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Peak effect due to competing vortex ground states in superconductors with large inclusions

Roland Willa,1 Alexei E. Koshelev,1 Ivan A. Sadovskyy,1,2 and Andreas Glatz1,3

1Materials Science Division, Argonne National Laboratory, 9700 South Cass Av, Argonne, Illinois 60639, USA
2Computation Institute, University of Chicago, 5735 South Ellis Av, Chicago, Illinois 60637, USA

3Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA

(Received 5 June 2018; published 29 August 2018)

Superconductors can support large dissipation-free electrical currents only if vortex lines are effectively immo-
bilized by material defects. Macroscopic critical currents depend on elemental interactions of vortices with individ-
ual pinning centers. Pinning mechanisms are nontrivial for large-size defects such as self-assembled nanoparticles.
We investigate the problem of a vortex system interacting with an isolated defect using time-dependent Ginzburg-
Landau simulations. In particular, we study the instability-limited depinning process and extract the dependence
of the pin-breaking force on inclusion size and anisotropy for an isolated vortex line. In the case of a vortex lattice
interacting with a large isolated defect, we find a series of first-order phase transitions at well-defined magnetic
fields, when the number of vortex lines occupying the inclusion changes. The pin-breaking force has sharp local
minima at those fields. As a consequence, in the case of isolated identical large-size defects, the field dependence
of the critical current is composed of a series of peaks located in between the occupation-number transition
points.
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I. INTRODUCTION

The electrodynamic properties of type-II superconductors
are mostly determined by vortex lines [1], tubes carrying a
quantized magnetic flux �0 = hc/2e screened by circulating
supercurrents. Effective immobilization of vortices by material
defects is essential for the ability of practical superconductors
to carry large electrical currents without dissipation.

Recently, impressive progress has been made in the con-
trolled fabrication of materials containing defect structures
which provide effective pinning landscapes, see reviews [2–
6]. The most prominent example is the synthesis of cuprate
high-temperature superconductors containing self-assembled
oxide precipitates in the form of nanoparticles [7–16] or
nanorods [17–21]. In this paper, we focus on materials in
which the dominant pinning centers are large-size nanopar-
ticles. Another promising technique to generate particlelike
pinning centers in the form of small clusters is proton or ion
irradiation [22–27]. Despite these practical advances, the un-
derstanding of pinning mechanisms in those materials remains
unsatisfactory.

The development of qualitative and quantitative descrip-
tions of vortex pinning by point defects has been subject to
intense theoretical [28–42] and numerical [43–54] research
over the past decades. Theoretical studies are mostly focused
on two major topics: weak collective pinning by a large
number of atomic defects [29,33,34] or strong pinning by a
dilute distribution of defects [28,29,32,35,37–42]. The second
scenario is most relevant for superconducting materials in
which nanoparticles are the main pinning centers. Hereby,
the elemental interaction of a vortex line with a single defect
constitutes the basic ingredient for the theoretical description.
This microscopic interaction is characterized by two pinning
parameters: the pin-breaking force and the associated pinning

energy. In a conventional approach, where one assumes strong
but pointlike defects, both quantities can be evaluated quanti-
tatively.

Recently, large-scale simulations of the time-dependent
Ginzburg-Landau model have been demonstrated to be very
useful for exploring different pinning regimes [53–58]. In this
paper, we use this approach to investigate a single vortex line
(zero-field limit) and a vortex lattice at finite magnetic field
interacting with an isolated large-size inclusion. In contrast to
small defects, the depinning from a large defect is a nontrivial
process strongly influenced by elastic deformation of the vortex
line outside defect. We quantify this process and compute the
dependence of the pin-breaking force on the inclusion size and
on the material’s anisotropy.

It is generally believed that the pinning characteristics of a
defect—such as its pin-breaking force—are mostly determined
by the defect’s intrinsic properties (its size, shape, internal
structure) and only weakly depend on external parameters
(e.g., the field strength) [29,33,35]. We find, however, that this
assumption is strongly violated for large inclusions. By study-
ing the simple setting of an isolated defect interacting with a
vortex lattice, we show that surrounding vortex lines influence
the pinning/depinning process far more than expected from a
conventional elastic approach and lead to a strong dependence
of the pin-breaking force on the field strength. This means that,
in general, the pin-breaking force is not an intrinsic defect
property.

Moreover, at high magnetic fields, the inclusion may cap-
ture more than one vortex. Each increase of the inclusion’s
occupation number corresponds to a first-order phase transition
between pinning ground states. This manifests itself through
pronounced features in the pin-breaking force. The field depen-
dences of this key parameter for inclusions with different sizes,
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FIG. 1. Critical force fp to depin a vortex lattice from an isolated
defect as a function of field strength B and defect diameter a. At
a specific field B2(a) (dashed, magenta line), double-occupation of
the defect becomes favorable as compared to single occupation. At
this transition, fp (B ) shows a sharp cusp. For large defects, a second
cusp at B3(a) (dot-dashed, purple line) marks the transition to triple
occupancy of the defect.

shown in Fig. 1, highlight the main phenomenon discussed
here: we report a peak effect associated with transitions of
the defect’s pinning ground states between different (vortex)
occupancies.

The paper is organized as follows. In Sec. II, the critical
state of a single flux line detaching from an inclusion is
investigated as a function of the defect’s size and of the
superconductor’s uniaxial anisotropy. In Sec. III, we review
existing theoretical descriptions of the single-defect problem,
discuss possible limitations, and propose generalizations. We
then study the capability of a single defect to pin a vortex lattice
by numerical means. In particular, the field strength B [or
equivalently the intervortex distance a� = (4/3)1/4(�0/B )1/2]
is shown to play an important role. Appendix A provides
the anisotropy-scaling analysis of the critical force for a
single vortex. While details about the implementation of
the numerical solver for the Ginzburg-Landau equation on
graphics processing units (GPUs) is published elsewhere
[55], the specifications used in this work are discussed in
Appendix B. Appendix C is devoted to the vortex lattice’s
response to small external forces (elastic regime). While the
main text primarily focuses on the critical current, a discussion
of another observable—the ac penetration depth (or Campbell
length) of a low-frequency field oscillation—shall be given in
Appendix D.

II. INTERACTION OF A SINGLE VORTEX WITH AN
ISOLATED SPHERICAL INCLUSION

In this section, we investigate the size and anisotropy depen-
dences of the maximum (or pin-breaking) force for an isolated
vortex line depinning from a spherical defect. To evaluate this
key parameter characterizing an individual pinning center, we
will numerically compute the critical current jc necessary to
depin a single vortex from an isolated defect. The current j

(applied along y) acts on the flux line (threading along z)
with the total Lorentz force fL = �0jLz/c (along x) over the
vortex’ entire length Lz (here c is the speed of light; we use

CGS units). For small currents,1 j < jc, the vortex remains
trapped in the inclusion by a counteracting pinning force but
deforms due to the action of the Lorentz force outside the
defect. At the depinning transition, j = jc, the Lorentz force
is exactly balanced by the maximal pinning force fp the defect
can provide. A current exceeding jc strips the vortex line off
the inclusion and the motion of the freed line generates a finite
voltage.

For pins with lateral sizes larger than the coherence length ξ ,
the depinning process is strongly influenced by deformations
caused by the Lorentz force on the free vortex segments. These
deformations force the vortex entry and exit points to slide
along the inclusion surface and approach each other. When the
local angle θ between the segments at these points is reduced
below a certain value (π/2 in isotropic case), the segments
start to attract each other. At a somewhat lower critical angle
θ = θc, the static configuration becomes unstable, the segments
reconnect, and the flux line moves away from the defect. The
current j imposing this critical angle defines the critical current
jc. For this release scenario, the pin-breaking force is mostly
determined by the line tension of the vortex rather than by
properties of the pin itself.

For a spheroid inclusion with sizes ax = ay > ξ and az >

ξz = ξ/γ in an anisotropic 3D superconductor, the scaling
analysis discussed in Appendix A leads to the following form
for the pin-breaking force2:

fp(ax, az, γ ) = G1

(
γ az

ax

)
ε0

γ
ln

[
G2

(
γ az

ax

)
ax

ξ

]
, (1)

where γ is the anisotropy factor, ε0 = (�0/4πλ)2 is the scale
for the vortex line energy, λ is the London penetration depth,
and Gi are dimensionless functions of order unity.

We have executed two sets of time-dependent Ginzburg-
Landau simulations to study the depinning process from an
isolated spherical defect: the first set focuses on the depen-
dence of fp on the defect size (in the range a = 2−20ξ )
for both an isotropic material, γ = 1, and a superconduc-
tor with anisotropy γ = 5, corresponding approximately to
the anisotropy found in YBa2Cu3O7−x . These simulations
are done in a cuboid volume with side lengths Lx,Ly, Lz,
each measuring either 50ξ or 100ξ with 128 or 256 mesh
points, respectively. At the volume’s center [defining the origin
(x, y, z) = 0 of the coordinate system], we place a spherical
inclusion. Inside the inclusion, the linear coefficient in the
time-dependent Ginzburg-Landau equation assumes a negative
value ε = −1, see Appendix B. In the second set we investigate
the anisotropy dependence of fp in the range 1 � γ � 6
for fixed inclusion diameters between 5ξ and 16ξ . These
simulations are done for a cubic system with lateral sizes 32ξ

or 64ξ and two mesh points per ξ .

1Note that the attribute small used for the current strength depends on
the system’s size. For a single defect, the critical current scales as jc =
fpc/(�0Lz ), while for finite fields, it reads jc = fpc/(BLxLyLz ).

2We note that this result is different from the naive estimate
(ε0az/ax ) ln(ax/ξ ), which is obtained by dividing the pinning energy
(ε0az ) ln(ax/ξ ) by the defect size ax . The reason of this discrepancy is
the strong deformation of the vortex line during the depinning process.
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FIG. 2. Time dependence of the applied current (blue steps) and
the resulting electric field (red) from TDGL simulations of a single
vortex line pinned at an isolated inclusion. The data are shown for
spherical inclusions with diameters 4ξ and 16ξ . At specific times
[marked by vertical dashed lines (green)], snapshots of the vortex
configurations are shown. The units of time t0, electric field E0, and
current j0 are defined in Appendix B.

Figure 2 illustrates the vortex-line depinning dynamics in
an isotropic superconductor for two spherical inclusions with
diameters 4ξ and 16ξ , respectively. The left column of Fig. 2
shows representative time dependences of the current ramping
(blue steps) and the resulting space-averaged electric field
(red). At the critical current, the flux line detaches from the
inclusion, as manifested by a rapid increase of the electric
field. The columns on the right of Fig. 2 show isosurfaces
of the order parameter for representative configurations near
criticality. These isosurfaces image both the vortex line and
the inclusion. Animations of line depinning can be found in
Ref. [59].

Once the critical current jc is obtained from the numerical
simulations (here, in units of j0 = c�0/8π2λ2ξ comparable
to the depairing current jdp = 2j0/3

√
3), the pin-breaking

force can be calculated from the relation fp = (�0/c)jcLz =
2ε0(jc/j0)(Lz/ξ ). The size dependence of fp is presented in
Fig. 3(a) for two values of the anisotropy, where the force
is expressed through the natural scale ε0 of the vortex line
tension. We find that for a > 4ξ , the size dependence of fp

is well described by the logarithmic function, as suggested
by Eq. (1), see fits in Fig. 3. In particular, for the isotropic
case, the dependence of the maximal pinning force on the
defect size for large inclusions is well described by fp(a) ≈
2ε0 ln(0.42a/ξ ). The rather weak logarithmic dependence on
the particle size confirms the assumption that the pin-breaking
force is mostly determined by the vortex line tension. The
anisotropy dependences of the pin-breaking force is shown
in Fig. 3(b) for several inclusion sizes. The decrease of fp

with the anisotropy factor γ indicates again the relevance
of the line tension in the depinning process. We find that
fp(a) ∝ ln(a) for all anisotropies and the coefficient in front
of the logarithm monotonically decreases with the anisotropy
factor but slower than 1/γ . The function G1 in Eq. (1) can be
found by size-dependent fittings of fp for fixed γ and is well
described by the simple dependence, G1(γ ) ≈ 1.5 + 0.5γ for
1 < γ < 6; note that γ → γ az/ax for nonspherical particles.
We also find that G2(γ ) is a nonmonotonic function weakly

FIG. 3. (a) Pin-breaking force fp necessary to depin a single
vortex from a spherical inclusion of diameter a. Colors differentiate
between anisotropies, i.e., γ = 1 (blue) and γ = 5 (red), while the
color shade indicates the system size. The dashed and dash-dotted
lines are logarithmic fits suggested by Eq. (1) with fitting parameters
G1,2(γ ). (b) Dependence of the pin-breaking force on the anisotropy
γ . Colors/symbols are associated with defect sizes.

varying within the range 0.42–0.56, which can be interpolated
as G2(γ ) ≈ 0.354 + 0.097γ − 0.011γ 2.

Investigating the vortex shape, in the vicinity (including the
inside) of the inclusion, we have identified two parameters
characterizing the last stable configuration: (i) the critical
angle θ between the vortex segments at the points where they
enter the inclusion (defined as an angle between the linear
interpolations at these points) and (ii) the distance d between
the entrance points. From the critical vortex-line configurations
in the vicinity of spherical defects, see Fig. 4, we find a mono-
tonically decreasing critical angle with increasing particle size
saturating near 60◦ for the large-size particle. At the same
time, the distance between the vortex tips intersecting with
the inclusion’s surface does not show a saturation behavior.
As a consequence, the distance between the vortex segments
significantly exceeds the coherence length for large inclusions.
Indeed, it reaches up to 9ξ for the largest particle a = 20ξ . We
conclude from this analysis that the critical angle—rather than
the nearest distance between vortex segments—is the relevant
parameter determining the critical state.
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FIG. 4. (a) Enlarged view of the critical vortex configuration in
the vicinity of particles of different sizes a. The solid circle segment
lines mark the particle boundaries and the lines with symbols show
vortex configurations in the critical state. (b) Critical angle θ and
distance d between vortex tips versus defect diameter.

From a more technical perspective, we find that the depin-
ning force is generally robust against changing the system size.
In the anisotropic case for a = 5ξ and a = 6ξ , the critical force
in the cubic volume (50ξ )3 slightly deviates (5%–10%) from
the larger cubic system (100ξ )3. We attribute this effect to the
large vortex deformation ∼20−30ξ , i.e., reaching a significant
fraction of the lateral system size. For this reason, we limit
ourselves to the larger simulation volume for inclusions with
a > 6ξ .

III. INTERACTION OF A VORTEX LATTICE WITH AN
ISOLATED SPHERICAL INCLUSION

In this section, we explore the interaction of an isolated
inclusion with a vortex lattice at different magnetic fields. We
investigate the simplest geometry of Nv vortices with length Lz

arranged in an ideal lattice with period a�, which is driven along
a nearest-neighbor direction (x axis) by the current j flowing
along the y axis. A spherical inclusion is placed at the origin,
within the vortex-row plane, as illustrated in Fig. 5. The pin-
breaking force is typically considered as an intrinsic property
of a defect. We will see, however, that for large-size inclusions
a finite magnetic field strongly affects the depinning process

x

u

L z

a∆
FIG. 5. An isolated inclusion interacting with the vortex lattice.

This simulation snapshot highlights the vortex row (thick, dark blue)
impacting the spherical defect in their path. Vortices from lateral rows
are shown as well (semitransparent). The vortex (lattice) displacement
x, the deformation u imposed on the pinned flux line, and the system’s
vertical size Lz are highlighted.

leading to a nontrivial field dependence of the pin-breaking
force. Before studying this problem numerically, we first give
a brief account of the theoretical expectations.

A. Theoretical background

1. Linear response

At small forces, the pinned flux-line lattice is expected to
respond linearly to an external force. When a total Lorentz
force fL = NvLz�0j/c acts on the vortex system, the defect
will react with the same force of opposite sign, i.e., fpin = −fL.
At the same time, this force displaces the vortex lattice by a
distance x > 0 relative to its unperturbed position. Further-
more, a maximal deformation u < 0 is imposed on the pinned
vortex, see Fig. 5. In the linear regime, where x ∝ fpin, this
deformation satisfies an elastic force-balance equation of the
form

fpin(x) = C̄u. (2)

Here the effective spring constant C̄ relates to the elastic
Green’s function Gαβ (r, z) giving the α component of the
vortex lattice displacement at the point (r, z) caused by the β

component of the force acting at the origin. Usually, the defect
is approximated by a point-like pin having a δ-shaped potential.
In this case C̄0 = [Gxx (0, 0)]−1 and a proper evaluation [5,54]
in the limit B 	 Hc2 provides the estimate,

C̄0 ≈ 3
√

ε1ε0/a� ≈ 1.2(ε0/γ ξ )(B/Hc2)1/2, (3)

where ε1 ≈ ε0/γ
2 is the vortex line tension.

The point-force approximation is however expected to break
down once the defect’s vertical size az meets or exceeds
the characteristic healing length �h = a�/γ of the vortex
perturbation. As shown in Appendix C, the elastic Green’s
function Gxx (r, z) is then probed along a finite length ≈ az

parallel to the z axis, yielding

C̄(az) = C̄0
χaz/�h

ln(1 + χaz/�h)
, (4)

with χ a numerical constant of order unity (numerical cal-
culations give χ ≈ 2–2.5). For small inclusions az 	 �h, the
result reduces to the zero-size expression (3). In the opposite
limit of long inclusions, az 
 �h, the spring constant reduces
to C̄2D ≈ ε0az/a� ln(azγ /a�), i.e., the elasticity of vortices
in two-dimensional films of thickness az. The logarithmic
divergence has to be properly cut off.

Regarding the applicability of expression (4), it is worth
noting that the requirements a 	 a� (low-field, in-plane)
and az �	 �h = a�/γ (along z) are antithetic. For spherical
inclusions in an isotropic superconductor (γ = 1), this only
leaves little room for this type of defect-size effect. Therefore
the result (4) is mostly relevant for either anisotropic super-
conductors (γ > 1) or for elongated inclusions [ax = ay = a

and az > a].

2. Pinning force profile

The linear elastic approximation breaks down at larger
forces, i.e., near the depinning transition. More precisely, a
vortex at a distance x away from the defect deforms according
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to the nonlinear equation [35]

fp(x + u) = C̄u (5)

with fp(r ) the (bare) force associated with the defect’s pinning
well. The system described by this equation goes through a
weak-to-strong pinning transition when the Labusch parameter
κ ≡ maxr [f ′

p(r )]/C̄ reaches unity (the prime denotes the
derivative with respect to the function’s argument, here r). In
the strong-pinning regime, κ > 1, Eq. (5) exhibits multiple
solutions u(x) in a finite interval x ∈ [x−, x+], the boundaries
of which are characterized by a softening of the vortex
deformation, u′(x → x±) → ∞.

Similar to the linear-response regime, Eq. (2), a pinning
force fpin(x) ≡ fp[x + u(x)] may be defined. Due to the exis-
tence of multiple solutions u(x), the force profile fpin(x) itself
is also multivalued. It is this pinning landscape that is probed by
the vortex state as it adiabatically moves through the defect. If
initially pinned at x = 0, the vortex state assumes a pinned
solution until reaching the critical value x+ ≈ uc ≡ fp/C̄.
This point defines the pin-breaking force fp ≡ maxr [fp(r )],
which in this basic picture is a field-independent parameter.
The vortex deformation in the critical state uc then depends
on the field strength B through the elastic spring constant
C̄(B ) ∝ B1/2 and is proportional to a�. At the point x = x+,
the pinned branch terminates, the vortex pinches off from the
defect, and only the unpinned solution is realized. On the other
hand, as a vortex approaches the defect from the opposite
side, the unpinned solution is realized for x < −x−, where
it undergoes a trapping instability and snaps into the defect.

The described basic scenario assumed in the majority of
theoretical studies [28–37] is valid if the critical deformation uc

is much smaller than the lattice period a�. This condition may
break for large inclusions at sufficiently strong magnetic field,
especially in strongly-anisotropic superconductors. In this
case, the trapping instability of a second vortex approaching the
defect may occur before the departure of the pinned flux line.
The force-balance equation for this second vortex reads [54]

fp(xs + us ) = C̄(us − �u), (6)

where us is the deformation of the second vortex at xs =
x − a�. The term �u describes the contribution to the second-
vortex displacement coming from the force acting on the
pinned vortex with � ≈ Gxx (0)/Gxx (a�) (estimates provide
� ≈ 0.23, see Ref. [54]). This equation gives a trapping
instability of the unpinned vortex at xt = (a� − x−)/(1 − �).
For xt < x+, the depinning scenario changes qualitatively.
In this case, the second vortex jumps into the inclusion and
forces the departure of an (already) pinned one. This yields the
reduction of the pin-breaking force

fp(B ) ≈ (xt/x+)fp. (7)

As x+ is approximately proportional toa�, the field dependence
of the pin-breaking force is dominated by the factor 1 − x−/a�,
hence extrapolating to zero where the intervortex distance a�
matches x− ≈ a at B ≈ �0/a

2. The condition xt < x+ also
implies that the inclusion is always occupied.

It is beyond the scope of the above analysis to tell if the
trapping of the second vortex causes the pinned vortex to leave.
In fact, it is reasonable to assume that for sufficiently large

fields, B 
 �0/a
2, the defect will realize a double-occupied

pinning ground state.

3. Averaging and observable quantities

In a realistic scenario of a superconductor with a low density
np of randomly distributed defects, each vortex-to-pin distance
x (along the force direction) occurs with equal probability.
In addition, the inclusion may be located at a finite impact
distance y in the direction transverse to the vortex motion.
In this case, the vortex is trapped by the inclusion only if
|y| < x−. Macroscopic observables (such as the critical current
measured in experiments) arise from a proper average over
the realized states of the pinning force. For this purpose, the
direction transverse to the vortex motion is approximately
accounted for by the factor 2x−/a�, i.e., identifying vortices
that impact the defect within a transverse trapping distance 2x−
with one impacting head-on the defect (y = 0). For the specific
case of the critical current, one then finds [35,41,42,54] jc ≈
(cnp/B )(2x−/a�)〈fpin〉. In this regime, the critical current
decreases with the field approximately as 1/

√
B. At high fields,

i.e., when a� ≈ x−, the bulk critical current further simplifies to

jc ≈ cnp

B
〈fpin〉. (8)

In the simplest case with field-independent 〈fpin〉, the critical
current is therefore expected to decay as 1/B.

B. Numerical results

In order to explore the pinning properties in different
regimes beyond simple analytical estimates, we investigate the
interaction of an isolated inclusion with a vortex lattice us-
ing large-scale time-dependent Ginzburg-Landau simulations
[55]. Specifically, we initialized the simulations with an ideal
flux-line lattice composed of Nv = 36 vortices, hence adjust-
ing the system’s lateral dimensions Lx = (3/4)1/2Ly = 6a� to
the field strength B = (4/3)1/2�0/a

2
�. For the vertical system

size, we used Lz = 50ξ . Furthermore, a central row of vortices
was aligned along y = 0. This configuration allows to probe
the linear-elastic (see Appendix C), pin-breaking, and dynamic
regimes numerically by placing defects of various diameters a

at the volume’s origin and ramping up the applied current.

1. Pin-breaking force

At the defect’s pin-breaking force fp the vortex lattice
departs from its static configuration and the transition to a
dynamic regime is manifested by the onset of dissipation.
The appearance of a finite voltage hence provides an ideal
criterion to determine the defect’s maximal pinning force fp.
We systematically evaluate this key parameter for different
inclusion sizes and magnetic fields. The overall behavior of
fp for all studied sizes and fields is illustrated by the waterfall
plot in Fig. 1. For a more detailed presentation and quantitative
comparison, we show the magnetic field dependences of the
pin-breaking force for three selected inclusion sizes: 2ξ, 4ξ ,
and 6ξ in Fig. 6. Starting with the smallest inclusion, a = 2ξ ,
the pin-breaking force shows two regimes. At low fields, fp

slightly increases with increasing magnetic field. We attribute
this weak field dependence to the confining effect of the vortex
lattice, leading to a rectification of the pinned vortex and an
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FIG. 6. Field-dependent pin-breaking force fp = NvLz�0jc/c

for three different defect sizes a = 2ξ (red, square), 4ξ (green,
triangle), and 6ξ (blue, pentagon). The transitions between different
occupation states are seen as sharp cusplike dips of fp (B ) for a = 4ξ

and 6ξ . In addition to the absolute maximum forces shown by
solid symbols, for a = 4ξ and 6ξ , we also show the local maxima
f meta

p for metastable states extracted from dynamics simulations by
open symbols (dashed), see text. The transition fields for single-
to-double [B2(a), magenta line] and double-to-triple [B3(a), purple
line] occupancy—shown in the inset—follow the empirical laws
B2,3(a)/Hc2 = C2,3(ξ/a)2 (black solid lines), with C2 = 3.5 and
C3 = 7.5.

increase of the angle between two vortex pieces entering the
inclusion. As a consequence, the critical angle θc at which
the depinning instability develops is reached at larger forces.
At larger fields, B � 0.1Hc2, the pin-breaking force gradually
diminishes, reaching only a fraction of its maximal value
near 0.5Hc2. We attribute this effect to the influence of an
unpinned vortex approaching a defect that still traps a flux
line. Nevertheless, for small inclusion in a wide field range,
the general scenario follows simple expectations.

For a larger inclusion, a > 2ξ , the field dependence of
fp is strongly influenced by the possibility of a (stable)
double-occupancy of the defect. Above a certain field B2(a),
the critical state changes abruptly from a single-occupied to
a double-occupied defect.3 Prior to that transition, the pin-
breaking force rapidly decreases with field. In this range, the
critical state corresponds to trapping of the second vortex,
which immediately expels the pinned vortex, in agreement
with the above consideration, see Eq. (7). Above the transition,
B > B2(a), the double-occupied state is stable and the pin-
breaking force fp measures its criticality. Due to different
nature of the critical state above and below B2, fp(B ) features
a kink at the transition. Moreover, the degeneracy between

3This transition field of the critical-state modification is very
close—yet not identical—to the static transition field at which the
zero-current ground state changes from single to double occupation
of the inclusion.

the two occupation states at the transition point leads to
the pronounced minimum of fp(B ). Above the kink, the
pin-breaking force rapidly increases with B due to further
stabilization of the double-occupied state. The transition field
B2(a) follows the empirical law B2(a) ∝ a−2, i.e., a�(B2)/a =
const., see the inset in Fig. 6. At even higher fields, the
competition with other unpinned vortices becomes relevant and
the pin-breaking force fp(B ) starts decreasing again. The peak
effect repeats itself when new vortices are accommodated in
the defect, as observed here for large inclusions a � 5ξ , where
triple-occupancy occurs above B3. Whereas at low fields, only
the central vortex row (impacting the defect) is involved in
the pinning-depinning process, the regime of triple-occupancy
typically involves vortices from neighboring vortex rows.

2. Quasi-static pinning force profile

In order to extract the defect’s pinning characteristics
beyond the pin-breaking force fp such as the full force profile
fpin(x), we proceed with dynamic simulations at currents
slightly larger than the critical current. As the vortex lattice
slowly moves, we observe different occupation states of the
defect which are shown in Fig. 7 for three inclusion sizes, see
also animations in Ref. [59].

Small defects (a = 2ξ ) follow the simplest scheme where
the defect is either occupied by one vortex, or empty. Periodi-
cally (i.e., as the vortex lattice moves by one lattice period a�),
one vortex undergoes a depinning transition 1 → 0, while the
next vortex gets trapped upon approaching the defect, 0 → 1.
Above a certain field, ∼0.44Hc2, these two transitions become
indistinguishable, i.e., one pinned vortex is instantaneously
replaced by the next one, 1 → 1. At this point the defect’s
unoccupied state vanishes.

For larger defects, a > 2ξ , the behavior is much richer. For
a = 4ξ , the conventional scheme 1 → 0/0 → 1 is realized
only for small fields, <0.052Hc2, and the regime 1 → 1 with
simultaneous trapping and depinning occupies an extended
field range 0.052 < B/Hc2 < 0.11. At higher fields an in-
termediate double-occupied state develops, when the second
vortex snaps into the defect before the first one leaves, 1 →
2. This dynamic double-occupied phase appears before the
double-occupancy becomes the critical state, i.e., already when
B < B2. In this intermediate range, the system is characterized
by two critical forces: (i) to trap the second vortex to the single-
occupied pin, 1 → 2, and (ii) to release one vortex from the
double-occupied pin, 2 → 1. Both these forces are plotted in
Fig. 6. In the wide range of fields 0.052 < B/Hc2 < B2/Hc2 ≈
0.22, the maximum pinning force is determined by the trapping
instability of an unpinned vortex by the already occupied
defect, rather than by the release of the pinned vortex. This
causes the field dependence and rapid decrease of fp (B ) within
this range, see Fig. 6. For B > B2, the critical state switches to
that of a double-occupied defect and fp(B ) starts to increase.
At very high fields, B > 0.4Hc2, the system is on the verge of
triple occupancy, causing fp to decrease again (with increasing
field). Above the field 0.44Hc2, trapping of the third vortex
is accompanied by the simultaneous release of the first one,
2 → 2, marking the disappearance of the single-occupied state.

For the largest inclusion studied here (a = 6ξ ), the interme-
diate double-occupied state is observed starting from the lowest
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FIG. 7. Pinning states and boundaries between them for an iso-
lated inclusion of size a = 2ξ (top), 4ξ (center), and 6ξ (bottom), as
obtained from the quasistatic simulations. As the flux lattice slowly
moves, a vortex may get trapped by or depin from the inclusion.
In the simplest scenario realized for 2ξ and 4ξ , the defect captures
only one defect at the time (green/orange). For higher fields/larger
defects, trapping of a free vortex and freeing of the pinned one can
occur simultaneously (purple). For 4ξ and 6ξ at even higher fields,
the freeing/trapping process occurs in reversed chronological order
(red/blue) and results in a double-occupancy of the defect. For a = 6ξ ,
phase boundaries involving three or more vortices (including those
from neighboring vortex rows) lead to a rich phase pattern at very
high fields. The critical state is marked by a five-pointed star (black
or white) and shows a first-order transition at B2(a) (dashed line). This
transition coincides with the kink in fp (B ), see Figs. 1 and 6. The
inset sketches depict the vortex-defect configuration for each region;
the colors of the transition lines correspond to those in the main figure.

field, and the transition to the double-occupation criticality
occurs in the same way as for smaller inclusion but at a lower
field B2 = 0.1Hc2. With further field increase, the intermediate
triple occupied state appears above 0.17Hc2 when the inclusion
already having two vortices grabs the third one within some
range of x, 2 → 3. Such state is also observed for a smaller
defect with a = 5ξ . The change of criticality at a somewhat
higher field B3 ≈ 0.22Hc2 occurs in a rather complicated way.
In fact, the intervortex distance in this field range is already
comparable with the inclusion size, causing the critical state to
involve trapping of vortices from lateral vortex rows.

In the dynamic regime, we can infer the pinning force profile
and extract quantitative defect properties by analyzing the time
dependence of the electric field. The lattice motion is governed
by the force-balance equation

fpin = −Nv (fL − ηv̄), (9)

where fpin is the total pinning force acting on the vortex lattice,
fL = (�0Lz/c)j the Lorentz force acting on each vortex along
its entire length, and ηv̄ the viscous force of a vortex moving
with an average velocity v̄. The electric field E recorded in the
simulations is related to v̄ via

ηv̄ = �0E

cρff
Lz, (10)

where ρff denotes the flux-flow resistivity, and η =
�0BLz/ρffc

2 is the Bardeen-Stephen viscosity of a vortex
of length Lz. Simulating a pinning-free system, we find
that the flux-flow resistivity within the used magnetic-field
range, B < 0.5Hc2, is described by ρff/ρn = 1.689(B/Hc2) −
0.518(B/Hc2)2, consistent with earlier simulations at lower
fields [53]. Combining Eqs. (9) and (10), we can monitor fpin =
(�0/c)(j − E/ρff )NvLz as a function of time. In addition,
we can extract the vortex-lattice coordinate x(t ) from order-
parameter snapshots. In the absence of this detailed informa-
tion about individual vortex positions, one may compute the
displacement of the vortex lattice’s center of mass coordinate,
x̄(t ) = ∫ t

0 dt ′v̄(t ′), using the time dependence of the electric
field. Note that the position x (or x̄) is only defined modulo a�.
Below, we definex as the (asymptotic, z → ±Lz/2) position of
the vortex closest to depinning. For very strong defects, x may
therefore exceed one lattice period, see Fig. 7. The combination
of the time-dependent quantities fpin and x parametrizes
the position-dependent pinning force fpin(x). This procedure
relies on the assumption that the velocity is sufficiently small to
give the lattice enough time to adjust to its static configuration
with the fixed coordinate x(t ). Generally, such quasistatic
approximation improves with increasing system size.

Figure 8 shows the bare simulation data E(t ) (left) and the
extracted pinning-force profiles fpin(x) (right) for defects of
size a = 4ξ and at fields B/Hc2 = 0.071, 0.190, and 0.295.
The first field (upper row) corresponds to 1 → 1 scenario and
the sharp peak in the E(t ) dependence marks the simultaneous
trapping of arriving vortex and release of the pinned one.
The double-peak structure of E(t ) for the two other fields is
a consequence of the stable double occupied state for 1 →
2/2 → 1 scenario. The second field is in the range B < B2,
i.e., the double occupation is a metastable state, and the event
1 → 2 gives the maximum pinning force. The third field
exceeds B2, where the double occupation is a ground state and
the maximum pinning force is due to the event 2 → 1. The
absolute value of the pinning force is characterized by two
maxima corresponding to the transitions 1 → 2 and 2 → 1.
The smaller value corresponds to the pin-breaking force from
the metastable state, f meta

p (B ), e.g., the 2 → 1 transition for
B = 0.190Hc2. This quantity is highlighted in Fig. 8, and the
metastable force branches are shown as open symbols in Fig. 6.

The full pinning force fpin(x) is the central microscopic
ingredient for strong-pinning theory and only its accurate
knowledge allows for quantitative predictions. Based on the
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FIG. 8. Pinning force profiles (right) extracted from the voltage
evolution (left) for a single defect of size a = 4ξ at different fields
B/Hc2 = 0.071, 0.190, and 0.295. The horizontal axes on the right
panels range over one lattice period [0, a�(B )]. The small mismatch
at x = 0 [where fpin = 0] is caused by dynamic effects. The dashed
lines indicate the expected elastic response extracted from the static
simulations at small forces described in Appendix C. At low fields,
the defect is occupied by one vortex (light gray). In an intermediate
field range the defect is doubly occupied in an extended region
(gray). The extremal force maxx[−fpin(x )] agrees with the pin-
breaking force fp obtained from static simulations. Furthermore,
the secondary extremum [near x = 4.5ξ (x = ξ ) for B/Hc2 = 0.19
(B/Hc2 = 0.295)] defines a “critical force” f meta

p for the metastable
configuration, see Fig. 6.

obtained results for fpin(x), we can numerically evaluate4 the
average 〈fpin〉. In particular, at high magnetic fields, when all
defects are occupied, the critical currant is proportional to the
ratio 〈fpin〉/B, Eq. (8). Figure 9 shows the field dependence
of this ratio for three defect sizes 4ξ, 5ξ , and 6ξ . Despite
some smearing due to the force averaging and despite the
overall 1/B decay, this quantity still has a nonmonotonic field
dependence. The dip and maximum, however, are much less
pronounced in comparison to the pin-breaking force. This
nonmonotonic behavior means that the critical current in a
superconductor with small density of identical strong defects

4Alternatively, one can also obtain 〈fpin〉 only from the time depen-
dences of the electric field, without vortex configuration information.
Using x̄, rather than x, as a spatial coordinate, the force average takes
the form 〈fpin〉 = −(�0NvLz/c)[j − 〈E2〉t /ρff〈E〉t ], where 〈. . .〉t

denotes the time average over one or several complete periods of
motion, i.e., over a time τ such that x̄(τ )/a� is integer.

FIG. 9. Field dependence of the parameter 〈fpin〉/B for inclusion
sizes a = 4ξ, 5ξ , and 6ξ . This quantity mimics the behavior of the
critical current jc for a system with a low density np of defects,
see Eq. (8). Despite the averaging, the novel peak effect—caused by
multiple occupancy of large defects—remains visible for a realistic
system. Arrows indicate the transition from single to double (B2) and
from double to triple occupancy (B3). Notice the logarithmic scale.

should display a peak effect. The appearance of a maximum in
jc(B ) at B ∼ �0/a

2 distinguishes this phenomenon from the
“classical” peak effect [29] due to softening of the line tension
near Hc2 = �0/2πξ 2. Such a multiple-occupation peak in
jc(B ) has been indeed observed in large-scale bulk simulations
of the system containing a small density of randomly located
defects [54].

We also analyze in Appendix D the magnetic-field depen-
dence of the Campbell length λC suggested by our simulation
results. We demonstrate that, in contrast to the critical force,
this parameter is almost insensitive to the transition from single
to double occupancy. This is rooted in the observation that λC

measures the sum of the force discontinuities, see Fig. 8, a
quantity that is relatively smooth through the transition.

IV. CONCLUSIONS

In this paper, we have studied the basic—yet not satisfac-
torily addressed before—problem of vortex pinning properties
of a single inclusion using time-dependent Ginzburg-Landau
simulations. For an isolated vortex, the pin-breaking force
scales logarithmically with the defect’s size and decreases with
increasing anisotropy. The critical state is characterized by the
angle θ = θc enclosing the pinned vortex segments, rather than
the distance d between these segments.

We find that, contrary to common expectations, the pin-
breaking force for a vortex lattice has strong and nonmonotonic
dependence on the field strength. We identify the competition
between a single-occupied versus multiple-occupied defect as
the central cause for this field dependence. The transitions be-
tween different occupation states are manifested as pronounced
cusplike dips in the pin-breaking force and a shallow maximum
develops between neighboring transitions. Proceeding with
quasistatic simulations for j/jc − 1 	 1, we have established
a route to characterize the microscopic pinning force profile
fpin(x) as a function of the vortex lattice’s center-of-mass
coordinate x. Combining the simulations with results from
strong-pinning theory, we have bridged the gap between the
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microscopic properties of a single inclusion and macroscopic
observables [critical current jc and linear ac (Campbell)
penetration length] of bulk superconductors. This missing link
closes the loop where theory, simulations, and experiments can
be compared on a quantitative level.
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APPENDIX A: EVALUATION OF THE
PIN-BREAKING FORCE

We first consider a spheroidal inclusion with sizes ãx, ãz 

ξ̃ in isotropic materials (here we mark all parameters for the
isotropic case with “tilde”). In the critical state, the vortex
segments entering the inclusion have the critical angle θ̃ , as
illustrated in Fig. 4(a). This angle may depend only on the
aspect ratio ãz/ãx . The pinning force has to be compensated
by the line-tension force, giving the relation

f̃p ≈ 2ε̃1 sin(θ̃/2), (A1)

where ε̃1 ≈ ε̃0 ln(R̃/ξ̃ ) is the line tension and R̃ is a length scale
of the order of the inclusion size, which may also depend on
the aspect ratio. Therefore we can represent the pin-breaking
force in the isotropic case as

f̃p(ãx, ãz) = G1

(
ãz

ãx

)
ε̃0 ln

[
G2

(
ãz

ãx

)
ãx

ξ̃

]
. (A2)

This is a very general expression, which only assumes a large
inclusion size.

Let us consider now a spheroidal inclusion with sizes
ax = ay , and az in a material with a finite anisotropy factor
γ . The anisotropic case can be reduced to the isotropic one
using a scaling trick. The source of anisotropy is the kinetic
energy term in the GL free energy

∑
k=x,y,z ξ 2

k (∇k − iAk )2ψ

with ξx = ξy ≡ ξ and ξz = ξ/γ . This energy can be made
isotropic by the transformation z̃ = γ 2/3z, and r̃⊥ = γ −1/3r⊥
with r⊥ = (x, y). In these new coordinates, the inclusion’s
dimensions read ãx = γ −1/3ax and ãz = γ 2/3az and the pin-
breaking force is given by the isotropic result, Eq. (A2).
Moreover, since the pin-breaking force scales as energy/x and
the line-energy parameter scales as energy/z, we immediately
obtain the relations fp = γ −1/3f̃ and ε̃0 = γ −2/3ε0. Finally,
using the relation ãz/ãx = γ az/ax for the defect’s aspect ratio,
we arrive at Eq. (1) of the main text.

APPENDIX B: NUMERICAL ROUTINE

The time-dependent Ginzburg-Landau (TDGL) theory pro-
vides a simple, yet sufficiently accurate framework for describ-

ing the slow dynamics of a superconductor near the depinning
transition. The temporal evolution of the order parameter ψ is
thereby governed by the TDGL equation

u(∂t + iμ)ψ = ε(r )ψ − |ψ |2ψ
+

∑
k=x,y,z

ξ̃ 2
k (∇k − iAk )2ψ + ζ (r, t ), (B1)

written here in its dimensionless form. Time and distance are
measured in units of t0 = 4πλ2/ρnc

2 and the in-plane coher-
ence length ξ , respectively, with λ the in-plane penetration
depth, ρn the normal-state resistivity, and c the light velocity.
The reduced relaxation rate u controls the system’s evolution
in time. The scalar (μ) and vector (Ak) potentials enter in a
gauge-invariant form. Thermal effects are accounted for by
the δ-correlated Langevin force ζ (r, t ). However, here we are
interested in low-temperature properties weakly affected by
thermal fluctuations and only use a small noise amplitude
to improve equilibration such that the associated thermal
energy is much smaller than the energy scales of the pinning
problem under consideration. A uniaxial mass anisotropy γ is
introduced by rescaling the (dimensionless) coherence lengths
ξ̃k to ξ̃x = ξ̃y = γ ξ̃z = 1. Finally, the function ε(r ) allows to
control the local critical temperature, and hence is suitable
for modeling pinscapes. In the infinite-λ approximation, the
vector potential takes the simple form A = [0, (B/Hc2)x, 0],
with B the magnetic field strength along z (crystallographic
c axis), Hc2 = �0/2πξ 2 the upper critical field. A uniform
electrical current j (measured in units of j0 = c�0/8π2λ2ξ )
applied along the y direction, will act with Lorentz force
�0j/c (per unit length along x) on the flux line. In these units,
the depairing current reads jdp = (2/3

√
3)j0 ≈ 0.385j0. The

motion of flux lines is associated with a finite electric field
E = −∂tAy − ∇yμ (generated along y) and measured in units
of E0 = ξHc2/ct0.

In order to solve the TDGL equation numerically for rela-
tively large three-dimensional systems, e.g., 100ξ in all three
dimensions, we use a parallel iterative solver, implemented for
graphics processing units (GPU). Implementation details and
benchmark analyses of this routine are published elsewhere
[55]. Note that the discreteness of the numerical mesh (typi-
cally hz = ξ/2.56), naturally models a layered superconductor
when the out-of-plane coherence length ξz = ξ/γ drops far
below hz. The numerical artifact of discretizing the in-plane
directions hx = hy = ξ/2.56 produces no measurable effect,
suggesting a proper continuum limit hx,y 	 ξ . All simulations
are performed with periodic boundary conditions along x and
y, and open boundaries along z.

APPENDIX C: LINEAR ELASTICITY

We shall derive in this appendix a generalized expression
of the spring constant for a finite-sized defect, and study the
linear response numerically. If a pinning center acts on the
flux line with a distributed force, the spring constant may be
modeled by

C̄−1(az) ≈
∫ ∞

−∞
dz Gxx (0, z)w(z), (C1)

054517-9



WILLA, KOSHELEV, SADOVSKYY, AND GLATZ PHYSICAL REVIEW B 98, 054517 (2018)

where the elastic Green’s function is probed along a finite
height ≈az along the z axis; the characteristic function w(z)
is symmetric [w(z) = w(−z)], decays over the length az, and
is normalized

∫
dzw(z) = 1. We make use of the convolution

theorem to write5

C̄−1(az) =
∫ ∞

−∞

dkz

2π
Ĝxx (0, kz)ŵ(kz). (C2)

Here the hat denotes the Fourier transform over z defined
through f̂ (kz) ≡ ∫

dzf (z)eikzz. Whereas the specific shape of
w(z) determines the final numerical result, the qualitative be-
havior is obtained by choosing the simple form w(z) = e−|z|/az .
To evaluate the above expression, we follow an integration
procedure described in Ref. [42], which we briefly sketch
here. The weighted integration of the momentum-space elastic
Green’s function [29,60,61]

Ĝαβ (k, kz) = kαkβ/k2

c11(k, kz)k2 + c44(k, kz)k2
z

+ δαβ − kαkβ/k2

c66k2 + c44(k, kz)k2
z

(C3)

involves the compression (c11), tilt (c44), and shear (c66)
moduli. We neglect the first term on the right-hand side (since
c66 	 c11) and use c44(k, kz) = c44(0, 0)/[1 + λ2(k2 + k2

z )].
By further assuming k2λ2 
 1 and k2 
 k2

z the integration
range over kz can be extended to infinity and the planar
integration is limited to a circular Brillouin zone k2 � 4π/a�.
Within these approximations, we find

C̄(az) = C̄0
χaz/�h

ln(1 + χaz/�h)
, (C4)

with χ a numerical of order unity. Analytical evaluation
suggests χ ≈ √

π ≈ 1.77.
We investigate the size-dependent elastic response by study-

ing the linear regime with our TDGL simulations. More specif-
ically, we determine the maximal deformation u of the pinned
vortex subject to a small Lorentz force fL, see Fig. 5. This de-
formation is evaluated as u ≡ x(0) − x(Lz/2) with x(z) being
the vortex position at the height z relative to the defect’s center.
Substituting the quantity u into Eq. (2) allows us to numerically
evaluate the effective spring constant C̄, see Fig. 10.

Simulations of an isotropic system show that the linear
response of the vortex lattice to a small Lorentz force has no-
ticeable dependence on the defect size, see Fig. 10 (top). Using
Eq. (C4), we extract the point-size spring constant C̄0 (black
symbols) and the numerical constant χ as fit parameters. For
the anisotropic system with γ = 5, the extracted spring con-
stant C̄(az) shows a much stronger relative defect-size depen-
dence, see Fig. 10 (bottom). This suggests that even the small-
est defect (a = 2ξ ) may not be regarded as a pointlike object.
Extracting C̄0 from fitting the numerical data with Eq. (C4),
further supports this observation. The dependences of C̄0(B )
for γ = 1 and 5, agree well with the expected behavior. The
solid curves in Fig. 10 show 1.15C̄0(B ), see Eq. (3), very close

5Note that the first argument in Ĝxx (0, kz ) is the real-space
coordinate,(x, y ) = 0 ≡ (0, 0).

FIG. 10. The dependences of the effective linear spring constant
C̄ = fL/u on defect size and magnetic field for an isotropic (γ = 1,
top) and an anisotropic (γ = 5, bottom) superconductor. The elastic-
ity is obtained from numerical simulations by evaluating the vortex
displacement u when the system is driven by a fixed (subcritical) force
fL ∝ j , ideally with j 	 jc. The results obtained for two current
values (full and outline symbols) (these two current values differ by a
factor 2 for γ = 1, and a factor 3 for γ = 5) confirm the linearity of the
response. In each case, C̄0(B ) may be extracted from fitting the data to
Eq. (C4). For the anisotropic case, gray dots indicate simulations for
a disk-shaped defect of lateral size ax = ay = 2ξ and a vertical extent
of one mesh size, i.e., az = hz = ξ/2.56. Although not spherical, this
is the closest one may get to a pinning site acting as a “point defect.”

to the theoretical prediction. For both anisotropies, χ lies in the
range 2–2.5, also close to the analytically evaluated value.

For large defects a � 4ξ the field dependence of C̄ shows
a pronounced downturn above the size-dependent magnetic
field. The origin of this downturn is the proximity to the defect’s
double occupancy [see Sec. III B 1]. An additional softening
is expected when approaching Hc2. Accounting for all field
dependences of the elastic constants [62], it has been shown
[42] that C̄0 acquires an additional form factor (1 − B/Hc2)3/2.

APPENDIX D: CAMPBELL LENGTH

Theac penetration depth of a low-amplitude, low-frequency
field oscillation is another experimentally accessible quantity
that allows to quantify vortex pinning. The pinned state
responds to an external ac perturbation hace

−iωt with an ex-
ponentially damped density modulation hace

−iωt e−X/λC . Here,
X measures macroscopic (X 
 a�) distances away from the
sample surface and the (Campbell) length λC directly relates
to the stiffness of the pinned vortex state; and hence on its
microscopic origin.

Within the strong-pinning formalism, the Campbell length
in the critical state has been shown to take the form [40–
42] λ−2

C ≈ [4πnp(2x−)/B�0]〈∂fpin/∂x〉. Whereas a single-
valued force (weak pinning, κ < 1) yields 〈∂fpin/∂x〉 = 0 due
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FIG. 11. At high fields, the quantity
√

B3/2/�fpin mimics the
behavior of the Campbell length λC for a system with a low density
np of defects, see Eq. (D1). Indeed, the proper average 〈∂fpin/∂x〉
measures [42] the sum of the discontinuities (denoted by �fpin)
of the pinscape fpin(x ), see Fig. 8 (right). The field dependence
λC(B ), shown here for 4ξ , is almost linear. Another field dependence
[λC(B ) ∝ B1/2] is expected at low fields, where both the transverse
length 2x− (instead of a�) and the force jump �fpin are weakly
field-dependent.

to symmetry, a finite average may only arise from discontinu-
ities of the pinning force fpin(x), i.e., under strong pinning

conditions κ > 1. The above expression then simplifies to
λ−2

C ≈ [4πnp(2x−)/B�0]�fpin, where �fpin measures the
sum of the force discontinuities in the occupation of fpin(x).

Our quasistatic simulations, see Sec. III B 2, probe the
pinning profile as occupied in the critical [or Bean, or zero-
field-cooled (zfc)] vortex state and hence allow to evaluate the
corresponding Campbell length. The numerical evaluation of
the force jumps suggest that �fpin ∝ B−1/2 at high fields. In
the regime when the inclusion always occupied the transverse
trapping distance 2x− has to be replaced by a� and formula for
λC becomes

λ−2
C ≈ 4πnpa�

B�0
�fpin. (D1)

As a result the (zfc) Campbell length features an almost
linear field dependence, see Fig. 11. At the onset of double-
occupancy, B2 ≈ 0.22Hc2, the single discontinuity in the force
profile splits into two separate ones. Yet, the Campbell length
(measuring the overall jump �fpin) is remarkably insensitive
to this transition. The saturation of the force discontinuity
�fpin at low fields point to the expected [42] regime where
the intervortex distance a� is larger than the transverse trapping
length 2x−, and the (zfc) Campbell length grows as λC ∝ B1/2.
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