the figure, where �0 is the singlet pair amplitude in
the bulk limit. Recall that in our considerations, the exchange
field in F1 is along the ẑ axis and in F2 it is tilted with respect
to the ẑ axis by an angle θ in the yz plane. There are two main
effects that need to be taken into account in order to understand
the induced magnetizations: First, the magnetic moments in F1

and F2 interact, with the magnetization of F1 leaking into F2,
and vice versa, resulting in spatial precession. Second, both the
direction and magnitude of the static magnetic moments in F2

will affect any induced magnetizations when an external bias
is present.

For the three components of the induced magnetizations
[panels (a)–(c) in Fig. 2], we first see that δmx and δmy vanish
throughout the entire junction when θ = 0◦ and 180◦. This is
because the contributions from both the precession and static
magnetizations are zero when the exchange fields are parallel
(θ = 0◦) or antiparallel (θ = 180◦) to each other. Let us first
focus on δmx for other relative angles. The magnitudes for θ

and π − θ are of the same order in the S region because the
x component of the static magnetization is not present (recall
that the exchange fields in our system are always in-plane,

i.e., the yz plane) and only the precession effect is at work.
Turning to the δmy panel, its magnitude in S for θ = 90◦ (the
exchange field in F2 is along y) is determined purely from the
static magnetization because the precession effect will only
affect δmx and δmz at this angle. Physically, this tells us that
the system becomes spin-polarized in the xy plane in S. When
90◦ < θ < 180◦, the contribution to δmy from the precession
effect is negative while the contribution from the effect of the
static magnetization in F2 is positive. The cumulative result is
that the magnitudes are much smaller than their counterparts
for 0◦ < θ < 90◦ in the S region. For δmz, we can see that
it is the only nonzero component throughout the junction for
parallel (θ = 0◦) and antiparallel (θ = 180◦) configurations.
The behaviors for other relative angles are simply explained
again by the precession effect, just as in the case for δmx .

Next, we analyze the behaviors of the induced spin cur-
rents and spin-transfer torques. The spin-transfer torques are
determined by the local exchange fields and magnetization
vectors [see Eq. (B7) in Appendix B], which are in turn
related to the spin currents given in Eqs. (15) and (17).
This is clearly seen in the steady state, where their interplay
is encapsulated by the expression ∂ S

∂y
= τ . More generally,

one can intuitively understand the role of the induced spin
currents δS by considering the static magnetizations in each
of the ferromagnetic layers. The F1 layer is relatively thick,
and can be regarded as a spin source, which polarizes the
incoming current along the +z direction. When a spin current
originating from F1 flows into F2, the polarization state can
be rotated by means of the local exchange field in F2 and
corresponding induced STT. For the z component of the
induced spin currents, δSz, at θ = 0◦, it is constant throughout
the entire junction including the superconducting layer as the
spin density along z commutes with the Hamiltonian. The same
argument holds for the other collinear orientation θ = 180◦.
However, the magnitude of δSz is larger at θ = 0◦ than at
θ = 180◦, as a consequence of the exchange fields in the F1

and F2 layers being oppositely directed while h1 � h2. In
fact, the magnitude of δSz is higher when θ < 90◦ than the
counterparts at π − θ , for exactly the same reasons. Although
δSz at θ = 90◦ vanishes inside the superconductor, we found
that in general, this is not necessarily the case. The magnitude
and the sign of δSz depend on both the thickness of F2 and the
strength of the exchange field. Thus, by carefully choosing the
thickness of the second ferromagnet, which plays an important
role in both triplet proximity effects and spin-transfer torques,
in principle the spin-transport properties of spintronics devices
can be manipulated experimentally.

Let us now turn our attention to the remaining components,
δSx and δSy . In the collinear configurations (θ = 0◦ and θ =
180◦), both the x and y components are zero because of the
absence of the precession effect. Both the sign and magnitude
of δSy in the S region roughly follow the y component of
the exchange field in F2. Although the y component of the
exchange field in F2 is at its maximum when θ = 90◦, we find
that the corresponding δSy in S is smaller than when at the
other angles. This is because when θ 
= 90◦, the y component
of the spin density can still be induced via the spin density
precession coming from the half-metallic layer that possesses
a much larger magnetization strength, which in turn is more
dominant than the other effect. For the same reason, δSy in S
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FIG. 2. In this figure, we present spin-transport quantities as functions of position, kF x ≡ X, for several relative angles, θ , between the
exchange fields in the F1 and F2 layers of half-metallic F1F2S tunnel junctions. The external bias is set to be twice the bulk superconducting
pair amplitude, V = 2�0. The thicknesses of F1, F2, and S are set to be 300/kF , 10/kF , and 130/kF , respectively. Panels (a)–(c) in the
first row show the dynamical part, δm, of the three magnetization components, computed from Eqs. (16). Panels (d)–(f) in the second row
depict each component of the dynamical part of the spin currents, δS, according to Eqs. (17). Spin currents are in general third-rank tensors in
three-dimensional space. However, since our system is quasi-one-dimensional, they are reduced to three-dimensional vectors. Panels (g)–(i) in
the third row present the dynamical part of the three components of the spin-transfer torque δτ , by using the relation δτ = δm × h. From the
figure, one can easily verify the formula δτi = ∂Si/∂x for all θ .

is higher at θ than at π − θ , where θ < 90◦. The precession
effect is seen to play an important role as well in the behavior
of δSx , where as panel (d) shows, at θ = 90◦, the dynamical
part δSx abruptly increases in F2, and then uniformly extends
into the S region where it is maximized.

The last interesting quantity is the spin-transfer torque,
which is numerically determined using the relations involving
the self-consistently calculated δm and the exchange field h
[see Eq. (B7) in Appendix B]. Since h vanishes identically
inside the superconductor, all components of δτ must vanish

there. The absence of a torque in the superconductor imposes
that the spin current there cannot vary in space [see Eq. (B5)
in Appendix B]. Thus the constancy of the spin currents
inside the superconducting region shown in Fig. 2. It is also
straightforward to understand why δτz = 0 in the half metal F1.
We find that δτz is maximized in F2 when θ = 90◦, suggesting
that the corresponding δSz must have the greatest change in
F2. Indeed, as can be seen in panel (f), the only spatially
varying region is in the ferromagnet F2, and it occurs the
greatest when θ = 90◦. We emphasize here that the static
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FIG. 3. In this figure, we present spin-transport quantities as functions of position, kF x ≡ X, for several external biases, V , scaled by the
bulk superconducting gap, �0, in half-metallic F1F2S tunnel junctions. The relative angle θ between exchange fields in F1 and F2 is set to be
90◦. The thicknesses of F1, F2, and S are set to be 300/kF , 10/kF , and 130/kF , respectively. Panels (a)–(c) in the first row show the dynamical
part, δm(V ), of the three magnetization components, computed from Eqs. (16). Panels (d)–(f) in the second row show the dynamical part,
δS(V ), of the three spin current components, computed from Eqs. (17).

part of τx is in general nonvanishing as long as the in-plane
exchange fields are noncollinear in the F1F2S tunnel junctions.
The static part of τx is much larger than the dynamic part.
Therefore, the behavior Sx does not significantly change with
the presence of bias (not shown). In panel (e), it was observed
that the precessional effect combined with the magnetization
rotation in F2 led to a reversal in the bias-induced spin current
variation as θ changed. These abrupt changes in δSx translate
into torque reversals within the relatively weaker ferromagnet
region, as well as drastic variations near the F1/F2 interface,
as demonstrated in (h).

In the linear-response regime, transport quantities are in
principle dependent on the external bias, V . However, with the
presence of superconductors, transport quantities sometimes
exhibit distinct behavior above and below the superconduct-
ing gap. The related transport phenomena including excess
current and tunneling conductance are thoroughly discussed
in Refs. [61,72]. This gap-dependent feature can be attributed
to Andreev reflections. When the external bias is below the
superconducting gap, current is not suppressed due to the
mechanism of the Andreev scattering. Once the external bias
is above the gap, the contribution to the current from ordinary
scattering emerges. As explained in Sec. II, the supercon-
ducting pair amplitudes are determined self-consistently and
the gap profiles are position-dependent, which saturate deep
inside the bulk superconductor. The saturation values of the

gap profiles are important and usually smaller than the bulk
superconducting gap, �0. Furthermore, the saturation values
also depend on the relative magnetization angle, θ .

In Fig. 3, we plot spin-transport quantities at several
different biases for θ = 90◦. The thicknesses of each layer
and exchange interactions are the same as in Fig. 2. Our self-
consistent calculations reveal that the saturation value for the
superconducting gap is approximately 0.3�0. First, we note the
trivial fact that the dynamic part of all spin-transport quantities
vanishes when V = 0. We then pay particular attention to the
behavior above and below the saturation point 0.3�0. Note
that all three components of δm do not significantly change
qualitatively with increased bias, and the major quantitative
change is their magnitudes. Nevertheless, δmy (V = 0.2�0)
is greatly suppressed compared to δmy (V > 0.2�0) while
δmx (V = 0.2�0) is not. We also see that the magnitudes of
both δmx and δmy increase linearly with V for V > 0.3�0.
On the other hand, δmz does not show very distinct behavior
above or below 0.3�0, and it increases linearly in the entire V

range we considered here.
For the dynamic part of the spin currents δS, we find

that δSx and δSy disappear inside the superconducting region
when V < 0.3�0. This is due to the fact that any spin-
polarized current entering the superconductor is converted into
a supercurrent, which is spin-unpolarized. For V > 0.3�0, the
magnitudes inside the superconductor increase linearly with
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FIG. 4. In this figure, we present spin-transport quantities as functions of position, kF x ≡ X, for three different h2 measured in terms of
the Fermi energy for half-metallic F1F2S tunnel junctions. The external bias is fixed to be twice the bulk superconducting gap, V = 2�0.
The relative angle θ between exchange fields in F1 and F2 is also fixed and its value is 90◦. The thicknesses of F1, F2, and S are set to be
300/kF , 10/kF , and 130/kF , respectively. Panels (a)–(c) in the first row show the dynamical part, δm(V = 2�0 ), of the three magnetization
components, computed from Eqs. (16). Panels (d)–(f) in the second row show the dynamical part, δS(V = 2�0), of the three spin current
components, computed from Eqs. (17).

the bias, similarly to what was found for δmx and δmy . At
these larger bias voltages, δSx and δSy within the half-metal
are insensitive to changes inV . Examining panel (f), the current
entering the F1 region becomes strongly polarized by the half
metal, and δSz increases nearly linearly with greater bias before
decaying away after interacting with the adjacent ferromagnet
whose exchange field is orthogonal to it (along y). It is evident
that unlike δSx , there are no abrupt changes in behavior about
the saturation point 0.3�0. Examining the top row of Fig. 3,
one can infer the qualitative behavior of the torque throughout
the structure. Thus, the bias dependence to the spin-transfer
torque is omitted here, as it clearly follows that of δm.

Next, we explore spin-transport properties with different
strengths of the exchange field in F2 while fixing the exchange
field in F1 to be h1 = EF . In Fig. 4, we plot δm (top row)
and δS (bottom row) for three different h2. The relative angle
between the exchange fields in F1 and F2 is again fixed at
θ = 90◦ (the direction of the exchange interaction in F2 is
along y), and the bias is set at V = 2�0. In panel (b), we see
that the overall trends in the induced magnetization do not
change significantly for different h2, where δmy is damped
out in the half metal, and then peaks in F2 before propagating
into the superconductor. The half metal has its exchange field
aligned in the z direction; thus the current is initially polarized
in this direction leading to a nearly vanishing y component of

the induced magnetization, which becomes y-polarized when
entering the adjacent ferromagnet. The result is that δmy from
both F1 (due to the precession effect) and F2 (due to the
inherent magnetization) extend into the superconductor with a
magnitude proportional to h2. For the induced magnetization
normal to the interfaces, δmx , we see that it builds up within F2,
and then undergoes damped oscillations [see panel (a)]. The
period of these oscillations in F2 is governed by the degree of
spin polarization in the ferromagnet and thus scales inversely
proportional to h2. Therefore, one can see that for such a
thin F2, δmx with h2 = 0.1 is too confined to possess even
a full period of oscillation. As a result, when h2 = 0.1EF ,
δmx becomes “squeezed” and has a larger magnitude in F2

compared to when h2 = 0.5EF and h2 = EF . If we increase
the thickness of F2, δmx for h2 = 0.1EF will also become
negligible inside the S layer. This property provides a way
for experimentalists to control the flow of magnetization by
varying the thickness of the intermediate ferromagnetic layer.
Turning now to panel (c), it is seen that inside F1, δmz is only
very weakly dependent on h2 and is uniform in space. Inside F2

it exhibits damped oscillations, akin to δmx , with an oscillation
period that is inversely proportional to h2. If the F2 layer is
thick enough, δmz will vanish identically inside the S layer,
irrespective of h2. This sensitivity to thickness can be used
to control not only whether δmz vanishes in the S layer, but
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also for appropriate thicknesses, whether it can be positive or
negative.

Now, let us compare spin currents for different h2. From
panel (e), we see that for a given h2, the induced δSy is constant
and flows uninterrupted inside both the F2 and S layers. This is
a reflection of the fact that the y component of the spin-transfer
torque vanishes in those regions. This can also be found by
simply computing the cross product between δm and h. For
the same reasons, δSx is constant inside the S layers only,
while δSz is constant in the F1 and S regions. For each h2,
the relative magnitudes of δS in F2 and the superconducting
region follow similar trends to δm, in that there is a positive
correlation between the corresponding components of δS and
δm. We also find that the spatial period for the oscillation
inside the F2 layer is the same as that of δm for a given
h2. Finally, it is important to stress that both the direction
and the magnitude of δS can also be adjusted by changing
the F2 thickness. In practice, one would like to choose a
weaker ferromagnet for this intermediate layer. This follows
not only from the potential triplet pair enhancement (discussed
below), but also when a strong ferromagnet is adopted, the F2

thickness should be relatively thin in order to take advantage
of this thickness sensitivity. As before, we do not present the
spin-transfer torques here since they can be computed directly
from knowledge of δm (Fig. 4, first row) and h.

We now focus on the induced triplet correlations for these
half-metallic tunneling F1F2S junctions. It is useful to recall
that the triplet correlations can be induced even in the absence
of an external bias [71]. As discussed in Ref. [71], triplet corre-
lations with m = ±1 projections on the spin quantization axis
are important since these spin-polarized pairs are immune to
pair-breaking effects of the exchange fields in theF layers. This
is especially relevant when a very strong half-metallic layer is
present. Successful control of a dissipationless supercurrent
is regarded as one of the essential goals in the development
of practical low-temperature spintronics devices. Presumably,
this can be achieved by generating and controlling the f1 and
f2 equal-spin triplet pairs [53], since they are able to propagate
over relatively long distances without serious degradation.
To simplify the discussions below, we shall focus on the f1

equal-spin and f0 opposite-spin triplet channels, since in many
cases f2 behaves complementarily to f1.

The physics of induced triplet correlations for spin valves
in the static limit has been extensively discussed in Ref. [71].
Also, we find that in the F1 layer the dynamic part is added
constructively to the static part of the triplet amplitudes.
Therefore, we focus here on the dynamical situation where
the external bias is nonvanishing and confine our attention to
the dynamic part of the induced triplet correlations. To find the
bias dependence to the triplet pairs in our system, we define,
similarly to previous quantities, the induced triplet correlations
via δfi (V ) = fi (V ) − fi (V = 0), where i = 0, 1.

In Fig. 5, we present the angular dependence of both the
opposite-spin f0 and equal-spin f1 triplet pairs. The pair
correlations are functions of their relative time difference t ,
which is set according to the dimensionless relation ωDt = 4.0.
The external bias is fixed at V = 2.0�0. The thicknesses are
the same as in previous figures, with the exchange fields in F1

and F2 again corresponding to h1/EF = 1 and h2/EF = 0.1,
respectively. For δf0 shown in the top panel (a), we find that
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FIG. 5. The dynamical part of the induced triplet correlations as
functions of position, X, for several angles θ . In panel (a) we have
δf0(V = 2�0) [see Eq. (12a)], and in panel (b) we have δf1(V = 2�0 )
[see Eq. (12b)]. The external bias is fixed to be twice that of the
bulk superconducting gap, V = 2�0. The relative time of these triplet
correlation is ωDt = 4. The thicknesses of F1, F2, and S are set to be
300/kF , 10/kF , and 130/kF , respectively. The exchange fields are
h1 = EF and h2 = 0.1EF .

it decays into the half-metallic layer with a very short decay
length, as it is energetically unstable due to the presence
of a single spin band at the Fermi level. Within the thin
ferromagnet (−10 < X < 0), δf0 is largest when a single
quantization axis can be ascribed to the system, i.e., when
the magnetizations of both F layers are collinear. There is
a slightly more pronounced effect when θ corresponds to the
antiparallel configuration, where there are greater competing
effects between the magnetizations in the F1 and F2 layers.
When F1 and F2 are in the orthogonal configuration with θ =
90◦, they are then in their most inhomogeneous magnetic state,
and the δf0 amplitude is lowest in F2. For other orientations that
are closest to the orthogonal configurations, such as θ = 60◦,
δf0 is also relatively weak compared to the collinear situation,
but larger compared to θ = 90◦ due a finite z component to the
magnetization. These findings for the thin ferromagnet layer
carry over to the superconducting layer, where the following
angular dependence is observed: δf0 is minimized at θ = 90◦
(orthogonal configuration) and maximized for the collinear
configurations (θ = 0◦ and 180◦).

We turn now to the more interesting δf1 component, which is
much more robust against the magnetic pair-breaking effects.
In the bottom panel (b), we present the spatial behavior of
δf1, again for several θ . We first see that δf1 vanishes for the
collinear configuration, as it should, as explained earlier in
the introduction. For other relative angles, δf1 is generated
because of the noncollinear magnetic profile which prevents
the system from being described by a single quantization
axis. Furthermore, as shown in panel (b), the bias-induced
δf1 triplet amplitude is long-ranged in the half metal and
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FIG. 6. In panel (a) of this figure, we present the dynamical part of
induced triplet correlations, δf1, as functions of position, X, for three
different normalized exchange fields in the F2 layer: h2/EF = 0.1,
h2/EF = 0.5, and h2/EF = 1.0. The angle θ between exchange fields
in F1 and F2 is chosen to be θ = 90◦. The external bias is fixed at twice
the bulk gap, V = 2�0. The thicknesses of F1, F2, and S are set at
300/kF , 10/kF , and 130/kF , respectively. In panel (b), we show the
normalized charge current density vs the exchange field h2 of the
intermediate F layer. The data points are connected by lines to serve
as guides to the eye. The relative angle between the exchange fields
in F1 and F2 is 90◦.

maximized for orientations around θ = 90◦. This is the central
result of this subsection. Once the spin-polarized triplet pairs
pass through F2, they enter the superconductor and become
enhanced, not for the orthogonal configuration, but rather for
slight misalignments in the relative magnetizations. These
trends are similar to what was observed in Fig. 2 for the y

component of the bias-induced magnetization. Thus, we have
demonstrated the long-range nature of the dynamic part of the
triplet pairs by showing that only the δf1 component survives
in the half metal. Also, due to the interactions between F

layers and triplet conversion effects, spin-polarized triplets
were shown to be effectively generated within the S region.
Moreover, our study revealed that δf0 in F2 and S, and δf1 in the
half metal are often anticorrelated; i.e.,when δf0 is maximized
(minimized), δf1 is minimized (maximized).

It was mentioned at the beginning of this subsection that
our choice of h2/EF = 0.1 for the exchange field strength
in the thin intermediate F2 layer resulted in the optimal
amount of spin-polarized pairs in the half-metallic region. To
illustrate this, it is insightful to consider differing exchange
field magnitudes in F2 and examine how these differences
affect the equal-spin triplet pairs throughout the entire junction.
Thus, we present in panel (a) of Fig. 6 the spatial dependence
of the magnitude of the dynamic part δf1 for several h2. We
set θ = 90◦, creating the most magnetically inhomogeneous

configuration possible, and thus maximizing δf1 in F1. Note
that here the spatial range is much wider than the results
presented before in order to identify any long-range behavior
of the spin-polarized triplet correlations. First, inside the
superconducting layer, we find that the magnitude of δf1 is
approximately proportional to h2. However, in the nonsuper-
conducting regions, δf1 for both h2/EF = 0.5 and h2/EF =
1.0 decays with a very small characteristic decay length. On
the other hand, the weaker exchange field of h2/EF = 0.1
results in δf1 penetrating quite extensively into the F regions,
thereby establishing its long-range behavior. This result is
significant, and it justifies our choice of h2, mentioned earlier.
Although we do not show the static part of the induced triplet
correlations, we find the same behavior as before: the static
part of f1 is long-ranged when the magnetic configuration is
noncollinear and its magnitude is comparable to the dynamic
part. In the absence of a bias voltage, the corresponding static
f1 amplitudes are also maximized when h2 ∼ 0.1EF .

To further corroborate these ideas, we show in panel (b)
of Fig. 6 the charge current density, Jx , along the direction
perpendicular to the interface as a function of h2. The current
density is normalized by J0 ≡ enevF , where vF ≡ kF /m is the
Fermi velocity. Here we fix the external bias to be V = 2.0�0

and the relative angle between the exchange fields in the F1 and
F2 layers is θ = 90◦. As in Refs. [53] and [61], it is stressed that
the current density is spatially uniform throughout the junction
in order to satisfy the continuity equation. In the S region one
should consider both the current density computed from Eq. (6)
and also the integration of the source term in the continuity
equation [see Eq. (B2) in Appendix B], since the pair potential
is not zero there. To avoid this complexity, we compute the cur-
rent density from Eq. (6) directly in the F region. Furthermore,
we have verified that if one includes the contribution from the
source term, the current density is indeed uniform across the
entire tunnel junctions. From panel (b) of Fig. 6, we find that the
current density is maximized at h2/EF = 0.1. Recalling that
the equal-spin triplet correlations f1 are the most long-ranged
at h2/EF = 0.1, this suggests a correlation between the long-
ranged nature of the spin-polarized triplet pairs and the charge
transport. Finally, we see that the current density is lowest at
h2/EF = 1, where only one spin band is accessible in both
F layers for the current-carrying states. The results presented
in Fig. 6 therefore strongly suggest that by using relatively
thin ferromagnets with weak exchange fields, the half-metallic
region will effectively host long-range spin-polarized triplet
pairs that offer hints of their signatures in the charge-transport
behavior. Thus, to achieve these properties for the structures
considered here, h2/EF = 0.1 is the optimal strength for such
half-metallic superconducting spintronic devices. We empha-
size here that our theoretical results offer concrete evidence for
the generation of triplet current in half-metallic superconduct-
ing spin valves and further corroborate experimental results
presented in Refs. [9,21]. If on the other hand it is desired
to generate f1 triplet pairs solely in the superconductor, one
should incorporate half metals into both F regions.

B. Half-metallic Josephson junctions

In this subsection we present our results for half-metallic
SF1F2F3S Josephson junctions. A diagram of the setup is
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FIG. 7. Schematic of the SF1F2F3S Josephson junction. The
layers are translationally invariant and extend to infinity in the yz

plane. The central F2 layer is half metallic (h2 = EF ), while the
surrounding F1 and F3 layers are ferromagnets with weaker exchange
fields h1 = h3 = 0.1EF . The angles θ1, θ2, and θ3 describe the angles
that the magnetic exchange field vector makes with the z axis in the
corresponding F1, F2, and F3 layers with thicknesses dF1, dF2, and
dF3, respectively.

shown in Fig. 7. A trilayer magnetic configuration is considered
to allow for the generation of singlet and triplet correlations
by using relatively weak and thin magnets adjacent to the half-
metallic layers. This setup creates an effective combination
of spin mixing and breaking of spin rotation symmetry, both
necessary ingredients for the existence of a Josephson current
[35]. For the half-metal thicknesses considered here, a simpler
bilayer junction consisting of a thick half metal and weaker
ferromagnet would result in the destruction of phase coherence
between the S banks. Two relatively weak ferromagnets are
needed to be in contact with the superconductors to effectively
generate triplet correlations and establish both charge and spin
currents within the junction. For a nonuniform magnetization
in the half metal, there would be a modification to the Andreev
reflection amplitudes [67] and corresponding Josephson cur-
rent. The thicknesses of the S layers are 800/kF , while F1,
F2, and F3 can vary, depending on the quantity being studied.
As before, the superconducting coherence length is fixed to be
100/kF . For most cases, the interfaces are generally assumed
to be transparent, although cases with interface scattering will
be considered as well. Unless otherwise noted, the central F

layer is half metallic, with exchange field corresponding to
h2 = EF . Similarly to what was shown for tunnel junctions,
the spin-valve effect is maximized when the exchange fields
of F1 and F3 are weaker: We consider here h1 = h3 = 0.1EF .
For these Josephson structures, the focus of the investigation
is on the influence that the macroscopic phase difference, �ϕ,
and the relative magnetization orientations have on the spin
currents, charge currents, and associated triplet correlations.
The charge currents are normalized by J0, where J0 = enevF ,
and vF = kF /m is the Fermi velocity. All three components
of the spin current S are normalized similarly [53].

We begin with the self-consistent current-phase relation for
the SF1F2F3S structure shown in Fig. 7. In Fig. 8(a), the
normalized charge current flowing in the x direction, Jx , is
shown as a function of the macroscopic phase difference �ϕ.
The central half-metallic F2 layer is sandwiched between two
weaker ferromagnets with normalized exchange field strengths
h/EF = 0.1 and thicknesses 10/kF . This type of configuration

FIG. 8. First row (a)–(c): The normalized current density Jx vs the
phase difference �ϕ for (a) several normalized half-metal thicknesses
DF2 = kF dF2 and (b) the equal-spin f0 and opposite-spin f1 triplet
correlations spatially averaged over the half-metal region F2 and
(c) over the ferromagnetic F1 and F3 regions. Second row (d)–(f):
The components of the normalized spin current S as a function of
dimensionless position X = kF x. In (a)–(f), the exchange fields in F1

and F3 are aligned along the y direction, and along z in the half metal
F2 (see Fig. 7). The ferromagnets F1 and F2 have equal thicknesses
of 10/kF . In panels (b)–(f) the F2 thickness is fixed at 100/kF .

ensures the necessary singlet-triplet conversion takes place
near the superconductors [7]. Each of the ferromagnets F1 and
F3 have their magnetizations oriented in the same direction
(along y) but orthogonal to F2 (along z). To isolate the triplet
spin current flowing through the half metal, differing dimen-
sionless thicknesses DF2 = kF dF2 are considered, as shown
in the legend. As seen, the supercurrent essentially obeys a
linear trend with phase difference that is weakly dependent on
the thickness of the half metal. As this thickness increases,
the current begins to deviate from the linear behavior, as seen
developing for the DF2 = 300 case. The fact that increasing
the thickness DF2 has a weak effect on the supercurrent
reflects the spin-polarized nature of the triplet pairs involved
in transport through the half metal. For a Josephson junction
with a half-metallic junction region and spin-flip scattering at
the interfaces, a non-self-consistent treatment showed a similar
slow decline of the supercurrent as the junction width increases
[37]. On the other hand, the presence of impurities can result in
an exponential suppression of the supercurrent [35]. The range
of the current-phase relation in the figure is limited for clarity,
and extending the range of �ϕ would result in a sawtooth-like
profile with vanishing current at �ϕ = nπ , where is n is an
integer. Physically, the slow decay of the equal-spin triplet
correlations in the half metal equates to propagation lengths
of the quasiparticles that can well exceed ξF . The presence
of superconducting correlations deep within half metals has
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been experimentally observed in the form of McMillan-Rowell
conductance oscillations [19]. A long-ranged supercurrent has
also been measured in half-metallic CrO2 junctions, indicative
of the presence of triplet correlations [11]. To demonstrate
the slow decay of the equal-spin triplet correlations, in (b)
the magnitude of the equal-spin correlations f1 averaged
over the half-metallic region F2 are shown. For comparison,
the opposite-spin correlations f0 are also shown. To satisfy
the Pauli principle, these spatially symmetric triplet pairing
correlations must be odd in time (or frequency), and hence
vanish when the relative time t is zero. For half-metallic
junctions, the even-frequency triplet p-wave component can
play a non-negligible role in the Josephson current [50]. For
the results involving triplet pairs in this section, we take the
corresponding dimensionless time to be ωDt = 4. Due to the
presence of only one spin band in F2, the f0 correlations have
a very weak extent within the half metal and remain relatively
constant for all �ϕ. On the other hand, the f1 component has
a relatively large presence in F2, increasing as the magnitude
of the current increases. In the absence of current, the triplet
amplitudes populate the half metal, consistent with what is
found in half-metallic spin valves [27]. As mentioned earlier,
the presence of the thin ferromagnet layers is important for the
generation of the opposite-spin triplet pairs, and consequently
the conversion to the equal-spin channel. This effect is clearly
seen in (c), where now the magnitudes of the triplet correlations
are presented averaged over the F1 and F3 layers. As the
macroscopic phase difference changes, it is evident that a
nontrivial intermixture of f0 and f1 occurs in those layers.

In the bottom row, panels (d)–(f), the three components of
the normalized spin currents are shown as a function of the
dimensionless position X = kF x. All components of the spin
current flow in thex direction. The dashed vertical lines serve to
identify the narrow ferromagnetic regions containing F1 and
F3. If the F layers possessed uniform magnetization, there
would be no net spin current. The introduction of an inhomo-
geneous magnetization however results in a net spin current
imbalance that is finite even in the absence of a Josephson
current. In (d), we present the normalized x component of
the spin current, Sx , which is responsible for the torque that
tends to align the magnetizations in the ferromagnetic layers.
This exchange field mediated effect is present in the absence
of Josephson current and is seen to be almost independent
of the phase difference that drives the Josephson current.
As seen, this quantity is maximized at the interfaces, before
undergoing damped oscillations. For completeness, we have
included in (e) the y component of the spin current, which for
our magnetic configuration is clearly negligible. In panel (f),
we examine the normalized z component of the spin current Sz.
This component, which is oriented parallel to the interfaces,
tends to build up on the weakly ferromagnetic layers and then
propagate uniformly in the half metal. The magnitude of Sz is
seen to correlate with the magnitude of the charge current in
(a), where the smaller phase differences result in large charge
and spin currents that decline as �ϕ increases. These results
indicate that the half metal polarizes the spin current along its
magnetization direction, and that the Josephson current is due
to the propagation of equal-spin triplet pairs.

Next, in Fig. 9(a) the half metal F2 and ferromagnet F1

have fixed thicknesses corresponding to DF2 = 50 and DF1 =

FIG. 9. Top row: (a) The normalized charge current density Jx

vs the phase difference �ϕ; (b) the z component of the normalized
spin current density Sz within the half-metal region vs �ϕ for several
DF3; and (c) the normalized Sz as a function of dimensionless position
X ≡ kF x for DF3 = 20. The legend in (c) labels the different phase
differences �ϕ (in degrees) between the S banks. The legend in
(a) depicts the ferromagnet thicknesses DF3 used in (a), (b), and
(d)–(f). Bottom row: The spatial behavior of the real part of the triplet
correlations for various thicknesses [see legend in (a)] and for a phase
difference of �ϕ = 90◦. The dashed vertical lines identify the F1

and F2 regions located within 800 � X � 810 and 810 < X � 860,
respectively, while the solid vertical lines mark the various F3/S

interfaces. The exchange field in F1 and F3 is aligned along the y

direction, while it points along z in the half metal (see Fig. 7). The
thicknesses dF1 and dF2 are maintained at the constant dimensionless
values of DF1 = 10 and DF2 = 50, respectively.

10, respectively. The ferromagnet F3 is allowed to vary, as
shown in the legend. Asymmetric structures with unequal
thicknesses of the ferromagnetic layers has been shown to
enhance spin mixing effects that results in the generation
of long-ranged spin-polarized triplet pairs [75]. The linear
behavior of the charge current previously shown in Fig. 8
where the two magnets F1 and F3 are of equal thickness is seen
to transition to a sinusoidal-like structure as the difference in
the thicknesses between F1 and F3 increases. Thus, for highly
asymmetric structures, the current-phase relation reveals a sign
change in the charge current for phase differences between
0◦ and 180◦. Deviations from the sinusoidal current-phase
relation can also arise in half-metallic Josephson junctions
with strong spin-flip interface scattering [15]. The ferromagnet
F3 with relatively weak exchange field compared with F2

and somewhat larger thicknesses (DF3 = 10) creates ideal
conditions for the creation and propagation of opposite-spin
triplet pairs. The center-of-mass momentum of a given pair
shifts in the presence of spin splitting from the exchange field,
resulting in the observed damped oscillations for a given �ϕ.

If we now calculate the z component of the spin current
flowing through the half-metal portion of the junction, we find
that aside from a sign difference, it is nearly identical to the
Josephson current as seen in Fig. 9(b). This reaffirms that the
current flowing through the half metal is composed of Cooper
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pairs that are polarized in the z direction by the half metal. In
general, the spin current is a nonconserved quantity, in contrast
to the charge current. Thus, although Sz is uniform throughout
the half metal, it spatially varies in the other junction regions.
This is demonstrated in (c) for several phase differences �ϕ

(see legend), where DF1 = 10, DF2 = 50, and DF3 = 20. The
spin current does not flow in the outer superconductor banks,
and thus Sz increases from zero at the S/F1 interface (X =
800) before reaching its uniform value in the half metal, and
then peaks within F3 before declining to zero again in the
superconductor.

To reveal the relative population of triplet pairs throughout
the junction, we consider in (d)–(f) the triplet correlations
f0, f1, and f2, as functions of normalized position X. The
phase difference is set according to �ϕ = 90◦. We still have
DF1 = 10 and DF2 = 50, but several DF3 are shown with
values given in the legend found in panel (a), thus creating
a broad range of current profiles. The opposite-spin triplet
correlations shown in (d) reveal that f0 spikes in the F1 region,
and is weakly dependent on DF3. Within F2 however, the single
spin band present in the half metal severely diminishes f0.
When F3 has thin layers, the greater confinement enhances the
f0 amplitudes. Increasing DF3 eventually provides sufficient
space for the exchange field to induce damped oscillations
of the opposite-spin pairs. Thus, although it is energetically
unfavorable for the f0 correlations to reside in the half metal,
they do become enhanced in the surrounding ferromagnets
when they are thin (DF3 = 5, 10). Under these conditions,
the spin-polarized triplet pairs f1 and f2 propagate within the
half-metallic region, as seen in (e) and (f). It is also evident that
often the equal-spin triplets do not decay within the S regions,
but rather extend deep into the superconductor banks.

Having seen the influence that the layer thicknesses in
half-metallic Josephson junctions have on the charge and
spin currents, we now turn to the effects of magnetization
rotations. Rotating the magnetization in one of the junction
layers can be achieved experimentally via external magnetic
fields, or spin-torque switching. In Fig. 10(a) we display the
magnitude of the normalized charge current as a function of
the magnetization angle θ1. The half-metal thickness is set
at DF2 = 50, and the surrounding ferromagnets have equal
thicknesses of DF1 = DF3 = 10. The effects of scattering at
the S/F1 and F3/S interfaces are accounted for by setting
the dimensionless parameter HB1 ≡ H1/vF = 0.8 and HB4 ≡
H4/vF = 0.8, respectively. Here H1 and H4 are the delta-
function scattering strengths at those two interfaces [53]. If
nonmagnetic impurities are present at the interfaces, there can
be an enhancement of the Andreev reflection processes, leading
to an increase of the Josephson current [68]. The inclusion
of interfacial scattering, however, generally tends to suppress
the linear sawtooth profile in the current-phase relation [53].
The Josephson current is established with a phase difference
�ϕ = 90◦ between the superconducting banks. The half-metal
layer has its ferromagnetic exchange field directed along z and
for F3, it is directed along y (see Fig. 7). Thus, when θ1 = 0◦
or θ1 = 180◦, both F1 and the adjacent half-metallic layer have
magnetizations that are parallel or antiparallel, respectively. At
these points, Jx vanishes while the supercurrent flow is largest
when θ1 = 90◦, corresponding to when the junction layers have
magnetizations that are orthogonal to one another, and hence

FIG. 10. Top row: (a) Normalized charge currents and (b) the
z component of normalized spin currents in each junction region
as a function of the magnetization alignment angle θ1. Bottom
row: Spatially averaged equal-spin (c) and opposite-spin (d) triplet
correlations as a function of θ1. The thicknesses of F1, F2, and F3

are set to be 10/kF , 50/kF , and 10/kF , respectively. An interface
scattering strength of H1,4 = 0.8 is present at the interfaces (see main
text), and a phase difference of �ϕ = 90◦ is assumed.

possess a high degree of magnetic inhomogeneity. Similarly,
manipulation of the supercurrent through relative variations of
�ϕ and the magnetization angles was also exhibited using a
non-self-consistent scattering approach [66]. The half metal
tends to align the spin of any entering quasiparticles along the
z direction, and this component of the normalized spin current
displays essentially identical behavior to Jx as seen in (b).
The averaged spin current is distributed equally throughout
the two outer ferromagnets, but weaker overall since it must
vanish at the boundaries with the superconductors. In previous
work [14] an S-matrix quasiclassical theory was developed for
half-metallic Josephson junctions with spin-active interfaces,
showing that the supercurrent has to be carried by the equal-
spin triplet pairs. The behavior of the magnitudes of the triplet
correlations vs θ1 is presented in panels (c) and (d). When
θ1 = 0◦ or θ1 = 180◦, the generation of equal-spin triplets is
suppressed in the ferromagnets F1 and F3 due to the lowering
of the overall magnetic inhomogeneity. For these situations, the
magnetizations in the F1 and F2 layers are collinear; however,
f1 does not vanish due to the orthogonal magnetization in F3.
On the contrary, when θ1 = 90◦, the magnetization in each
ferromagnet is orthogonal to the adjacent one, resulting in
favorable conditions for the creation of the equal-spin triplets.
In (d) the importance of having relatively weak and thin outer
ferromagnets for the triplet conversion process is exhibited by
the population of the f0 triplet components in those regions.
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FIG. 11. Top row: Normalized charge current (a) and average
spin currents (b) vs the dimensionless magnetization strength h2/EF .
Bottom row: Spatially averaged equal-spin (c) and opposite-spin (d)
triplet correlations as a function of h2/EF . The thicknesses of F1,
F2, and F3 are set to be 10/kF , 100/kF , and 10/kF , respectively.
The legend in (b) identifies each region of the junction in which the
quantities in (b)–(d) are averaged over. Here, transparent interfaces
are considered and �ϕ = 30◦.

It was observed that the presence of the half metal in the
junction serves to filter out the opposite-spin triplet pairs,
creating a platform in which to study spin-polarized triplet
correlations. It is of interest to clarify the role that the exchange
field strength in the half-metal region has on the charge and
spin transport. The top row of Fig. 11 therefore shows the
magnitude of the charge current and the averaged spin current,
both normalized, as a function of the exchange field strength
in the half metal, h2. The phase difference is set to �ϕ =
30◦. For clarity, the two ferromagnets have equal thicknesses,
DF1 = DF3 = 10, and there is no interface scattering present.
The larger half metal has a thickness of DF2 = 100, and
the exchange field varies from h2 = 0 to h2 = EF , which
coincides with a nonmagnetic normal metal and a half-metallic
phase, respectively. The junction’s magnetization profile is
in an optimal inhomogeneous state, with alignment angles
as follows: θ1 = 90◦, θ2 = 0◦, and θ3 = 90◦, corresponding
to magnetization alignments along y, z, and y, respectively.
Examining panel (a), it is evident that the magnitude of the
charge current Jx is maximal when the F2 layer is weakly
ferromagnetic, and is minimal when F2 is half metallic. When
only one electrode is present, it was shown that the current
is optimized for intermediate exchange field strengths and
vanishes in the half-metallic limit [51]. The spatially averaged
spin current on the other hand is anticorrelated with Jx , as it
monotonically increases with larger exchange fields. Indeed,

Sz vanishes when the central F2 layer is a nonmagnetic normal
metal, and peaks when it is half metallic. When the central layer
is nonmagnetic, Sz vanishes since the only active magnetic lay-
ers in this case are F1 and F3 which have parallel magnetization
directions. Examining the bottom row, the triplet correlations
are also shown averaged over each of the three junction layers.
In (c) the magnitude of the f1 correlations is shown vs h2/EF .
When h2 = 0, F1 and F3 are the only ferromagnetic layers
in the junction, and their magnetizations are oriented along
y. Since they are collinear, spin-polarized triplet pairs cannot
be generated, and hence f1 = 0. Increasing h2 and hence the
degree of polarization in the F2 layer continuously increases
the number of spin-polarized triplet pairs in the ferromagnets
F1 and F3, with f1 largest when F2 is half metallic. This
is consistent with the experimental observation of enhanced
spin-valve effects arising from the increased generation of
f1 correlations in a half metal [21]. The f1 correlations in
F2 also become enhanced as its exchange field get larger,
until h2/EF ≈ 0.3. Further increases in h2 result in a slight
decline before ultimately increasing again as F2 approaches the
half-metallic limit. This demonstrates the importance of using
a highly spin-polarized material in the central junction region to
optimize triplet pair generation in each layer. The opposite-spin
pairs f0 are also maximized in the triplet conversion layers
F1 and F3 when h2 = EF as seen in (d). Unlike what is
found for f1, the f0 correlations are not constrained to vanish
when h2 = 0 since they can exist when the ferromagnets have
collinear magnetizations. Thus the thin ferromagnetic regions
have a substantial portion of f0 pairs when h2 = 0. Within the
thicker F2 layer however, f0 is significantly reduced overall,
becoming negligibly small in the nonmagnetic metal (h2 = 0)
and half-metallic (h2 = EF ) limits. This substantiates the idea

FIG. 12. Charge current as a function of phase difference �ϕ.
The thicknesses of F1, F2, and F3 are set to be 10/kF , 100/kF ,
and 10/kF , respectively. The interface scattering strengths are set to
HB1 = HB4 = 0.8. The magnetization in F1 and F2 is along the z and
y directions, respectively. In the ferromagnet F3, the magnetization
orientation angles θ3 vary as shown (θ3 = 0 is along z, θ3 = 90◦ is
along y, and θ3 = 180◦ is along −z).
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FIG. 13. Components of the average spin current in each region vs the phase difference �ϕ. Three magnetization orientations of the outer
ferromagnet F3 are shown: θ3 = 0 (top row), θ3 = 90◦ (middle row), and θ3 = 180◦ (bottom row). The thicknesses of F1, F2, and F3 are set to
be 10/kF , 100/kF , and 10/kF , respectively. The dimensionless interface scattering strengths correspond to HB1 = HB4 = 0.8.

that using a half metal for F2 enables one to focus on the
interplay between the spin current and the equal spin pairs f1

in the F2 region.
We now take the structure previously studied above in

Fig. 11 and incorporate interface scattering, and rotate the
magnetizations so that they are interchanged for the first two
layers. Thus,F1 andF2 have their magnetizations aligned along
the z and y axes, respectively. The normalized interface scatter-
ing strength is set at H1 = H4 = 0.8. With these parameters,
Fig. 12 examines the normalized Josephson supercurrent as
a function of the phase difference �ϕ. Three magnetization

orientations for F3 are investigated for each of the three
panels: θ3 = 0, 90◦, and 180◦ (corresponding to the z, y, and
−z directions, respectively). The supercurrent reveals that,
depending on whether the magnetization in F3 is collinear
or orthogonal to the adjacent half metal, the direction of the
charge current can be reversed or turned off completely. When
θ3 = 0, the magnetizations in each layer are orthogonal to
one another, and the current-phase relation reveals that when
starting from zero phase difference, the magnitude of the
current increases until �ϕ ≈ 70◦, before declining back to
zero again at �ϕ = 180◦. Due to quasiparticle scattering that
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takes place at the interfaces, the coherent transport of Cooper
pairs through the junction is significantly altered compared to
when the interfaces were transparent, resulting in the observed
overall reduction in current and deviation from the previous
linear behavior found in Fig. 8. Previously, when studying how
magnetization rotation affected the charge current in Fig. 10(a),
we found that when two adjacent layers in the junction have
collinear magnetizations, the charge current vanished. This
is consistent with Fig. 12, where the current vanishes for
all phase differences at θ3 = 90◦. Rotating the magnetization
further to θ3 = 180◦, the magnetizations in both ferromagnets
are orthogonal to the half metal, as in the θ3 = 0 case, but
antiparallel to each other. This causes a reversal of the charge
current as shown.

As shown earlier, the charge current that flows due to the
macroscopic phase differences between the S electrodes can
become spin-polarized when entering one of the ferromagnetic
or half-metal layers. This spin current can then interact with the
other ferromagnets and become modified by the corresponding
magnetizations. Having established in Fig. 12 how the charge
current can be manipulated for a half-metallic Josephson
junction, it is important to next identify how the spin currents
behave in each layer, as control of these spin currents is vital
for spintronic applications. It has been shown that within a
quasiclassical formalism, spin supercurrents can flow in the
absence of a charge current [51]. To explore the spin currents
using our self-consistent, microscopic approach, Fig. 13 shows
the phase dependence for the spatially averaged spin current S.
We implement the same experimentally accessible parameters
used in Fig. 12. Each row of three panels corresponds to
one of the three magnetization orientations θ3 (as labeled).
As discussed earlier, the central half-metallic layer maintains
a constant spin current that can couple the surrounding fer-
romagnets F1 and F3. This effect is evident for Sx when
θ3 = 0◦ (top row), corresponding to the z, y, z magnetic
configuration for the respective F1, F2, and F3 layers. This
spin current component, normal to the interfaces, is essentially
the static contribution to the spin current, which participates
in spin-transfer torque effects near the ferromagnet/half-metal
interfaces where misaligned exchange fields are present. Thus,
Sx varies in space, resulting in a local STT (recall ∂Sx/∂x =
τx) that tends to rotate the corresponding magnetizations in
opposite directions. Within the half metal, the spin current
oscillates as it damps out deep withinF2, resulting in an average
Sx of zero, as exhibited in (a). The averaged spin currents
clearly do not depend on the phase difference, as expected for a
static effect. The strong influence of the half metal is exhibited
by Sy , the spin current component that lies in the same direction
as the exchange field in the half metal. The half metal is seen
to polarize not only the spin current within it, but also within
the surrounding weak magnets whose intrinsic exchange fields
are in the orthogonal z direction. Note that the y component
of spin currents in each of the F regions have similar overall
behavior as a function of �ϕ, with the average Sy being equal
in F1 and F3, and largest in F2. Comparing this to Fig. 12,
it is clear that apart from a sign difference, the normalized
spin current Sy in the half metal and the supercurrent Jx are
nearly identical. This implies that the spin-polarized current
Sy in the half metal correlates with the charge current that is
flowing there. Therefore, the charge transport is governed by

spin-polarized Cooper pairs corresponding to the equal-spin
correlations. Turning now to the middle row, where θ3 = 90◦,
there is no spin current along y for all of the F layers. Within the
F3 layer, the normalized Sx is shown to vanish at �ϕ = 90◦,
while Sz is maximal for that phase difference. Considering
the phase differences that yield no supercurrent, �ϕ = 0◦ and
180◦, the spin currents Sx and Sz are seen to be anticorrelated,
with Sz now vanishing, and the magnitude of Sx having now
become largest in F3. Finally, the bottom row depicts the
spin currents for θ3 = 180◦. As was found for the previous
θ3 = 0◦ case, we see a direct correlation between the charge
supercurrent (Fig. 12) and the y component of the spin current
for this magnetic configuration, the main differences being that
the directions of the charge and spin currents are reversed, due
to θ3 having a reversed collinear orientation, and nonvanishing
Sx in F2.

IV. CONCLUSIONS

In this paper, we have studied in detail the interplay be-
tween the triplet pairs and transport properties of half-metallic
superconducting spin valves including tunnel junctions and
Josephson junctions. In tunnel junctions with the presence
of an applied bias voltage, we have discussed a useful the-
oretical approach combining the self-consistent solutions to
the Bogoliubov–de Gennes equations and the transfer matrix
method based on the Blonder-Tinkham-Klapwijk formalism.
By utilizing this approach, we were able to determine the
bias dependence of the spin-transport quantities and induced
triplet pair amplitudes. We first investigated the bias-induced
magnetizations, spin currents, and the spin-transfer torques as
functions of position for various misorientation angles between
the half metal and adjacent weak ferromagnet. We found that
their behaviors can be largely explained by the precessional
effect: When the injected charge current spin-polarized by
the half metal enters the weak ferromagnet, its polarization
state can be rotated by the local exchange interaction. The bias
dependence of these spin-transport quantities was also studied.
We find that their magnitudes increase linearly when external
bias voltages are larger than the saturated superconducting pair
amplitudes. We then showed that the spin-transport quantities
are determined by two important parameters: the exchange
interaction and thickness of the weak ferromagnet. Both m = 0
and m = ±1 triplet correlations of the tunnel junctions were
also presented. We found that they are anticorrelated when
the misorientation angle between exchange interactions in the
ferromagnetic layers is varying. Furthermore, the long-range
nature of m = ±1 triplet correlations in the half-metallic
region is established and proven to be important in the half-
metallic tunnel junctions. It was shown that by choosing the
exchange interaction to be about 0.1EF , the spin-valve effect
is optimized.

We then turned to the study of half-metallic Josephson
junctions, consisting of a half metal sandwiched by two weak
ferromagnets in the nonsuperconducting region. First, we
considered a symmetric situation where the thicknesses and
exchange fields are the same for the two weak magnets. To
generate all components of triplet pairs, the exchange field
in the half metal was directed perpendicular to that of the
weak magnets. We studied the current-phase relations and
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found that the current was only weakly dependent on the
thickness of the half metal indicating that the supercurrent was
carried by equal-spin triplet pairs. This was also corroborated
by the fact that the charge current was strongly correlated
with the spin current as a function of the phase difference
between the two superconducting banks. We also investigated
the asymmetric situation where the thickness of one of the
weak magnets was adjusted. We again found that the equal-spin
triplet pairs were responsible for the flow of supercurrent and
spin current. Next, we analyzed the effects of changing the
angle between the exchange field in the half metal and the
adjacent weak magnet. When the misorientation angle was
90◦, the charge current, the equal-spin triplet pair amplitudes,
and the spin currents attained their maximum values. On the
other hand, when the angle was 0◦ or 180◦, both the charge
and spin currents vanished, showing the importance of the
magnetic configuration in half-metallic Josephson junctions.
The induced triplet correlations also depend on the exchange
interaction for the central ferromagnet. They saturate when the
half-metallic limit is reached. Finally, we showed that when the
exchange fields in the weak magnets have the same magnitude
and are perpendicular to that of the half metal, the spin-valve
effect is most pronounced.
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APPENDIX A: TRANSFER MATRIX APPROACH

Here we present the details of how to adopt the transfer
matrix approach to extract relevant reflection and transmission
amplitudes. If one considers a bilayer tunnel junction that is
made up of a nonmagnetic metal and a superconductor, then
the eigenfunctions in the nonmagnetic metallic region are only
linear combinations of particle and hole wave functions [72].
However, in our work, where the nonmagnetic metallic region
is replaced by two ferromagnetic layers, one should consider
the spin degree of freedom in addition to the particle-hole
nature. Because the exchange field is along z in F1 (see Fig. 1),
the appropriate eigenfunctions are⎛

⎜⎜⎝
e±ik+

↑1x

0
0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
e±ik+

↓1x

0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0

e±ik−
↑1x

0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0
0

e±ik−
↓1x

⎞
⎟⎟⎠, (A1)

where the subscript 1 denotes the F1 regions and the superscript
+ is for particle-like and − is for hole-like wave functions.
When the eigenenergy ε is specified, the corresponding wave
vectors are given by the following relation:

k±
s1 = [1 − ηsh1 ± ε − k2

⊥]1/2, (A2)

where k2
⊥ = k2

y + k2
z . The incident angle, θI , relative to the

normal of the interface with spin s is related to k⊥ and given by
the relation tan θI = k⊥/k±

s1. The reflected angles, θR , similarly

obey tan θR = k⊥/k±
s1. From Eq. (A2), it is easy to see that the

reflected angles depend on both the spin as well as whether the
quasiparticle is particle-like or hole-like. The exchange field in
F2 lies on the yz plane, and it is tilted relative to the z axis by
the angle θ . One needs again to use suitable eigenfunctions for
both particle and hole branches in F2. The particle-like wave
functions with spin parallel to the exchange field in F2 and
antiparallel to the exchange field in F2 are given as⎛

⎜⎝
cos (θ/2)
sin (θ/2)

0
0

⎞
⎟⎠e±ik+

↑2x,

⎛
⎜⎝

− sin (θ/2)
cos (θ/2)

0
0

⎞
⎟⎠e±ik+

↓2x, (A3)

respectively. Similarly, the hole-like wave functions with spin
parallel and antiparallel to the exchange field in F2 are given
by ⎛

⎜⎝
0
0

cos (θ/2)
− sin (θ/2)

⎞
⎟⎠e±ik−

↑2x,

⎛
⎜⎝

0
0

sin (θ/2)
cos (θ/2)

⎞
⎟⎠e±ik−

↓2x, (A4)

respectively. Here the momenta are defined through the relation

k±
s2 = [1 − ηsh2 ± ε − k2

⊥]1/2. (A5)

Note here that following previous conventions, we denote “+”
for particles and “−” for holes. Because the Hamiltonian is
translationally invariant in the yz plane, the perpendicular
momentum k⊥ is a constant throughout the “entire” junction for
a given eigenstate appropriate to the entire junction. Once the
energy of the eigenstate, ε, is prescribed, the eigenfunctions in
the F2 region are given as a linear combination of these wave
functions. Accordingly, there are eight unknowns associated
with this linear combination. On the superconducting side, one
can easily show that in 4 × 4 Nambu space, the appropriate
wave functions are⎛
⎜⎝

u0

0
0
v0

⎞
⎟⎠e±ik+x,

⎛
⎜⎝

0
u0

v0

0

⎞
⎟⎠e±ik+x,

⎛
⎜⎝

v0

0
0
u0

⎞
⎟⎠e±ik−x,

⎛
⎜⎝

0
v0

u0

0

⎞
⎟⎠e±ik−x,

(A6)

where k± = 1 ±
√

ε2 − �2
0 − k2

⊥. If a non-self-consistent pair
potential is adopted for which the pair potential in the S region
is a constant, the entire S region is just a linear combination
of the above wave functions with suitable constants u0 and v0

given by

u2
0 = 1

2

⎛
⎝1 +

√
ε2 − �2

0

ε

⎞
⎠, (A7a)

v2
0 = 1

2

⎛
⎝1 −

√
ε2 − �2

0

ε

⎞
⎠, (A7b)

where �0 is the constant pair amplitude. Let us first discuss
the non-self-consistent case and suppose a spin-up particle is
sent from an electrode into the F1 region. In the F1 region, one
needs to include the incident spin-up particle wave function as
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well as four different types of reflection: (1) a reflected particle
wave function with spin-up, (2) a reflected particle wave
function with spin-down, (3) an Andreev reflected hole wave
function with spin-up, and (4) an Andreev reflected hole wave
function with spin-down. As a result, we have four unknowns
associated with these four reflected wave functions. In the F2

region, all eight possibilities, Eqs. (A3) and (A4), must be
considered, since in general the waves can travel in either
the +x or −x directions. In the S region, there are four
different types of transmitted wave functions: two transmitted
particle-like wave functions,

⎛
⎜⎝

u0

0
0
v0

⎞
⎟⎠eik+x,

⎛
⎜⎝

0
u0

v0

0

⎞
⎟⎠eik+x, (A8)

and two transmitted hole-like wave functions,⎛
⎜⎝

v0

0
0
u0

⎞
⎟⎠e−ik−x,

⎛
⎜⎝

0
v0

u0

0

⎞
⎟⎠e−ik−x. (A9)

Thus, the total number of unknowns in this process is sixteen
(four from the reflections, eight associated with the F2 region,
and four from the transmissions). We have exactly the same
number of constraints to solve for these unknowns because
there are two interfaces (F1/F2 and F2/S) at which the
continuous conditions of the wave function and its derivative
must hold when the interfacial barrier is absent.

If one uses a self-consistent profile for the pair amplitude,
� is not a constant and it varies with x. It is convenient to
consider a transfer-matrix approach to take into account the
variation of �. The details of this approach are presented in
Ref. [61] and will not be repeated in this paper. Here, we only
summarize the outline of this approach. One first divides the
S region into a number of small subregions and approximates
each subregion by a constant potential. One can then write
down suitable wave functions in each subregion. Except for the
last subregion where there are only four unknowns linked to
four types of transmission, there are eight unknowns associated
with each subregion, resulting now in an overall greater number
of unknowns. By recognizing the fact that unknowns on one
side of an interface are related to those on the other side, we
can write

M̃ixi = Mi+1xi+1, (A10)

where i is the index of each subregion, M̃i and Mi+1 are the
corresponding matrices determined by matching the boundary
conditions, and xi and xi+1 are the column vectors composed
of the unknowns in the ith and (i + 1)th subregions. By using
this recurrence relation, one naturally relates the reflection
coefficients in the F1 region with the transmission coefficients
in the outermost S layer. Once these transmission and reflection
coefficients are found, they can be fed back into the recurrence
relation to generate solutions in each subregion. The transfer
matrix method is advantageous because the size of the matrix
equation needed to be solved is much smaller than the number
of unknowns, albeit at the cost of multiplying matrices.

APPENDIX B: CHARGE AND SPIN TRANSPORT

From the Heisenberg equation for the charge density ρ(r ),

∂

∂t
〈ρ(r )〉 = i〈[Heff , ρ(r )]〉, (B1)

it is not difficult to obtain the following continuity condition
for the current density J :

∂

∂t
〈ρ(r )〉 + ∇ · J = −4eIm[�(r )〈ψ†

↑(r )ψ†
↓(r )〉]. (B2)

When in the steady state, the first term on the left is dropped.
Moreover, when the system is in equilibrium without an exter-
nal bias, one can use the Bogoliubov transformation together
with the conservation law for our quasi-one-dimensional sys-
tem to conveniently write the continuity equation as

∂Jx (x)

∂x
= 2eIm

{
�(x)

∑
n

[u∗
n↑vn↓ + u∗

n↓vn↑] tanh
( εn

2T

)}
.

(B3)

The self-consistency condition, Eq. (3) in the main text,
demands that the right-hand side of Eq. (B3) vanishes and that
the current is a constant throughout the junction, as expected.

Using again the Heisenberg equation can give the proper
conservation law [61,76] for spin densities:

∂

∂t
〈η(r, t )〉 = i〈[H, η(r, t )]〉. (B4)

After carrying out some lengthy algebra, we obtain the desired
continuity equation,

∂

∂t
〈η(r, t )〉 + ∂ S

∂x
= τ , (B5)

where S is the spin current and τ is the associated spin-transfer
torque. They are given by

S = iμB

2m

∑
s

〈
ψ†

s σ
∂ψs

∂x
− ∂ψ

†
s

∂x
σψs

〉
, (B6)

τ = 2
∑
ss ′

〈ψ†
s (r )(σ × h)ss ′ψs ′ (r )〉 = 2m × h. (B7)

APPENDIX C: SPIN ROTATIONS

Here we outline the spin rotations that are performed on the
triplet components (f0, f1, f2) in Eq. (10). By aligning the spin
axes with the local exchange field directions, the role of the
triplet correlations and their physical interpretation becomes
clearer. The central quantity that we use to perform the desired
rotations is the spin transformation matrix T in particle-hole
space. The quasiparticle amplitudes transform as

� ′
n(x) = T �n(x), (C1)

where �n(x) = (un↑(x), un↓(x), vn↑(x), vn↓(x)), and the
prime denotes quantities in the rotated system. The matrix
T can be written solely in terms of the angles that describe
the local magnetization orientation. In particular, when the
orientation of the exchange fields in a given layer is expressed
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in terms of the angles given in Eq. (7), we can write

T =

⎡
⎢⎢⎢⎣

cos (θi/2) −i sin(θi/2) 0 0

−i sin(θi/2) cos(θi/2) 0 0

0 0 cos (θi/2) −i sin(θi/2)

0 0 −i sin(θi/2) cos(θi/2)

⎤
⎥⎥⎥⎦.

(C2)

Using the spin rotation matrix T , it is also possible to
transform the original BdG equations H�n = εn�n [Eq. (2)]
by performing the unitary transformation:H′ = T HT −1, with
T †T = 1. As is the case under all unitary transformations,
the eigenvalues here are preserved, but the eigenvectors are
modified in general according to Eq. (C1). Thus we can write

u′
n↑ = cos (θi/2)un↑ − i sin(θi/2)un↓, (C3)

u′
n↓ = cos (θi/2)un↓ − i sin(θi/2)un↑, (C4)

v′
n↑ = cos (θi/2)vn↑ − i sin(θi/2)vn↓, (C5)

v′
n↓ = cos (θi/2)vn↓ − i sin(θi/2)vn↑. (C6)

The terms involved in calculating the singlet pair correla-
tions [Eq. (3)] thus obey the following relation between the
transformed (primed) and untransformed quantities:

u′
n↑v′∗

n↓ + u′
n↓v′∗

n↑ = un↑v∗
n↓ + un↓v∗

n↑. (C7)

Therefore the terms that dictate the singlet pairing are invariant
for any choice of quantization axis, transforming as scalars
under spin rotations.

The terms governing the triplet amplitudes on the other hand
are in general not invariant under spin rotations. The relevant
particle-hole products in Eq. (10a) that determine f0 upon the
spin transformations obey the following relationships:

u′
n↑v′∗

n↓ − u′
n↓v′∗

n↑ = cos θi (un↑v∗
n↓ − un↓v∗

n↑)

+ i sin θi (un↑v∗
n↑ − un↓v∗

n↓)

= cos θif0 + i sin θif2. (C8)

For the equal-spin component f1 [Eq. (10b)], the rotation
leaves f ′

1 unchanged:

u′
n↑v′∗

n↑ + u′
n↓v′∗

n↓ = un↑v∗
n↑ + un↓v∗

n↓. (C9)

For the other equal-spin component f2 [Eq. (10c)], it is
straightforward to show that

u′
n↑v′∗

n↑ − u′
n↓v′∗

n↓ = cos θi (un↑v∗
n↑ − un↓v∗

n↓)

+ i sin θi (un↑v∗
n↓ − un↓v∗

n↑)

= cos θif2 + i sin θif0. (C10)
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