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Effect of disorder on coherent quantum phase slips in Josephson junction chains
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We study coherent quantum phase slips in a Josephson junction chain, including two types of quenched
disorder: random spatial modulation of the junction areas and random induced background charges. Usually, the
quantum phase-slip amplitude is sensitive to the normal-mode structure of superconducting phase oscillations in
the ring (Mooij-Schön modes, which are all localized by the area disorder). However, we show that the modes’
contribution to the disorder-induced phase-slip action fluctuations is small, and the fluctuations of the action on
different junctions are mainly determined by the local junction parameters. We study the statistics of the total
quantum phase-slip amplitude on the chain and show that it can be non-Gaussian for not sufficiently long chains.
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I. INTRODUCTION

One-dimensional superconductivity has been studied both
theoretically [1–3] and experimentally [4,5] for a long time.
Structures such as one-dimensional superconducting wires and
Josephson junction chains are of great interest as they can
be used as elements of different superconducting circuits [6].
Of crucial importance in one-dimensional superconductivity
is the phenomenon of phase slips, which give rise to resistance
below the critical temperature Tc and drive the superconductor-
insulator transition [7]. Here we consider coherent quantum
phase slips (QPSs), which correspond to a change in the
phase difference along the superconductor by 2π via quantum-
mechanical tunneling without dissipation and lift ground-state
degeneracy. This is a fundamental issue as it corresponds
to a quantum phenomenon on macroscopic scales (length of
the superconductor). Moreover, coherent quantum phase slips
can be potentially used in creating phase-slip qubits [8,9]
or to realize a fundamental current standard in quantum
metrology [10–12].

We are interested in the regime when the phase tunneling
can be described quasiclassically [13,14]; then each QPS
corresponds to a classical imaginary-time trajectory. For a
Josephson junction chain this trajectory consists of fast phase
winding by 2π on one of the junctions, which gives a local
contribution to the QPS action, and slow phase readjustment
in the rest of the chain. This readjustment is governed by
gapless Mooij-Schön modes [15–20], which can be seen as
the environment for the QPS; they produce the so-called
hydrodynamic contribution to the QPS action [14].

The Mooij-Schön modes are sensitive to spatial variations
of junction parameters, which may affect the environment
contribution to the QPS action. Indeed, for a periodic spatial
modulation of the chain parameters, this environment contri-
bution was shown to be significantly modified [21]. In this
paper we study the QPSs in a disordered chain. The effect of
disorder on Mooij-Schön modes is quite dramatic: all modes
become localized [22]. We want to study how this affects
the QPS.

We consider two types of disorder: random spatial variation
of the junction area and random induced charges (which
can arise from random gate voltages or electronic density
modulations). The effect of the latter on the QPS amplitude
was studied in [13,23]; it was shown that the individual QPS
amplitudes on different junctions should be added with random
phases, which changes the scaling of the total amplitude W

with the junction number N from W ∝ N to W ∝ √
N . The

superconductor-insulator transition in the presence of random
charges was studied in [24]. However, the random charges do
not modify the Mooij-Schön modes on the classical level (note
that on the quantum level the modes’ energies become weakly
sensitive to the charges via the QPSs themselves [25]).

The low-frequency properties of Josephson junction (JJ)
chains are analogous to those of thin superconducting wires.
The environmental contribution to the QPS action, determined
by the Mooij-Schön modes with low frequencies, is similar
for wires and JJ chains. In [26] the effect of random local QPS
phases was addressed, and in [27] randomness in the local QPS
core action due to spatial variations of the wire cross section
was shown to increase the wire resistivity, but the change in
the Mooij-Schön mode spatial structure has not been taken into
account.

In this paper we study the effect of disorder on both the
local and environmental contributions to the QPS action. We
find that the effect on the environmental contribution is weaker
than on the local one, and thus, the localization of the Mooij-
Schön modes does not significantly affect the QPS amplitude.
The QPS amplitude in a disordered chain is a random quantity
whose statistics is determined by the fluctuations of the local
term in the QPS action. We study this statistics, and we show
that it can be non-Gaussian if the chain is not sufficiently long.

The structure of this paper is the following. First, we
introduce the model, state the problem, and briefly sketch the
known facts about QPSs in spatially homogeneous Josephson
junction chains in Sec. II. Then, in Sec. III, we propose
methods to deal with disorder and discuss different regimes,
depending on the type of disorder, its strength, and length of
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FIG. 1. A schematic representation of a superconducting ring
threaded by a magnetic flux � and containing N Josephson junc-
tions with a capacitance C between the neighboring islands and a
capacitance Cg to the ground. EJ is the Josephson energy. φn is the
condensate phase of the nth superconducting island.

the chain. In Sec. IV we discuss the applicability of our results
to superconducting wires. Some technical details are given in
two Appendixes.

II. STATEMENT OF THE PROBLEM

We consider a chain of N Josephson junctions closed in a
ring, pierced by a magnetic flux (Fig. 1). The superconducting
islands are labeled by an integer n, and the dynamical variables
are the phases φn(τ ), where τ is the imaginary time. The island
n = 0 is identified with the island n = N , so that φ0 = φN . We
describe the system by the Euclidean action [28] (setting h̄ = 1
throughout the paper):

S =
∫ N−1∑

n=0

[
Cg,n

8e2

(
φ̇n − i

2e

Cg,n

qn

)2

+ Cn

8e2
(φ̇n+1 − φ̇n)2

−EJ,n cos

(
φn+1 − φn + �

N

)]
dτ, (1)

where φ̇n ≡ ∂φn/∂τ , EJ,n and Cn are the Josephson energy and
the capacitance of the junction between neighboring islands n

and n + 1, respectively, and Cg,n is the capacitance between
island n and a nearby ground plane. qn are the induced charges
on the islands in units of the Cooper-pair charge −2e. �

is the magnetic flux in units of the superconducting flux
quantum divided by 2π (one flux quantum piercing the ring
corresponds to � = 2π ). It is convenient to introduce energy
scales corresponding to the capacitances:

Ec,n = e2

2Cn

, Eg,n = e2

2Cg,n

. (2)

Typically, in experiments Cg,n � Cn [20,29,30]. We assume
that

EJ � Eg � Ec, (3)

which ensures that the phase slips are rare and the chain remains
superconducting for large N [7,13,14,31]. This limit is realistic

FIG. 2. A schematic representation of flux dependence for the
ground-state energy (top panel) and persistent current (bottom panel).
The gray dotted lines correspond to the purely classical approximation
[i.e., neglecting the kinetic terms in the action (1)] for the static
configurations φn = 2πn/N , φn = 0, and φn = −2πn/N (the left,
middle, and right parabolas in the top panel, respectively). The red
solid lines correspond to the exact ground state including the effect
of the quantum tunneling.

and was implemented in recent experiments; for example, one
of the samples in Ref. [29] had EJ /Ec ≈ 90, Eg/Ec ≈ 60.

We consider disorder in the system due to two mechanisms:
random variations in the junction areas and random induced
charges on the islands. Since both the Josephson energy and
the capacitance of a junction are proportional to the junction
area, we can represent EJ,n and Ec,n as

Ec,n = Ec

1 + ηn

, EJ,n = EJ (1 + ηn), (4)

where Ec and EJ are the corresponding values of the junction
parameters for a homogeneous chain and ηn � 1 is the relative
junction area variation. We consider ηn to be independent ran-
dom Gaussian with zero average and dispersion parametrized
as 〈

η2
n

〉 = Ec

8EJ

σ 2 � 1, (5)

where σ 2 is the dispersion of the single-QPS action [defined
later; see Eq. (16b)]. As for the induced charges qn, we focus
on two limiting cases: (i) all charges qn = 0, and (ii) charges
are strongly random with the dispersion 〈q2

n〉 � 1.
We study the QPS amplitude which determines the quan-

tum tunneling splitting 2W between two degenerate classical
ground states at � = π and the smearing of the sawtooth
� dependence of the ground-state persistent current I0(�) ∝
∂E0(�)/∂�, where E0(�) is the ground-state energy (Fig. 2).
Under assumption (2), the QPS events are rare; then the QPS
amplitude W can be presented as a coherent sum of partial
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amplitudes of QPSs centered on different junctions:

W =
N−1∑
n=0

�ne
−Sn−iθn . (6)

Here Sn is the phase action on the classical instanton trajectory,
connecting the two degenerate static phase configurations
which correspond to the classical ground states at � = π ,
θn = 2π (q0 + · · · + qn) is the random phase due to the induced
charges, and �n is the prefactor coming from the Gaussian
integration over the fluctuations around the classical trajectory.

The instanton trajectory corresponding to the nth term in
Eq. (6) involves (i) winding of the phase difference φn+1 − φn

within the whole range 2π and (ii) phase readjustment on the
rest of the junctions, where all the phase differences remain
small, at most ∼1/	s ≡ √

Cg/C � 1. This readjustment is
governed by the Mooij-Schön modes, which play the role of
the environment for the slipping junction.

Integrating out the environmental degrees of freedom using
the standard procedure [32], one obtains the effective action for
the slipping junction phase difference ϑ (τ ) (see Ref. [14] for
the spatially homogeneous case and Ref. [21] for the general
inhomogeneous case):

Sn[ϑ] =
∫ {

1

16 Ec,n

[
dϑ (τ )

dτ

]2

+ EJ,n[1 + cos ϑ (τ )]

}
dτ

+ 1

2

∫
K̃n(τ − τ ′) ϑ (τ ) ϑ (τ ′) dτ dτ ′. (7)

The first two terms in this action correspond to the slipping
junction, while the last term, which results from integrating out
the phases on the rest of the junctions, represents the action of
the phase readjustment. The kernel K̃n(τ − τ ′) can be related
to the chain impedance Zn(iω) at complex frequencies [21,33]:

K̃n(τ − τ ′) =
∫ ∞

−∞

|ω| e−iω(τ−τ ′ )

4e2Zn(i|ω|)
dω

2π
. (8)

Here Zn is the impedance of the open chain, which is the
original chain open between n and n + 1 islands, which
represents the physical environment for the slipping junction.
Zn is determined by the Mooij-Schön modes of the open chain.

The instanton trajectory ϑ (τ ) goes from ϑ = π to ϑ =
−π . For a homogeneous chain in the limit C/Cg � 1 it is
conveniently represented in the Fourier space [13,21],

ϑ (ω) = 2π

iω cosh
(

πω

4
√

2EJ EC

) . (9)

The QPS action (7), evaluated on this trajectory, is given
by [13,14,21,34] (for a homogeneous chain we omit all the
n indexes)

Shom =
√

8EJ

Ec

+
√

π2

8

EJ

Eg

[
ln

N

	s

− 2.43 + O(1/	s )

]
. (10)

The first term corresponds to the slipping junction, while the
rest are determined by the environment. The prefactor � is
estimated to be [13]

� = 4√
π

(
8E3

J Ec

)1/4
. (11)

III. SPATIALLY INHOMOGENEOUS LOOP: CORRECTION
TO THE QPS AMPLITUDE

A. Fluctuations of the QPS action

We consider a JJ chain with weak relative disorder, 〈η2
n〉 �

1, which produces small relative corrections to the action Sn

and the prefactor �n. While the latter results in a small relative
correction to the QPS amplitude W , the correction to the action
δSn, even though small compared to Sn, can still be large
compared to unity since Sn itself is large. As δSn stands in
the exponent, it may significantly modify W . Therefore, in
the following we focus on the statistics of δSn, calculating
it to linear order in ηn. For this we can use the unperturbed
expression (9) for ϑ in Eq. (7) because it was derived from the
condition δS/δϑ = 0. Then the correction to the action is

δSn =
∫ [

ηn

16Ec

(
dϑ

dτ

)2

+ ηnEJ (1 + cos ϑ )

]
dτ

+ 1

2

∫
δK̃n(ω) |ϑ (ω)|2 dω

2π
≡ δSn,loc + δSn,env.

(12)

As we assume the parameters are Gaussian distributed
around the average values, the average correction to the action
is zero. The quadratic fluctuations of the action are determined
(i) by the variation of the slipping junction area, which in
turn determines δSn,loc, the first two terms in Eq. (12), and
(ii) by the correlator 〈δK̃n(ω)δK̃n(ω′)〉, corresponding to the
variation in the impedance of the rest of the chain, which
governs δSn,env, the last term in Eq. (12). Calculation of the
correlator is fully analogous to that of impedance fluctuations
at real frequencies [22]: using the recurrence relation for the
impedance as the chain length is increased by 1, one arrives at
a Langevin-like equation (see Appendix A for details). At low
frequencies ω, ω′ � √

8EJ Ec, the result is

〈δK̃ (ω)δK̃ (ω′)〉 =
√

2EJ

32E
3/2
g

|ω|2|ω′|2
|ω| + |ω′|

〈η2〉
2

. (13)

We are interested in the low-frequency limit of 〈δK̃ (ω)δK̃ (ω′)〉
because the integrand in Eq. (12) is quickly suppressed at ω >√

8EJ Ec due to the frequency dependence of ϑ (ω), Eq. (9).
From this we can estimate〈
δS2

env

〉 ∼ 〈η2〉	s

√
EJ Ec

E2
g

∫ ∼√
EJ Ec

0

dω dω′

ω + ω′ ∼ 〈η2〉	sEJ Ec

E2
g

.

(14)

At the same time〈
δS2

loc

〉 ∼ 〈η2〉EJ

Ec

� 〈
δS2

env

〉
(15)

due to the condition Cg � C.
This is one of the main results of the present work: the fluctu-

ations of the QPS action are dominated by the local values of the
slipping junction parameters, while the effect of modification
of the Mooij-Schön modes by the disorder plays a minor role.
This happened because the environment contribution to the
QPS amplitude is determined by the impedance at imaginary
frequencies, which turns out to be weakly fluctuating. This is
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in striking contrast to the behavior at real frequencies, when
localization of the Mooij-Schön modes by the disorder results
in strong impedance fluctuations [22].

Having established the dominant character of the local con-
tribution to the action fluctuations, we can study the statistics of
the QPS amplitude W by using Eq. (6) with Sn = Shom + δSn,
where Shom is the action of the homogeneous chain, Eq. (10),
and δSn are independent Gaussian random variables:

δSn =
√

8
EJ

Ec

ηn, (16a)

〈δSnδSm〉 = 8
EJ

Ec

〈
η2

n

〉
δnm = σ 2δnm. (16b)

This problem is addressed in the following sections.

B. QPS amplitude distribution without random induced charges

First, we consider only the junction area variation assuming
no induced charges. For long chains we can use the central limit
theorem, resulting in the Gaussian distribution with average
amplitude and dispersion,

〈W 〉 = � e−Shom N eσ 2/2, (17a)√
〈W 2〉 − 〈W 〉2 = � e−Shom

√
N (e2σ 2 − eσ 2 ). (17b)

The central limit theorem is valid when the dispersion is much
smaller than the average, that is, N � eσ 2 − 1. However, even
for small relative area fluctuations 〈η2

n〉 � 1, it is quite possible
that σ 2 � 1. Indeed, taking the above-cited parameters of
experiment [29], EJ /Ec ≈ 90, and assuming 〈η2

n〉 = 10−2, we
obtain σ 2 ≈ 7. Then the central limit theorem applies only for
exponentially large N .

For σ > 1 and insufficiently large N , the distribution can be
far from Gaussian; it develops a long asymmetric tail for large
W . In this case the peak of the distribution can be much smaller
than this average value (see Fig. 3); the average is then deter-
mined by rare configurations contributing to the tail. In fact,
this problem has been known for a long time in many different
areas, such as communications [35,36], optics [37], transport
in disordered systems [38], and finances [39], yet no general
analytical expression for the resulting distribution is available.
Sometimes the resulting distribution can be approximated by
a lognormal one [36,37,39]. Below we revisit this problem for
σ 2 � 1 and give some analytical expressions that are valid in
different regimes [Eqs. (19) and (21)] and compare them to the
results of the direct numerical sampling and its lognormal fit
(Fig. 3).

To derive analytical expressions, let us represent the QPS
amplitude as W = A� e−Shom ; then the distribution function
for the normalized amplitude A is defined as

f (A) =
〈
δ

(
A −

N∑
n=1

exp (−δSn)

)〉

=
∫

dt

2π
eitA

[∫
dx√
2πσ

e
− x2

2σ2 exp(−ite−x )

]N

. (18)

The average value 〈A〉 = N eσ 2/2.

The t integral can be calculated in the saddle-point ap-
proximation in a way similar to what was done in Ref. [38]
(for details see Appendix B). This calculation, valid at N �
σeσ 2/2−σ � 1, gives

f (A) ≈ σM1/2

Neσ 2/2
exp

(
−Me

√
2σQ−Q2 + Q2 + √

2σQ

2

)
,

Q ≡ erfc−1

(
2A

Neσ 2/2

)
, M ≡ Ne−σ 2/2

√
2πσe

. (19)

Another analytically tractable regime is when the whole
sum is determined by a single term, corresponding to the junc-
tion with the highest QPS amplitude (the weakest junction).
The probability of having one junction with x < δSn < x + dx

and the rest of the junctions with δSn < x is

p(x) dx =
( ∫ x

−∞

dx√
2πσ

e
− x2

2σ2

)N−1
N√
2πσ

e
− x2

2σ2 dx, (20)

where N in the last factor corresponds to the fact that the
junction with the highest amplitude can be any of the N

junctions. Then for the distribution we have

f (A) =
∫

δ(A − e−x )p(x)dx

= N√
2πσA

exp

[
− (N − 1)

2
erfc

(
ln A√

2σ

)
− ln2 A

2σ 2

]
.

(21)

The weakest-junction approximation is valid when the am-
plitude on the weakest junction, exp(−min{δSn}), is suffi-
ciently larger than the sum of the amplitudes on the rest
of the junctions, which can be estimated from the above
as (N − 1) exp(−min′{δSn}), where min′{δSn} denotes the
second-smallest {δSn}. To estimate typical values of the two
smallest δSn, we recall the standard procedure for sampling
the Gaussian distribution: from a sample of N numbers {xn},
uniformly distributed between 0 and 1, one obtains a sample
of the Gaussian {δSn} by taking the inverse of the cumulative
probability distribution function (see Fig. 4). In a typical
sample, min{xn} ∼ 1/N and min′{xn} − min{xn} ∼ 1/N , so
we estimate

1

2
erfc

(
min{δSn}√

2σ

)
= 1

N
,

1

2
erfc

(
min′{δSn}√

2σ

)
= 2

N
.

(22)

This results in the validity condition

N � exp[(ln2 2/2)1/3σ 2/3]. (23)

C. QPS amplitude distribution with random induced charges

If we include random induced charges which are sufficiently
strong (|qn| � 1), we obtain a random phase in the amplitude
of a single QPS centered on each junction [13,23] [see Eq. (6)].
Then the normalized QPS is given by

A =
N−1∑
n=0

e−δSn−iθn . (24)
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FIG. 3. Distribution f (A) in the absence of induced charges, calculated for σ = 4 and different N by direct numerical sampling (blue dots),
using the weakest-junction approximation (21) (red dashed lines), the saddle-point approximation (19) (orange dotted lines), and the lognormal
fit (solid green lines).

Therefore, A is complex, and its average is zero. The central
limit theorem results in the complex Gaussian distribution with√

〈|A|2〉 =
√

N eσ 2
. (25)

The criterion for the validity of the central limit theorem is the
correspondence of the moments of A to the moments of the
complex Gaussian distribution, for example,

〈|A|4〉 − 2〈|A|2〉2 � 〈|A|4〉. (26)

This results in the condition N � (e4σ 2 − 1)/2, which is even
more restrictive than in the real case.

In the complex case, we were unable to derive a compact
expression for the distribution function corresponding to the
saddle-point approximation. The weakest-junction approxima-

FIG. 4. Cumulative probability distribution of δSn and estimates
of the two smallest δSn for a typical sample.

tion works when

N � exp[(2 ln2 2)1/3σ 2/3]. (27)

Then the distribution of |A| is the same as the distribution of
A in Eq. (21). The only difference is in the restriction on the
chain length N : the approximation is valid for a wider range
of N , as seen from Eqs. (27) and (23) (see Fig. 5).

IV. INHOMOGENEOUS SUPERCONDUCTING WIRES

Let us discuss the applicability of our results to the QPS in
superconducting wires. Indeed, the low-energy excitations (the
Mooij-Schön modes) are similar for wires and for Josephson
junction chains. The low-energy properties of a superconduct-
ing wire are determined by the inductance per unit length L
and ground capacitance per unit length C. We can represent
a superconducting wire as a Josephson junction chain with
parameters EJ , Cg , and junction size a by matching the Mooij-
Schön mode velocity and the low-frequency wire admittance:

1√
LC

= a
√

8EJ Eg,

√
C
L =

√
EJ

8Eg

. (28)

While for Josephson junction chains the frequency cutoff is√
8EJ Ec, for wires it is given by the superconducting gap 2�.

The analog of the random spatial variation EJ,n = EJ (1 + ηn)
would be the spatial variation L(x) = L/[1 + η(x)], which
can result from, e.g., spatial fluctuations in the wire thickness
on the spatial scale exceeding the thickness itself and the
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FIG. 5. Distribution f (|A|) with random induced charges, calculated for σ = 4 and different N by direct numerical sampling (blue dots)
and using the weakest-junction approximation (21) (red dashed lines).

superconducting coherence length ξ . The parameters L(x)
and C(x) are already averaged over the microscopic disorder
due to impurities, acting on the length scale shorter than
ξ . Then instead of 〈ηnηm〉 = Dδnm with D � 1, we have
〈η(x)η(x ′)〉 = Dδ(x − x ′), where D has the dimensionality
of length and δ(x − x ′) is peaked on the length ∼ξ . If we
represent a segment of the wire of length a � ξ by a Josephson
junction with EJ = 1/[(2e)2aL], then D = D/a. Thus, the
weak-disorder condition is D � ξ .

Similar to the Josephson junction chains, the QPS action
in superconducting wires can be represented as a sum of two
contributions: SQPS = Sloc + Senv. The environmental part of
the action is also determined by the Mooij-Schön modes.
This enables us to use the result in Appendix A for the
low-frequency admittance fluctuations:

〈δK̃ (ω)δK̃ (ω′)〉 = C3/2L−1/2|ω|2|ω′|2
2(2e)4(|ω| + |ω′|) D. (29)

Using the estimate �−1 for the instanton duration [33], from
Eq. (12) we obtain an estimate〈

δS2
env

〉 ∼ C
√
C/L�D
(2e)4

. (30)

The local part of the QPS action cannot be calculated pre-
cisely for superconducting wires [33,42]. However, it can be
estimated as [33] Sloc ∼ 1

(2e)2Lξ�
, which gives〈

δS2
loc

〉 ∼ D/ξ

(2e)4L2ξ 2�2
. (31)

As a result, we have 〈δS2
loc〉 � 〈δS2

env〉 if

ξ � 1

�
√
LC

. (32)

In fact, this relation usually holds for superconducting wires
because the mode velocity 1/

√
LC is sufficiently high. Indeed,

1/C has two contributions: one from the quantum capacitance
of the Fermi sea and the electrostatic contribution due to
Coulomb interaction. In the absence of Coulomb interaction
the mode velocity would be such that both sides of Eq. (32)
would have the same order. However, the Coulomb con-
tribution is usually much stronger, so the velocity is high
enough to ensure the strong inequality (32). The right-hand
side of this inequality can be seen as an analog of 	s for the

superconducting wires, and inequality (32) is an analog of
	s � 1.

As a result, analogous to the JJ chains, the fluctuations of
the QPS actions are determined by the local values of the wire
parameters in the phase-slip core of size ξ .

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have studied the coherent QPSs in disor-
dered Josephson junction chains. We consider two sources of
disorder: random junction area variation and random induced
charges on the superconducting islands. We find that the main
correction to the QPS amplitude W is determined not by
the environmental contribution to the QPS action δSenv, but
mostly by the local values of the slipping junction parameters.
This means that the Mooij-Schön modes localization does not
significantly affect the QPS amplitude.

We have studied the statistics of the QPS amplitude W ,
which is given by the sum of individual (random) amplitudes
on different junctions. For very long chains W has a Gaussian
distribution according to the central limit theorem. However,
as the fluctuations of the QPS action can be large compared
to unity, for insufficiently large N , the distribution of W is
non-Gaussian and has a long tail at large W . We have studied
different regimes, depending on the type of disorder (with
zero or strongly random induced charges), chain length, and
strength of the disorder.

We have also discussed the QPS in spatially disordered
superconducting wires. Our estimates show that the main effect
of inhomogeneity on the QPS amplitude is also due to the local
parameters of the superconducting wire in the core region of
the size of the superconducting coherence length.

A practical value of our results is the estimate of the
disorder strength acceptable for the chains to be uniform
enough for QPSs to occur along the whole chain. This may
be useful in setting up the sample fabrication process. The
QPS distribution can be probed experimentally by fabricating
several samples with nominally identical parameters and mea-
suring the ground-state splitting as in Ref. [40]. If the chain
parameters fluctuate slowly in time compared to the inverse
ground-state splitting (which may be due to fluctuations of
local magnetic field if the Josephson junctions are represented
by superconducting quantum interference devices), our results
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can be used to determine the low-frequency noise of the
persistent current.
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APPENDIX A: ADMITTANCE FLUCTUATIONS

The basic idea of the approach is to study the change
in the admittance YN (iω) ≡ 1/ZN (iω) of an open chain of
N Josephson junctions upon addition of an extra junction
N + 1. We can write the following recurrence relation for the
admittance:

YN+1 = ωCg + YNYJ

YN + YJ

, (A1)

where YJ = 1/(ωLN+1) + ωCN+1 is the imaginary frequency
admittance of the added junction and the Josephson inductance
is defined as 1/LN+1 = (2e)2EJ,N+1.

First, let us consider a homogeneous chain. Then the
recurrence relation (A1) has a stationary point Y∞, determined
by the condition

Y∞ = ωCg + Y∞YJ

Y∞ + YJ

, (A2)

which gives

Y∞ = ωCg

2
+

√
ω2C2

g

4
+ ωCgYJ ≈ √

ωCgYJ . (A3)

The latter approximation follows from C � Cg . Focusing
on small deviations from the stationary point, we introduce
the new variable XN = YN − Y∞. The linearized recurrence
relation takes a simple form:

XN+1 = τ XN, τ ≡ Y 2
J

(Y∞ + YJ )2 . (A4)

Note that 1 − τ � 1, following from Cg � C.
Now we can include fluctuations of the chain parameters,

CN+1 → C(1 + ηN+1), LN+1 → L

1 + ηN+1
, (A5)

and write the linearized recurrence relation as

XN+1 = τXN + Y 2
NYJ

(YN + YJ )2 ηN+1 = τXN + δXN+1. (A6)

Using the condition 1 − τ � 1, we can cast this equation into
a differential form:

dXN

dN
= −(1 − τ )XN + Y 2

NYJ

(YN + YJ )2 ηN+1, (A7)

which is a Langevin equation with Itô prescription for the
multiplicative noise term [41].

So far we have considered the admittance at a given
frequency ω. We are interested in the correlator of admittances
at two different frequencies ω and ω′. Then taking into
account the fact that δXN+1 and XN are not correlated (Itô

prescription), we can average the product of Eqs. (A6) at
different frequencies:

〈XN+1(ω)XN+1(ω′)〉 = τ (ω)τ (ω′)〈XN (ω)XN (ω′)〉
+ 〈δXN+1(ω)δXN+1(ω′)〉,

(A8)

which can again be rewritten as a differential equation:

d

dN
〈XN (ω)XN (ω′)〉

= [τ (ω)τ (ω′) − 1]〈XN (ω)XN (ω′)〉
+ 〈δXN+1(ω)δXN+1(ω′)〉. (A9)

As we consider long chains, we can go to the limit N → ∞
and look for the stationary solution:

〈X(ω)X(ω′)〉 = 〈δX(ω)δX(ω′)〉
1 − τ (ω)τ (ω′)

, (A10)

which is the correlator of admittance fluctuations. The corre-
lator of the kernel fluctuations is

〈δK̃ (ω)δK̃ (ω′)〉 = |ω||ω′|
(2e)4

〈X(ω)X(ω′)〉. (A11)

Evaluating 〈δX(ω)δX(ω′)〉 from the definition (A6) and col-
lecting all factors, we obtain the following behavior in the two
limiting cases. At ω, ω′ � 1/

√
LC,

〈δK̃ (ω)δK̃ (ω′)〉 = C
3/2
g L−1/2|ω|2|ω′|2

2(2e)4(|ω| + |ω′|) 〈η2〉, (A12)

which is Eq. (13). Note that the capacitance C dropped out
from this result; this occurs regardless of our assumption C �
Cg and is the consequence of the low-frequency limit. For
ω, ω′ � 1/

√
LC we have

〈δK̃ (ω)δK̃ (ω′)〉 = C
3/2
g C1/2|ω|2|ω′|2

4(2e)4
〈η2〉. (A13)

APPENDIX B: SADDLE-POINT APPROXIMATION
FOR THE PROBABILITY DISTRIBUTION

Let us rotate the integration contour in Eq. (18) to the
imaginary axis:

f (A) =
∫ i∞

−i∞
exp [zA − N I (z)]

dz

2πi
, (B1)

I (z) ≡ − ln

[∫
dx√
2πσ

e
− x2

2σ2 exp(−ze−x )

]
. (B2)

In the saddle-point approximation, we have

f (A) ≈
√

1

2πNI ′′(zs )
exp [zsA + NI (zs )], (B3)
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FIG. 6. Two factors of the integrand in I (z) (B5), exp(− x2

2σ 2 )
(dashed blue line) and 1 − exp (−ze−x ) (dashed green line), and their
product (solid red line).

where I ′(z) = dI/dz and zs is defined as the solution of the
equation

A + NI ′(zs ) = 0. (B4)

Because we consider N � 1, the important values of z are
those for which I (z) � 1, so we can expand the logarithm and
approximate

I (z) ≈
∫

dx√
2πσ

e
− x2

2σ2 [1 − exp(−ze−x )]. (B5)

In the saddle-point approximation the integral (B1) is de-
termined by the small area near the real axis. To calculate
I (z) (B5) we approximate exp (−ze−x ) ≈ 1 − ze−x for x >

ln z and exp (−ze−x ) ≈ 1 for x < ln z. Then if − ln z � σ 2 +
σ , the integrand can be approximated as Gaussian for x > ln z

and is suppressed for x � ln z [38] (see Fig. 6):

I (z) ≈ −
∫ ∞

ln z

zeσ 2/2 dx√
2πσ

exp

[
− (x + σ 2)2

2σ 2

]

= −zeσ 2/2

2
erfc

(
ln z + σ 2

√
2σ

)
. (B6)

Therefore, Eq. (B4) can be written as

A − N
eσ 2/2

2
erfc

(
ln zs + σ 2

√
2σ

)

+N
eσ 2/2

√
2πσ

exp

[
−

(
ln zs + σ 2

√
2σ

)2
]

≈ 0.

Introducing a new variable y = ln zs+σ 2√
2σ

and considering |y| �
σ , we obtain

y ≈ erfc−1

(
2A

Neσ 2/2

)
− 1√

2σ
. (B7)

Now we calculate the second derivative of I :

I ′′(zs ) ≈ eσ 2/2

√
2πσzs

exp

[
−

(
ln zs + σ 2

√
2σ

)2
]

− eσ 2/2

√
2πσzs

ln zs + σ 2

σ 2
exp

[
−

(
ln zs + σ 2

√
2σ

)2
]

≈ exp(3σ 2/2 − √
2σy − y2)√

2πσ
,

resulting in

f (A) ≈ σ

Neσ 2/2
M1/2

× exp

(
−Me

√
2σQ−Q2 + Q2 + √

2σQ

2

)
, (B8)

where Q = erfc−1( 2A

Neσ2/2
) and M = Ne−σ2/2√

2πσe
.

For the validity of the saddle-point approximation we need∣∣∣∣∣NI ′′′(zs )

[
1√

NI ′′(zs )

]3
∣∣∣∣∣ � 1, (B9)

where the quantity in the square brackets is the typical width of
the relevant region near zs . As a result, we obtain the condition
N � σeσ 2/2−σ .
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