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Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmetric
superconductors under an external magnetic field B. Rashba superconductors, surface superconductivity on
the surface of three-dimensional topological insulators, and transition-metal dichalcogenides such as MoS2 are
representative systems, and the current-voltage I -V characteristics, i.e., V = V (I ), for each of them is analyzed.
V (I ) can be expanded with respect to the current I as V (I ) = ∑

j=1,∞ aj (B, T )I j , and the (B, T ) dependence
of aj depends on the mechanism of the charge transport. Our analysis is based on the time-dependent Ginzburg-
Landau theory, which contains up to third-order terms in the momentum of the order parameter. Above the
mean field superconducting transition temperature T0, the fluctuation of the superconducting order parameter
gives the additional conductivity, i.e., paraconductivity. With the extension of paraconductivity to the nonlinear
response, we obtain the nonreciprocal charge transport. On the other hand, below T0, the vortices determine the
Kosterlitz-Thouless transition and also the resistivity. The nonreciprocal resistivity is analyzed from the dynamics
of vortices in this temperature region. Based on these results, we propose the experiments to identify the mechanism
of the nonreciprocal transport with the realistic estimates for the order of magnitude of the coefficients aj (B, T )
for each case.
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I. INTRODUCTION

The nonreciprocal charge transport in noncentrosymmetric
systems is a fundamental and important issue. It is deeply
related to the broken symmetry of spatial inversion P and the
time reversal T . For the linear response, the microscopic time-
reversal symmetry leads to the Onsager’s reciprocal theorem
[1,2] given by

KAB (q, ω,B ) = εAεBKBA(−q, ω,−B ), (1)

where KAB (q, ω,B ) describes the linear response of the
physical observable A to the field coupled to the observable
B with the wave vector q and frequency ω under the magnetic
field B (which breaks the time-reversal symmetry). εA = ±1
(εB) specifies the even (1) or odd (−1) nature of the observable
A (B) with respect to T . On the other hand, the spatial inversion
symmetry gives

KAB (q, ω,B ) = ηAηBKAB (−q, ω,B ), (2)

with ηA (ηB) being the analogous quantity to εA = ±1 (εB) for
P . When both of T and P are broken, the Onsager reciprocal
theorem allows the directional linear response of the diagonal
response. For example, the dielectric function for light can
have the form εμμ(q, ω,B ) = ε0 + αBq which describes the
directional dichroism of unpolarized light.

Rikken extended this consideration to the nonlinear re-
sponse by heuristic argument, i.e., replacing the wave vector
q by the current I , leading to the expression of the resistivity
[3,4]

R = R0(1 + γBI ). (3)

The coefficient γ , which is called γ value in the following,
is usually a rather small value of the order of ∼10−2 to
10−1 T−1 A−1 [5–8]. This is because the nonreciprocal trans-

port requires both the magnetic energy μBB and the spin-orbit
interaction λ, which are small compared with the energy
denominator, i.e., kinetic energy of the electrons (typically
the Fermi energy EF). To enhance the nonreciprocal transport,
there are two ways. One is to reduce the energy denominator
and the other is to enlarge the spin-orbit interaction. This is
realized in BiTeBr with the giant bulk Rashba splitting by
reducing the electron density [9]. Furthermore, in the super-
conductors, the Fermi energy is replaced by the energy gap in
the energy denominator, which leads to the huge enhancement
of γ as demonstrated in MoS2 [10]. The theoretical analysis,
however, is limited to the paraconductivity above the mean
field transition temperature T0, and that below T0 still remains
an important unresolved issue although the experiment shows
the further increasing value of γ there [10].

In this paper, we give a comprehensive and unified treatment
of the nonreciprocal charge transport in two-dimensional non-
centrosymmetric superconductors (2DNS). There are several
possible mechanisms for it, and accordingly we generalize
Eq. (3) to the current (I )-voltage (V ) characteristics as

V (I ) =
∞∑

j=1

aj (B, T )I j . (4)

We take (i) the Rashba superconductors, and surface super-
conductivity on the surface of three-dimensional topological
insulators (TIs), and (ii) the transition-metal dichalcogenides

2469-9950/2018/98(5)/054510(22) 054510-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.054510&domain=pdf&date_stamp=2018-08-20
https://doi.org/10.1103/PhysRevB.98.054510


HOSHINO, WAKATSUKI, HAMAMOTO, AND NAGAOSA PHYSICAL REVIEW B 98, 054510 (2018)

TABLE I. Summary of nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors at low magnetic fieldB. The
parameters are electron charge e and band mass m, Fermi energy EF, Fermi velocity vF, Rashba parameter α (we also define EFR = 2EF + mα2),
triplet or singlet pair mixing parameter rt,s, cutoff energy Ec, hexagonal or trigonal warping parameter λ, spin-orbit splitting �SO, mean field
superconducting transition temperature T0, and Kosterlitz-Thouless transition temperature TKT. The unit system h̄ = kB = μB = 1 is used. The
sample width W is omitted from the expressions. The temperature dependence for the paraconductivity contributions at T > T0 enters through
the formula in Eq. (6). See each section for more details.

Symmetry Hexagonal Trigonal
N

or
m

al
Pa

ra
co

nd
uc

tiv
ity

No KT transition
Viscous vortex flow

Ratchet mechanism

Parity mixing (EF>0)

q-cubic term (EF<0)

KT transition

[Sec. II A] [Sec. II B 1] [Sec. II C]

[Sec. III A]

[Sec. III C]

[Sec. II B 2]

[Sec. III A,B]

(EF>0)

(EF<0)

(TMD) such as MoS2, as the two representative examples of
2DNS.

In 2D superconductors, there are two characteristic temper-
atures. One is the mean field transition temperature T0, below
which the amplitude of the order parameter develops, and the
other is the Kosterlitz-Thouless (KT) transition temperature
TKT, below which the vortices and antivortices are bound and
the resistivity becomes zero. The behavior of the resistivity
R(T ) as a function of the temperature is well described by

R(T ) ∼= 2.7Rn[ξc/ξ+(T )]2, (5)

with Rn being the normal-state resistivity and ξ+(T ) is the
diverging coherence length ξ+(T ) = ξcb

−1/2 sinh[(bτc/τ )1/2]
where the reduced temperatures are introduced by τ =
(T − TKT)/TKT and τc = (T0 − TKT)/TKT [11]. The parameter
ξc is a coherence length obtained by the GL theory and b is
an order of unity constant. With the external magnetic field
B, the situation depends on its direction. With the in-plane B,
only the Zeeman effect is relevant, and KT transition survives
with the reduced transition temperature TKT(B ). This is the
case for (i) to obtain the nonreciprocal transport. On the other
hand, with the out-of-plane magnetic field considered in the

case (ii), the vortices are introduced even below TKT, and
the system remains resistive down to low temperatures. The
experiment for MoS2 [10] employs this configuration, and
continues to define γ in Eq. (3), although the B dependence
of a2(B, T ) is different for different mechanisms as shown
below.

The obtained results for nonreciprocal charge transport are
summarized in Table I, which will be discussed in greater
detail in the rest of this paper. Our plan is as follows. In
Sec. II, we study the paraconductivity above the mean field
transition temperature T0 in terms of the Ginzburg-Landau
theory derived for several cases of interest. In Sec. III we
present the analysis of the charge transport below T0, where
the vortex motion is responsible for the voltage under the
current flow. There are three mechanisms for the nonreciprocal
response, i.e., (i) the change in the KT transition temperature
due to the current, (ii) the modified dissipation for the vortex
motion due to the current, and (iii) the Ratchet potential for the
vortex. Sections IV and V are devoted to the discussion and
conclusions, respectively. The detailed derivation of GL free
energy is given in Appendix A. Appendices B and C describe
the effects of impurity and Landau levels, respectively, for
TMD.

054510-2



NONRECIPROCAL CHARGE TRANSPORT IN TWO- … PHYSICAL REVIEW B 98, 054510 (2018)

kk

EE
(b)(a)

k

E

KK’

(c)

EF > 0

EF < 0

EF > 0

EF < 0
SO

kF1 kF3
kF3kF2

EF

FIG. 1. Schematic illustrations for the dispersion relations in (a) Rashba system [Eq. (7)], (b) TI surface [Eq. (39)], and (c) TMD [Eq. (57)].
Here, we consider the normal states without magnetic field.

II. GINZBURG-LANDAU THEORY AND
PARACONDUCTIVITY IN NONCENTROSYMMETRIC

SUPERCONDUCTORS

We discuss the nonreciprocal current in the temperature
regime slightly above the mean field critical temperature
(T � T0). In this regime, the charge current is mainly carried by
the thermal fluctuation of the superconducting order parameter.
Such excess conductivity is called paraconductivity [12,13].
The paraconductivity consists of the Aslamazov-Larkin (AL)
contribution [14] and the Maki-Thompson (MT) contribution
[15,16]. Although fully quantum treatment is necessary for
the MT term, the AL term can be discussed by the Ginzburg-
Landau (GL) theory [12,13,17].

The nonreciprocity of the paraconductivity has been studied
in two-dimensional TMD [10] and Rashba systems [18]. It is
expected that the MT term is smaller than the AL term under
a magnetic field due to pair-breaking effect [19] by external
field, and the explicit forms of the γ values in Eq. (3) have been
calculated based on the GL theory. Two different origins of the
nonreciprocal current have been discussed in these materials,
i.e., the trigonal warping of the band structure in the TMD
[10], and the parity mixing of the singlet and triplet order
parameters [20,21] in the superconducting Rashba systems. In
both of the systems, the nonreciprocity is markedly enhanced
in the superconducting fluctuation regime because of the scale
difference between the Fermi energy and the superconducting
gap.

In this section, we discuss the nonreciprocal paraconduc-
tivity in five models: the Rashba superconductors with and
without parity mixing, the surface state of topological insulator
with the parabolic dispersion and the hexagonal warping,
and the two-dimensional TMD [10]. We will also compare
these results with the normal contribution to demonstrate the
enhancement of nonreciprocal signal in the superconducting
fluctuation regime. While some of the results in the following
are not entirely new as they have been published previously
[9,10,18], here we have briefly provided them again in order
to make this paper self-contained and complete.

In the following of this section, we derive an expression
for the γ value in the region where the paraconductivity
dominates over the normal conductivity near the mean field
temperature T0. With the paraconductivities defined by j =
σ1E + σ2E

2 where j is a current density and E is an electric
field, the γ value in Eq. (3) is given by γS = σ2/Bσ 2

1 W

with the sample width W . Since the temperature depen-
dencies are σ1(T ) ∝ (T − T0)−1 and σ2(T ) ∝ (T − T0)−2 as
shown later, γS is T independent. The deviation from the
T → T0 limit can be included by the replacement σ1(T ) →
σ1(T ) + σn where σn is a normal conductivity. Then, the
temperature dependence for γS(T ) ∝ σ2(T )/[σ1(T ) + σn]2

enters as

γS(T ) = γS

[
1 + 1

c0

σn

e2/h

T − T0

T0

]−2

, (6)

where c0 is a constant and h is a Planck constant. This formula
is relevant for the wider temperature range. The detailed
functional form of γS in the right-hand side of Eq. (6) can
be found in the rest of this section.

A. Rashba superconductor

1. Parity mixing

In the following of this paper, we use the unit system
h̄ = kB = μB = 1 unless otherwise specified explicitly. In
Ref. [18], the nonreciprocal current due to the parity mixing of
the superconducting order parameter has been studied in the
Rashba superconductors. The normal-state Hamiltonian is

H = k2

2m
+ α(kxσy − kyσx ) − B · σ , (7)

with m, k, α, B, and σ being the electron mass, electron wave
number, Rashba parameter, magnetic field, and the Pauli matrix
for real spins, respectively. Here, we consider the in-plane
magnetic field since the out-plane field does not produce
nonreciprocal charge transport. The band dispersion without
magnetic field is schematically illustrated in Fig. 1(a). If the
Rashba splitting mα2 is larger than T0 or the superconducting
gap, only the pairing in each spin-split band is relevant. Then,
if both even-parity and odd-parity interactions exist, the parity
of the superconducting order parameters is mixed.

To make the discussion simple, we fix the form of the
interaction Hamiltonian in the band basis as [18]

Hint = −
∑

kk′λλ′
tkλt

∗
k′λ′ ĝλλ′ψ

†
kλψ

†
−kλψ−k′λ′ψk′λ′ , (8)

where ψ
†
kλ and ψkλ are the creation and annihilation operators

with the band index λ = ±, and tkλ = λieiφk with φk =
arg(kx + iky ). We have assumed that the spin splitting due to
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the Rashba interaction is much larger than the superconducting
mean field temperature (mα2 � T0) and, hence, the interband
pairings are neglected.

We have also assumed the interactions in the spin basis
which makes the matrix ĝ independent on k. The even-parity
channel is the standard BCS-type onsite interaction

−V g
∑
kk′

c
†
k↑c

†
−k↓c−k′↓ck′↑, (9)

where c
†
kσ and ckσ are the creation and annihilation operators

of the electron with momentum k and spin σ . The odd-parity
channel is

−
∑
kk′

V u
ij (k, k′)(iσiσ2)αβ (iσjσ2)γ δc

†
kαc

†
−kβc−k′γ ck′δ, (10)

with V u
ij (k, k′)=V uγ̂i (k)γ̂j (k′) and γ̂ (k)= 1

k
(−ky, kx ). Then,

the matrix ĝ in Eq. (8) is

ĝ =
(

g1 g2

g2 g1

)
, (11)

with g1 = (V g + V u)/4 (> 0) and g2 = (V g − V u)/4.
In the following, we focus on two limiting cases. (1) |V u| �

|V g| (or, equivalently, g2 ≈ g1) case. The singlet pairing is
dominant and the triplet mixing is proportional to the parameter
rt = g1−g2

g1
, which we treat perturbatively. (2) |V u| � |V g| (or,

equivalently, g2 ≈ −g1) case. In this case, the triplet pairing
is dominant and the singlet mixing parameter is given by
rs = g1+g2

g1
.

In order to treat the parity mixing, the two-component GL
theory has been employed. We assume that the Fermi energy
EF is on the conduction band (EF > 0) since the nonreciprocal
paraconductivity vanishes for EF < 0 [18] in sharp contrast to
that in the normal state [9]. The derivation of the GL free energy
is shown in Ref. [18], and the result is

F =
∫

d2q
(2π )2

∑
λλ′

�∗
λ[(ĝ−1)λλ′ + δλλ′Nλ(S1 − Lλq )]�λ′,

(12)
with the parameters

Nλ = m

2π

(
1 − λ

√
mα2

√
EFR

)
, (13)

Lλq = Kλq2 − λRλ(Byqx − Bxqy ), (14)

K− = K+ = S3EFR

8m
, (15)

R− = R+ = S3
√

EFR

2
√

m
, (16)

S1 = log
2eγEEc

πT
, (17)

S3 = 7ζ (3)

4(πT )2 . (18)

We have defined EFR = 2EF + mα2, and γE is the Euler’s
constant, and Ec is the cutoff energy.

Then, the paraconductivity can be calculated as [10,17,18]

j = −T
∑

q

C
∂f (q + 2eA)

∂ A

∣∣∣∣
A=0

×
∫ 0

−∞
du exp

[
−C

∫ 0

u

dt f (q − 2eEt )

]
, (19)

with C = 32T0
πν

and the density of states ν at the Fermi level.
The function f is the eigenvalue of the matrix in Eq. (12)
with a higher critical temperature. In the case of a single
component GL free energy, f is defined as F = ∫

d2q
(2π )2 f |�|2.

The paraconductivity is shown to be

jx = σ1Ex + σ2E
2
x , (20)

σ1 = e2

16ε
, (21)

σ2 = πe3Byrt,s

128ε2

× N−N+(K−N− − K+N+)(K−R+ + K+R−)

S1(T0)T0(N− + N+)(K−N− + K+N+)2 , (22)

in the lowest order of rt,s, and ε = T −T0
T0

is the reduced tem-
perature. It should be noted that the sign of the nonreciprocal
current depends on the sign of rt,s, i.e., sign of V u in the case
of singlet dominant case and V g in the case of triplet dominant
case. The γ value [see Eq. (3)] is obtained byWγS = σ2/(Bσ 2

1 )
with W being the sample width [9,10,18]. The explicit form is

WγS = πrt,sS3EFα

eS1T0EFR
. (23)

For normal state, on the other hand, it can be shown that the
nonreciprocal current exists in EF < 0 within the Boltzmann
theory, where the γ value is given by WγN ∼ α/e(mα2EFR)3/2

[9]. In the case of EF > 0, the normal contribution is zero and
there is only the paraconductivity contribution for the super-
conducting fluctuation regime. If we assume that the Rashba
splitting is comparable to the Fermi energy in both cases, the
ratio is γS(EF > 0)/γN(EF < 0) ∼ rt,s|EF|3/(S1T

3
0 ).

We emphasize that the above nonreciprocity originates from
the parity mixing [rt,s in Eq. (23)]. In the next subsection, we
will show another mechanism, which relies on the cubic term
with respect to the momentum of the superconducting order
parameter.

2. q-cubic term

Now, we consider the nonreciprocal paraconductivity in the
Rashba superconductor without parity mixing. In contrast to
the previous subsection, we consider the case only for the s-
wave pairing. Although the expansion up to the second order
of the momentum of the order parameter does not create finite
nonreciprocal current, we have finite nonreciprocal current by
considering the expansion up to the third order. The GL free
energy for the s-wave order parameter can be obtained from the
two-component GL free energy written with the band basis. If
we diagonalize the two-component GL free energy in the band
basis, the free energy for the s-wave order parameter is found
to be a sum of the diagonal components.
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We first define the three Fermi wave numbers and the density
of states which correspond to (1) inner branch of the upper
band, (2) inner branch of the lower band, and (3) outer branch:

kF1 = −mα +
√

mEFR, (24)

kF2 = mα −
√

mEFR, (25)

kF3 = mα +
√

mEFR, (26)

ν1 = m

2π
(1 − α

√
m/EFR), (27)

ν2 = m

2π
(−1 + α

√
m/EFR), (28)

ν3 = m

2π
(1 + α

√
m/EFR). (29)

The three wave vectors are graphically shown in Fig. 1(a).
Then, we can derive the contribution from each branch sepa-
rately, whose example is shown in Appendix A. To write the GL
free energy in a simple form, we define the following functions:

fA = EFR

8m
q2 + 3By

32m
√

mEFR

(
5 + 3mα

−mα + √
mEFR

)
qxq2,

(30)

fB = EFR

8m
q2 + 3By

32m
√

mEFR

(
−5 + 3mα

mα + √
mEFR

)
qxq2,

(31)

where we have assumed Bx = 0 because it does not affect the
conductivity along the x direction. In the case of EF > 0, the
free energy is then

F =
∫

d2q

(2π )2

[
1

g
− (ν1 + ν3)S1 + S3(ν1fA + ν3fB )

]
|�q |2,

(32)

with g being the amplitude of the attractive interaction. Al-
though the q-linear term in general appears, it can be absorbed
by a constant shift in q space and does not explicitly appear in
the final results. The paraconductivity obtained from Eq. (19)
is given by

jx = e2

16ε
Ex + 3πe3αBy

512E2
FRT0ε2

E2
x . (33)

Correspondingly, the γ value is

WγS = 3πα

2eE2
FRT0

. (34)

We also consider the case of EF < 0. The free energy is given
by

F =
∫

d2q

(2π )2

[
1

g
− (ν2 + ν3)S1 + S3(ν2fA + ν3fB )

]
|�q |2.

(35)

Accordingly, we obtain

jx = e2

16ε
Ex + 15πe3By

1024mαEFRT0ε2
E2

x , (36)

and the γ value is

WγS = 15π

4emαEFRT0
. (37)

Thus, we have shown that the simple Rashba model (7) has
the nonreciprocal current if we consider the GL free energy
up to O(q3). This mechanism is different from the previous
subsection, where the singlet and triplet parity mixing is
essential for the nonreciprocal current [18]. We note that the
results for EF > 0 and EF < 0 do not connect continuously
at EF = 0 since we have assumed that the Fermi energy is
much larger than the superconducting transition temperature
(|EF| � T0).

Let us compare the nonreciprocal paraconductivities with
and without parity mixing. The ratio between the γ value from
the parity mixing mechanism (23) (denoted as γ

pm
S ), and the γ

value from the cubic term (37) (denoted as γ c
S ) is

γ
pm
S

γ c
S

∼ rt,sEFEFR

S1T
2

0

. (38)

If the even-parity interaction corresponds to the onsite interac-
tion and the odd-parity interaction corresponds to the nearest-
neighbor interaction, their amplitudes are roughly estimated as
e2/a0 and e2/a with a0 and a being the Bohr radius and the
lattice constant, respectively. Therefore, rt,s ∼ 0.1 is reason-
able value for the singlet dominant case, and Eq. (38) takes a
large value. Hence, the nonreciprocity from the parity mixing is
dominant. However, in the case of EF < 0, the nonreciprocal
paraconductivity is from the cubic term mechanism because
the parity mixing does not create nonreciprocity in that regime
[18].

B. Surface state of topological insulator

1. Parabolic dispersion

We consider the nonreciprocal paraconductivity in the
superconducting surface state of a topological insulator. The
simplest Hamiltonian for the surface state is

H = vF(kxσy − kyσx ) − B · σ , (39)

with vF (>0) being the Fermi velocity and the magnetic
field is applied along the in-plane direction. The dispersion
relation is shown in Fig. 1(b). Since the in-plane magnetic field
simply shifts the momentum and does not affect the transport,
additional terms are necessary for the nonreciprocal current.

In this section, we include the term proportional to k2,
whose Hamiltonian form is equivalent to Eq. (7), with α

replaced with the Fermi velocity vF. However, the first
(parabolic) term here is much smaller than the second (k-linear)
term. Therefore, we will consider the asymptotic form for large
m. Furthermore, we take into account only the inner branch of
the Fermi surfaces. The eigenenergies are

ξk = k2

2m
− EF ±

√
(vFkx − By )2 + (vFky )2, (40)

with the Fermi energy EF included. We first assume that the
Fermi energy is on the conduction band [plus sign in Eq. (40)
and EF > 0]. We calculate the GL free energy and the detailed
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derivation is shown in Appendix A. The result is

F =
∫

d2q
(2π )2

[
1

g
− ν1S1(T ) + ν1S3(T )

(
(kF1 + mvF)2

8m2
q2

+ 3(5kF1 + 3mvF)

32mkF1(kF1 + mvF)
Byqxq2

)]
|�q |2. (41)

We can also show that the free energy in the case where EF is
located on the valence band (EF < 0) is obtained by replacing
vF with −vF, By with −By , ν1 with ν2, and kF1 with kF2. It
is noted that the cubic term with respect to the wave number
vanishes for m → ∞, which is consistent with the fact that
the in-plane magnetic field simply shifts the momentum of the
Cooper pairs without the parabolic term.

The paraconductivity up to O(E2
xBy ) can be obtained by

applying Eq. (19) as

jx = e2

32ε
Ex − 3πe3m(5

√
mEFR − 2mvF)By

4096(mEFR)3/2(
√

mEFR − mvF)T0ε2
E2

x .

(42)

The temperature dependence of the conductivity is the same as
those of the transition-metal dichalcogenides and the Rashba
superconductors [10,18]. We can also show that the case for
EF < 0 has the same form, and the sign of the nonreciprocal
current compared to the EF > 0 case is reversed.

The corresponding γ value is

WγS = − 3πm(5
√

mEFR − 2mvF)

4e(mEFR)3/2(
√

mEFR − mvF)T0
, (43)

and for m → ∞
WγS → − 9π

4emvFEFT0
, (44)

which is a leading contribution in the limit of a small parabolic
term.

Now, we compare the γ value with that of the normal state.
The normal-state conductivity is calculated by the Boltzmann
equation with the relaxation time approximation [9]

jx = −τe2Ex

∫
d2k

(2π )2
vk∂kx

fk − τ 2e3E2
x

∫
d2k

(2π )2
vk∂

2
kx

fk

= τe2Ex

∫
d2k

(2π )2
v2

kδ(ξk )

− τ 2e3E2
x

∫
d2k

(2π )2
∂kx

vkvkδ(ξk ), (45)

where ξk is the eigenenergy, vk = ∂ξk
∂kx

is the group velocity,
and τ is the relaxation time. The Fermi distribution function is
also defined by fk = 1/(eβξk + 1). With use of this, we obtain
the electronic current

jx =
e2τ

(
EFR −

√
mv2

FEFR
)

4π
Ex − sgn(EF)

3e3τ 2By

16π
√

mEFR
E2

x .

(46)

The γ value is

WγN = −sgn(EF)
3π

e
√

mEFR
(
EFR −

√
mv2

FEFR
)2

, (47)

and for m → ∞

WγN → −sgn(EF)
3π

emvFE
2
F

. (48)

Therefore, the ratio is

γS

γN
→ 3|EF|

4T0
, (49)

which does not depend on m and vF. The enhancement of
the nonreciprocity by the factor of EF/T0 is expected in
the superconducting fluctuation regime, although the power
of enhancement is different from the TMD [10], in which
γS/γN ∼ (EF/T0)3. It should be noted that the direction of
the nonreciprocal current is reversed between the conduction
and valence bands in both of the paraconductivity and normal
conductivity.

2. Hexagonal warping

The surface band of topological insulators such as Bi2Te3

or Bi2Se3 is hexagonally distorted because of the crystal sym-
metry [22]. We consider the effect of the hexagonal warping
on the nonreciprocal paraconductivity. The Hamiltonian is

H = vF(kxσy − kyσx ) +
√

λ

2
(k3

+ + k3
−)σz − Byσy, (50)

with k± = kx ± iky and λ describes the strength of the hexag-
onal warping. The corresponding GL free energy can be
obtained in a similar manner to the previous subsection. The
free energy up to O(q3Byλ) is

F =
∫

d2q
(2π )2

{
1

g
− νS1(T ) + νS3(T )

×
[(

v2
F

8
+ 5λk4

F

16

)
q2 + 37k2

Fλ

8vF
Byqxq2

]}
|�q |2, (51)

with vFkF = |EF| and the density of states ν at the Fermi level.
The paraconductivity is obtained as

jx = e2

32ε
Ex − 37πe3E2

FλBy

1024v5
FT0ε2

E2
x . (52)

Consequently, the γ value is

WγS = −37πE2
Fλ

ev5
FT0

. (53)

We also calculate the normal-state current based on Eq. (45).
We express k in the polar coordinate (k, θ ), and solve ξk = 0
up to O(Byλ) with fixed θ . Then, the integrals over k and θ

can be carried out. The result is

jx = πτe2|EF|
(
1 + E4

Fλ
/
v6

F

)
4π2

Ex − 9τ 2e3|EF|3λBy

2πv5
F

E2
x .

(54)

The γ value is

WγN = −72π |EF|λ
ev5

F

. (55)
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Therefore, the ratio of the γ value of the paraconductivity and
normal conductivity is

γS

γN
= 37|EF|

72T0
, (56)

which again does not depend on vF and λ. The order of
magnitude of the enhancement factor is the same as that for
the parabolic dispersion case. We emphasize that the direction
of the nonreciprocal current does not change between the
conduction and valence bands in both of the paraconductivity
and normal conductivity, which is clearly different from the
nonreciprocal current originates from the parabolic term in the
previous subsection.

C. Transition-metal dichalcogenides

The nonreciprocal paraconductivity in two-dimensional
TMD has been investigated both theoretically and experimen-
tally [10]. Here, we summarize these results. The normal-state
Hamiltonian around the K and K ′ valleys is

Hkστ = k2

2m
+ τzλkx

(
k2
x − 3k3

y

)− �Zσz − �SOσzτz, (57)

with k, m, λ, �Z = Bz, and �SO being the electron wave
number, mass, amplitude for the trigonal warping, Zeeman
splitting, and spin-orbit splitting, respectively. The x axis is
taken along a “zigzag” chain in the honeycomb lattice, and the
y axis is along “armchair” direction. The out-of-plane magnetic
field is necessary for the nonreciprocal current. The symbols σz

and τz represent the Pauli matrices for the spin (↑,↓) and valley
degrees of freedom (K,K ′), respectively, and take the values
±1. The dispersion relation is schematically shown in Fig. 1(c).
In contrast to the previous Rashba system and TI surface,
the nonreciprocal response is present even for the out-plane
magnetic field due to the trigonal warping parameter λ. While
this study is designed for MoS2, a similar behavior is also
expected for the other TMDs which have trigonal distortion.

The GL free energy for the superconducting state can be
derived based on Eq. (57). The free energy up to O(�Zλq3) is

F =
∫

d2q
(2π )2

�∗
q

[
a + q2

4m
+ �Bz

(
q3

x − 3qxq
2
y

)]
�q, (58)

with � = 93ζ (5)
14ζ (3)

�SOλ

(πT0 )2 . The effect of nonmagnetic impurities
can also be considered, whose derivation is summarized in
Appendix B. By applying Eq. (19) for Eq. (58), the current up
to the second order of electric field is obtained as

j = e2

16ε
E − πe3m�B

64T0ε2
F(E), (59)

with F(E) = (E2
x − E2

y ,−2ExEy ), which is consistent with
the crystal symmetry of the transition-metal dichalcogenides.
The γ value is

WγS = 4πm�

eT0
. (60)

On the other hand, the γ value for the normal state can be
obtained by the Boltzmann equation [9], whose typical value
is calculated as WγN ∼ m�SOλ/(eE3

F) [10]. The ratio between
the superconducting fluctuation and normal regimes is found
to be γS/γN ∼ (EF/T0)3, which is quite large. While the focus

of this paper is on the region at small magnetic fields, we can
also consider the high magnetic field region by including the
Landau level, which is discussed in Appendix C.

III. VORTEX IN NONCENTROSYMMETRIC
SUPERCONDUCTORS

When the superconducting gap function is sufficiently
developed below T0, the phase of the order parameter forms
the vortices whose dynamics governs electronic transport
properties. In this section, we begin with the phenomenological
discussion for the nonreciprocity entering through the renor-
malization of the superfluid density, which captures the essence
of the nonreciprocal vortex dynamics. In Sec. III C, we also
consider the the ratchet potential effect for the vortices, which is
necessarily present for noncentrosymmetric superconductors
with trigonal symmetry and disorder effects.

A. Renormalization of superfluid density

1. Modified KT transition point for a system
with in-plane magnetic field

Let us first consider the system with the in-plane magnetic
field. In this case, the vortices and antivortices are generated
thermally above the KT transition temperature. We take a
Rashba (EF < 0) or TI-based system with in-plane magnetic
field, whose free-energy density is in general given by

f = 1
2ρsv

2
s + �′Byρsvsxv

2
s , (61)

which is phenomenologically introduced by utilizing the re-
placement q → m∗vs in the GL theory. Here, ρs = m∗ns and
vs are superfluid mass density and velocity, respectively. Let us
relate the phenomenological parameters m∗ and �′ to those in
the original electronic Hamiltonians discussed in Sec. II. For
Rashba superconductor, the specific forms of the parameters
are given from Eq. (32) as

m∗ ∼ m, �′ ∼ −
√

m

|EF|3/2
, (62)

where we have assumed that the energy scales for the Fermi
energy and Rashba energy splitting are similar: |EF| ∼ mα2.
The expressions for the TI surface with parabolic dispersion
are obtained from Eq. (41) as

m∗ ∼ |EF|
v2

F

, �′ ∼ sgn EF

mv3
F

. (63)

We have taken m → ∞ in the final expressions. When we
consider the contribution from the hexagonal warping in
Eq. (51) for the TI surface, the parameters are

m∗ ∼ |EF|
v2

F

, �′ ∼ λ|EF|3
v7

F

, (64)

where we have expanded the expressions with respect to the
warping parameter λ.

We use a mean field approach for analysis, in which the
terms higher than second order are approximated into quadratic
one. Under the externally induced current, the superfluid
acquires the uniform velocity component vunif . Hence, we can
replace one of vs by vunif in the third-order term and obtain the
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free-energy density

f � 1

2

∑
μν

ρ̃s,μνvsμvsν, (65)

ρ̃s = ρs

(
1 + 6�′Byvunif,x 2�′Byvunif,y

2�′Byvunif,y 1 + 2�′Byvunif,x

)
. (66)

Thus, the uniform current renormalizes the superfluid density
due to the presence of the v-cubic term. If we choose vunif =
vs0 x̂, the free energy has the following form:

f � 1
2ρs (1 + 4�′Byvs0)

(
v2

sx + v2
sy

)+ ρs�
′Byvs0

(
v2

sx − v2
sy

)
.

(67)

The first term here renormalizes the superfluid density isotrop-
ically:

ñs = ns (1 + 4�′Byvs0). (68)

The second term in Eq. (67) is the anisotropic renormalization,
which will be discussed in detail in the next subsections. In
the following, we follow the procedure given in Ref. [11] to
calculate transport coefficients.

Let us consider the force between the thermally generated
vortex and antivortex. This can be interpreted as the Magnus
force acting on one vortex which is located in a nearly uniform
current made by the other vortex. At KT transition point,
this force is balanced by an entropic force proportional to
temperature, which leads to the force balance relation for two
vortices separated by the sufficiently large distance r [11,23]:

e∗ñs

1

m∗r
× �0 = 4T̃KT

r
, (69)

where �0 = 2π/|e∗| is the magnetic flux quantum and e∗ =
2e. Thus, the important consequence of the isotropically
renormalized superfluid density is the modification of the KT
transition temperature T̃KT through ñs in Eq. (68), which has
different values depending on the direction of the uniform
current.

Through the change in TKT, the correlation length ξ+, which
is exponentially diverging near TKT, and the density of unpaired
vortices nv are also affected by vunif . These physical quantities
are given near TKT by [11,24]

ξ+ = b−1/2ξc exp

⎛
⎝
√

b
T0 − T̃KT

T − T̃KT

⎞
⎠, (70)

nv = (2πC1ξ
2
+)−1, (71)

where b, C1 are order of unity constants, and ξc is the GL co-
herence length evaluated at T = TKT. The mean field transition
temperature is written as T0. The value of nv goes to zero at T̃KT

with only bounded vortices left. Since the correlation length is
dependent of the KT transition temperature, this indicates that
the number of vortices is different depending on the direction
of the uniform current.

Now, we consider the electric field caused by the vortex
dynamics [11]. With a uniform current, the thermally generated
vortices feel a Magnus force and move with the velocity
±vL perpendicular to vunif . To convert a hydrodynamic ef-
fect to electric one, we use the Josephson relation ΔV =

(1/e∗)dΔθ/dt where ΔV and Δθ are voltage drop and phase
difference between the two ends of the sample, respectively.
The vortices with the number nvLxvL (Lx is the sample width
along x direction) cross the sample edges per unit time, leading
to the phase slip dΔθ/dt = 2πnvLxvL. The electric field
Ex = ΔV/Lx is then given by

Ex = (2π )2nv

|e∗|2η junif,x, (72)

where we have used the force balance relation junif,x�0 = ηvL

between Magnus force and friction force. The uniform
electric current has been defined by junif = −∂f/∂ A =
e∗
m∗ ∂f/∂vunif = e∗nsvunif + O(v2

unif ), whose higher-order
terms do not modify the conclusion for the γ value. The
friction coefficient is given by η = η0(1 + d0�

′Byvs0) with
d0 being a constant and η0 � πσn/(e∗)2ξ 2

c . This modification
enters due to the anisotropic renormalization of superfluid
density. The derivation is given in Secs. III A 2 and III B in
detail, and here we just employ the final results. Substituting
these expressions, we obtain the resistivity

ρ = 2(1 − d0�
′Byvs0)

C1σn

(
ξc

ξ+

)2

. (73)

Thus, there are two kinds of the sources for nonreciprocal
response: one is from the modified KT transition tempera-
ture and the other from the modified friction coefficient. By
extrapolating the above expression to T → T0, the exponen-
tial temperature dependence in the correlation length is not
effective. In this case, with the transport coefficients defined in
Ex = ρ1junif,x + ρ2j

2
unif,x , we obtain the explicit expressions

ρ1 = 2b

C1σn

, (74)

ρ2(T ) = − d0�
′By

e∗ns (T )
ρ1. (75)

We then find that the γ value, which is given by γ v
S =

−ρ2/ρ1ByW , is proportional to (T0 − T )−1, where we have
used the temperature dependence of the superfluid density as
ns (T ) ∝ T0 − T .

We now switch our discussion to the lower temperatures
near the KT transition. We write the KT transition temperature
as T̃KT = TKT + δTKT with the unrenormalized transition tem-
perature TKT, and expand the expression with respect to δTKT.
We assume T0 − TKT � δTKT and then the transport coeffi-
cients are given for the temperature range T −TKT �δTKT by

ρ1(T ) = 2b

C1σn

exp

(
−2

√
b
T0 − TKT

T − TKT

)
, (76)

ρ2(T ) = −2π�′By

√
b(T0 − TKT)

m∗e∗(T − TKT)3/2
ρ1(T ), (77)

where we have kept the leading-order contribution remaining
for T → TKT. While both ρ1 and ρ2 exponentially goes to
zero toward TKT, the γ value is proportional to (T − TKT)−3/2.
Thus, a large nonreciprocal signal is expected near the KT
transition point.
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Below TKT, the linear response vanishes due to bounded
vortices, and instead the third-order term characterizes the
current-voltage relation. The nonreciprocal response should
then be reflected in the fourth-order term. Hence, the I -V
relation has the form V = a3I

3 + a4I
4 with a4 = a′

4B near
TKT. The higher-order terms become more relevant at lower
temperatures.

2. Extended Bardeen-Stephen approach for a system
with out-plane magnetic field

While the vortices in a system with in-plane magnetic
field are created by the thermal fluctuation, the out-plane
magnetic field creates the vortices having the same vorticity,
which is a qualitatively different situation from the in-plane
case. We here extend the Bardeen-Stephen theory [25,26] for
flux-flow conductivity to nonlinear response regime. We take
the MoS2-based system where the magnetic field is applied
along out-plane direction. The nonreciprocity for this system
is considered as an effective renormalization of the superfluid
density. To see this, we begin with the free-energy density for
a superfluid

f = 1
2ρsv

2
s + �′Bzρsvsx

(
v2

sx − 3v2
sy

)
. (78)

By comparing this expression with Eq. (58), we find the
relations m∗ = 2m and �′ ∼ m2�. We choose the uniform
current flowing alongx direction:vunif = vs0 x̂. The free energy
then becomes

f = 1
2

(
ρ̃s,xxv

2
sx + ρ̃s,yyv

2
sy

)
, (79)

ρ̃s,xx = ρs (1 + 6�′Bzvs0), (80)

ρ̃s,yy = ρs (1 − 6�′Bzvs0), (81)

within the “mean field” approximation explained above. Here,
only the anisotropic renormalization occurs.

Using the velocity potential, the superfluid velocity can
be written as vs = 1

m∗ ∇θ . Let us first consider the isolated
superconducting vortex induced by the out-plane external
magnetic field. The vortex velocity for isotropic system is
given by θ = φ = tan−1(y/x) with the polar coordinate r =
(r, φ), which satisfies the equation ∇2θ = 0 obtained from a
variational principle. We can make Eq. (79) isotropic by the
scaling x ′ = x

√
ρs/ρ̃s,xx and y ′ = y

√
ρs/ρ̃s,yy . In this case,

the velocity potential is given by θ = tan−1(y ′/x ′). Keeping
the first-order contribution with respect to �′, we get

θ (φ) = φ + 3�′Bzvs0 sin 2φ. (82)

In order to calculate the spatial distribution of electric field,
we employ the London equation outside the normal core
accounting for zero resistivity: E = Λ∂t j s where Λ−1 =
ns (e∗)2/m∗ [25,26]. For a moving vortex with the velocity vL,
the spatial coordinate is replaced as r → r − vLt and we can
replace the time derivative as ∂t → −vL · ∇. With a uniform
current along x direction, the “Lorentz” force acting on the
vortex is along y direction, so we choose vL = vL ŷ. (Since
the magnetic penetration depth is very long for atomically
thin two-dimensional superconductors, the force should orig-
inate from fluid-mechanical Magnus force [27], although the
main conclusion in the following is not altered.) Substituting

j s = e∗nsvs into the London equation, we can calculate the
electric field in the superconducting region, where r is larger
than the coherence length ξ , as

E(r > ξ ) = vL

e∗r2
cos φ(1 + 6�′Bzvs0 cos 2φ)er

+ vL

e∗r2
sin φ[1 + 6�′Bzvs0(2 + 3 cos 2φ)]eφ.

(83)

For the inside of the normal core (r < ξ ), the electric field
E = −∇ϕ is determined from the Poisson equation ∇2ϕ = 0
due to a charge neutrality. We assume that the boundary
between superconducting and normal regions is circular at
r = ξ and is connected discontinuously. With this geometry,
only the eφ component of E matters for the boundary condition.
We expand the scalar potential as ϕ = ∑

m Cm(reiφ )m and the
boundary condition gives

ϕ(r < ξ ) = − vL

e∗ξ 2
(1 + 3�′Bzvs0)r cos φ

− 3vL�′Bzvs0

e∗ξ 4
r3 cos 3φ. (84)

The energy dissipation rate is then calculated as

W (r < ξ ) = σn E2 = σn

(e∗)2ξ 4
(1 + 6�′Bzvs0)v2

L, (85)

where σn is a normal conductivity. We note that this expression
does not depend on the spatial coordinate r in the leading order.
Equation (85) is identified as the energy dissipation rate per unit
volume in the form ηv2

L/πξ 2 originating from the friction force
for the vortex flow. We thus arrive at an important conclusion
that the effect of the cubic term in free energy is reflected in
the change of the friction coefficient η.

The “Lorentz” force is balanced by the friction force as
( junif × �0)y = ηvL where η = η0(1 + 6�′Bzvs0) with η0 =
πσn/(e∗)2ξ 2 and we have defined �0 = �0 ẑ. We use the
expressions for the uniform current junif = e∗nsvunif and the
“Faraday’s law” E0 = B × vL for the uniform electric field
generated from the flux flow. (Since the magnetic field B
is not time dependent in the system with infinite magnetic
penetration depth, this “Faraday’s law” does not derive from
an electromagnetic origin but from the Josephson relation as
in the previous subsection.) We then obtain E0x = ρ1junif,x +
ρ2j

2
unif,x where

ρ1 = Bz�0

η0
, (86)

ρ2 = −6�′B2
z �0

e∗nsη0
. (87)

The γ value from the vortex dynamics is given by

γ v
S = − ρ2

ρ1BzW
= 6�′

e∗nsW
, (88)

which is not dependent on the normal conductivity. Rewriting
the coefficient �′ in terms of the quantities in Sec. II C, we can
estimate the ratio between γ v

S from vortex motion and γ f
S from
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superconducting fluctuation as

γ v
S

γ f
S

∼ mT0

ns

. (89)

Using the relations 2ns/ne � (T0 − T )/T0 and the normal
electron density ne = k2

F/2π , we finally obtain

γ v
S

γ f
S

∼ T 2
0

EF(T0 − T )
T →0−−−−→ T0

EF
. (90)

It is characteristic that the γ value from vortex dynamics is en-
hanced near the transition temperature and has a smaller value
with the factor T0/EF compared to γ f

S at low temperatures.
The same conclusion will be obtained from the time-dependent
Ginzburg-Landau (TDGL) approach as described in Sec. III B
in detail, and hence the above approach can be justified.

B. TDGL approach

1. Formulation

The vortex dynamics induced by the out-plane magnetic
field can be described by the TDGL theory, which takes account
of a purely dissipative dynamics. This approach is successfully
applied to the flux-flow conductivities [28,29]. While this
theory is less intuitive than the above extended Bardeen-
Stephen theory, the TDGL approach gives a foundation for
its interpretation. Here, we formulate the theory by including
the cubic term in q responsible for a nonreciprocal vortex
dynamics. We begin with the TDGL equation and free energy

�(∂t + 2ieϕ)� = − δF

δ�∗ , (91)

Fs =
∫

d2r �∗
[
α + β

2
|�|2 + γ P2 + K

(
P 3

x − 3PxP 2
y

)]
�

+ 1

2μ0

∫
d2r B2, (92)

where P = −i∇ − 2eA. The gap parameter is related to the

wave function by � =
√

7ζ (3)ne

2π2T 2
0

� with the electron number

ne. There are also the relations K ∝ �Bz and α ∝ (T0 − T ).
Note that the coefficient γ in Eq. (92) is different from the γ

value for nonreciprocal transport which is denoted as γS. The
total GL free energy is given by F = Fs + Fn with Fn being a
normal part. We have defined the symmetrization by

ABC = 1

3!
(ABC + BCA + CAB + ACB + BAC + CBA),

(93)

to make the free energy real. The supercurrent density is given
by δF/δ A = 0 as

jsx = 2eγ (�∗Px� + P †
x �∗�) + 2eK

(
�∗P 2

x � + P †
x �∗Px�

+ P †2
x �∗� − �∗P 2

y � − P †
y �∗Py� − P †2

y �∗�
)
,

(94)

jsy = 2eγ (�∗Py� + P †
y �∗�) − 2eK (�∗PxPy�

+ �∗PyPx� + P †
x �∗Py� + P †

y �∗Px�

+ P †
x P †

y �∗� + P †
y P †

x �∗�). (95)

The total current is given by j = jn + j s with the normal
current jn = σn E. We can also show the relations

δF

δ�∗ = [
α + β|�|2 + γ P2 + K

(
P 3

x − 3PxP 2
y

)]
� (96)

and

i

(
�

δF

δ�
− �∗ δF

δ�∗

)
= − 1

2e
∇ · j s . (97)

The above expressions can be used for arbitrary strength of the
magnetic field.

In the following, we concentrate on the two-dimensional
superconductor where the magnetic penetration depth is typ-
ically longer than the sample size [30]. In this case, the
magnetic effects can be neglected and only the electric and
fluid mechanical effects are considered in the GL analysis.
Such condition can be set by choosing A = 0.

With a slightly shifted center as r → r + d, we have the
relation

δF =
∫

d2r
[

δF

δ�
(d · ∇)� + c.c.

]
, (98)

which defines a friction force acting on superconductor. This
force is balanced by an external force to result in a stationary
motion of the vortex. The force balance equation for an isolated
single vortex is given by

junif × �0 = −�

∫
d2r[(∂t − 2ieϕ)�∗∇� + c.c.]. (99)

The transport current from an external source is written as
junif . The term on the left-hand side is the external force acting
on the fluxoid, which is in general composed of the sum of
Lorentz and Magnus forces [31]. In the current situation, only
the Magnus force contributes [27] since the London magnetic
penetration depth is taken as infinity.

We also need the equation for the scalar potential, for which
the equation of continuity ∇ · j = 0 is used. The explicit form
is given by(

σn

2e
∇2 − 4e�|�|2

)
ϕ = i�(�∂t�

∗ − �∗∂t�), (100)

where we have used E = −∇ϕ.
For a moving vortex, the spatial coordinate can be written

in the laboratory frame by the replacement r → r − vLt with
a boost velocity vL for the vortex. Correspondingly, we replace
the time derivative as ∂t → −vL · ∇ and rewrite the equations
with dimensionless quantities as

v

(
v̂L · ∇̃ − i

2
ϕ̃

)
ψ = [−1+ |ψ |2 − ∇̃2 + ik

(
∂̃3
x − 3∂̃x ∂̃

2
y

)]
ψ,

(101)(
1

u
∇̃2 − |ψ |2

)
ϕ̃ = −iv̂L · (ψ∇̃ψ∗ − ψ∗∇̃ψ ), (102)

v = �vL

|α|ξ , k = K

|α|ξ 3
, ψ = �

|�∞| , ϕ̃ = ϕ

vL/4eξ
,

(103)
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where |�∞| = √|α|/β is the gap function for a uniform
bulk and ξ = √

γ /|α| is the coherence length. We have also
defined the unit vector v̂L = vL/vL and the dimensionless
derivative ∇̃ = ξ∇. In the equation for the scalar potential,
we have introduced the temperature-independent parameter
u = ξ 2/�2

E , where the length �E is the electric-field penetration
depth given by

�E =
√

σn

8e2�|�∞|2 . (104)

For an ordinary metal, the parameter u is an order of unity
constant [29].

When we use the relation � = πνh̄/8kBT0 with the density
of states ν = m/2πh̄2 for a two-dimensional electron gas,
where we have restored h̄ and kB, the parameter can be written
as

u = π

3

e2/h

σn

EF

kBT0
, (105)

where h/e2 = 25813 [�] is the von Klitzing constant. For
usual BCS superconductors, the ratio between e2/h and the
normal conductivity σn is comparable to kBT0/EF. For exam-
ple, in the monolayer MoS2 [10], we have 1/σn = 140 (�),
T0 = 8.8 (K), EF = 150 (meV), and obtain u � 1.2.

The energy dissipation is also derived from the time deriva-
tive of free energy

∂tFs =
∫

d2r[−2�|(∂t + 2ieϕ)�|2 + ϕ∇ · j s]. (106)

Using the electromagnetic energy conservation law ∂tFn =
− ∫

d2r j · E derived from the Maxwell equation, we obtain
the equation of continuity for the energy density:

∂tF +
∫

d2r ∇ · jF = −
∫

d2r w, (107)

jF = −ϕ j s , (108)

w = 2�|(∂t + 2ieϕ)�|2 + σn E2, (109)

where jF (r, t ) is an energy current density and w(r, t ) is a
dissipation rate. Thus, we have two kinds of the dissipation
terms originating from � and σn.

2. Perturbative analysis

Let us now analyze the differential equation perturbatively
with respect to K and vL. We expand the physical quantity A

in general as

A = A0 + kAk + vAv + kvAkv + O(k2, v2). (110)

For O(1), we obtain

0 = (−1 + |ψ0|2 − ∇̃2
)ψ0, (111)

(
1

u
∇̃2 − |ψ0|2

)
ϕ̃0 = −2 Im v̂L · ψ0∇̃ψ∗

0 , (112)

and for O(K )

0 = −ψk + 2ψk|ψ0|2 + ψ2
0 ψ∗

k − ∇̃2
ψk + i

(
∂̃3
x − 3∂̃x ∂̃

2
y

)
ψ0,

(113)
1

u
∇̃2

ϕ̃k − |ψ0|2ϕ̃k − 2 Re (ψ0ψ
∗
k )ϕ̃0

= 2 Im v̂L · (ψ0∇̃ψ∗
k + ψk∇̃ψ∗

0 ). (114)

For O(vL), the equations are(
v̂L · ∇̃ − i

2
ϕ̃0

)
ψ0 = −ψv + 2ψv|ψ0|2 + ψ2

0 ψ∗
v − ∇̃2

ψv,

(115)
1

u
∇̃2

ϕ̃v − |ψ0|2ϕ̃v − 2 Re (ψ0ψ
∗
v )ϕ̃0

= 2 Im v̂L · (ψ0∇̃ψ∗
v + ψv∇̃ψ∗

0 ). (116)

Finally, for O(KvL)

v̂L · ∇̃ψk − i

2
(ϕ̃0ψk + ϕ̃kψ0)

= −ψkv + ψ2
0 ψ∗

kv + 2ψkv|ψ0|2 + 2ψkψ0ψ
∗
v + 2ψvψ0ψ

∗
k

+ 2ψkψvψ
∗
0 − ∇̃2

ψkv + i
(
∂̃3
x − 3∂̃x ∂̃

2
y

)
ψv (117)

and
1

u
∇̃2

ϕ̃kv − |ψ0|2ϕ̃kv

−2 Re (ψ0ψ
∗
kvϕ̃0 + ψ0ψ

∗
k ϕ̃v + ψ0ψ

∗
v ϕ̃k + ψkψ

∗
v ϕ̃0)

= 2 Im v̂L · (ψ0∇̃ψ∗
kv + ψkv∇̃ψ∗

0 + ψk∇̃ψ∗
v + ψv∇̃ψ∗

k ).

(118)

The force balance relation becomes

junif × �0

�vL|�∞|2 =
[
f1 + kvf2

(
v̂Ly v̂Lx

v̂Lx −v̂Ly

)]
v̂L + O(k2, v2),

(119)

where f1 and f2 are linear and nonlinear coefficients in
the force-velocity relation. The coefficient f1 is a sum of
the contributions from u-independent Tinkham mechanism
(time dependence of amplitude of the gap) and u-dependent
Bardeen-Stephen mechanism [25,29]. Here, the transverse
friction force appears in addition to the longitudinal one. This
form can be derived by a symmetry consideration, and has also
been checked numerically.

The energy dissipation part can also be expanded with
respect to k and v. In the dimensionless form, we can write it as

w̃ = w

σnϕ
2
0/ξ

2
= 4u

∣∣∣∣
(

v̂L · ∇̃ + i

2
ϕ̃

)
ψ

∣∣∣∣
2

+ |∇̃ϕ̃|2. (120)

The O(vLK ) component for w̃, or equivalently O(v3
LK ) for

w, is responsible for the dissipation from nonreciprocal vortex
dynamics.

Let us look at the spatial dependence of the above physical
quantities. We use the two-dimensional polar coordinate r =
(r, φ) and the zeroth-order solution can be written as ψ0(r ) =
f (r )eiφ for an isolated vortex. From the differential equation
for ψ0, we find the asymptotic behavior f ∝ r for r → 0 and
f → 1 for r → ∞ [29]. Among functional forms that satisfy
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FIG. 2. Spatial dependencies of the amplitude of wave functions, scalar potential, and energy dissipation rate: (a1) |ψ0|, (a2) |ψk|, (a3) |ψv|,
(a4) |ψkv|; (b1) ϕ̃0, (b2) ϕ̃k , (b3) ϕ̃v , (b4) ϕ̃kv; (c1) w̃0, (c2) w̃k , (c3) w̃v , (c4) w̃kv . We have chosen vL = vL x̂ and used u = 1 (i.e., �E = ξ ). The
system size is L × L with L = 40ξ and the number of mesh is NL × NL with NL = 300.

these limiting behaviors, we choose f (r ) = tanh(ar/ξ ) and

the constant is determined as a =
√

3
8 by using the differential

equation at small r . Then, the physical quantities such as
ψ0,k,v,kv , ϕ̃0,k,v,kv , and w̃0,k,v,kv are numerically calculated by
solving the linear differential equations derived above.

Figures 2(a1)–2(a4) show the spatial dependencies of the
amplitudes of gap functions. The originally circular shape in
Fig. 2(a1) is modified by K and vL, and sixfold and twofold
patterns appear in Figs. 2(a2) and 2(a3), respectively. The
more complex pattern is seen in the higher-order contribution
ψkv [Fig. 2(a4)]. The scalar potentials are also shown in
Figs. 2(b1)–2(b4). The dipolar field is generated in ϕ0 which
causes the electric field inside the normal core. We note that
the dimensionless ϕ̃0 is O(1) but the scalar potential ϕ0 is
O(vL) contribution. Then, ϕv shown in Fig. 2(b3) is an O(v2

L)
contribution, having the quadrupolar distribution. The situation
is further modified in the presence of the cubic term as in
Figs. 2(b2) and 2(b4). We show in Figs. 2(c1)–2(c4) the
energy dissipation rate as a function of spatial coordinates.
The dissipation occurs in the region with r � �E as shown in
Fig. 2(c1) [note that W0 is an O(v2

L) contribution]. This also
applies at higher orders shown in Figs. 2(c2)–2(4), where the
spatial anisotropy is introduced.

We are also interested in the parameter u = ξ 2/�2
E depen-

dence of the physical quantities. Figure 3 shows the force
coefficients f1 and f2 as a function of u. For the larger u,
meaning shorter electric-field penetration length, the value of
f1 becomes smaller. This is because the region where the

dissipation occurs shrinks to make a weaker friction force.
The value of f2 at sufficiently large u also becomes small due
to the same reason as f1. On the other hand, f2 at small u

decreases in contrast with f1. While the reason for the behavior
is not easily understood in an intuitive way, in any case we have
here confirmed that the coefficients of f1 and f2 are order of
unity in the experimentally relevant regime with u ∼ 1.

3. Flux-flow conductivity

Using the relation E0 = B × vL for an electric field gener-
ated by the motion of the magnetic flux, which is derived from

u

co
ef
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nt
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 8

 0.1  1  10

1
2

FIG. 3. Parameter u dependence of the friction force coefficients
defined in Eq. (119). The system size and number of spatial mesh are
same as Fig. 2.
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the Josephson relation, we obtain the electrical conductivity as

junif = �|�∞|2
�0Bz

[
f1 + f2�K

|α|2ξ 4Bz

(
E0x −E0y

−E0y −E0x

)]
E0

(121)

= σ1v E0 + σ2v F(E0), (122)

where the vector F is same as that in Eq. (59). To express the
flux-flow conductivity in terms of normal conductivity, we use
the electric field penetration depth �E and the upper critical
field given by Bc2 = �0/2πξ 2. Then, the conductivities are
written as

σ1v = uf1(u)

4π
σn

Bc2

Bz

, (123)

σ2v = uf2(u)

4π
σn

Bc2�K

γ 2B2
z

. (124)

The γ value from nonreciprocal vortex dynamics is given by

γ v
S = σ2v

σ 2
1vBzW

= 4πf2(u)

uf1(u)2

�K

γ 2σnBc2BzW
. (125)

This expression does not depend on Bz since K is proportional
to Bz due to the Zeeman effect. We note that the parameters σn,
γ , and K are in general dependent on the purity of the sample
(see Appendix B).

Let us compare this result with the γ value (γ f
S ) from

superconducting fluctuation for T � T0 given by Eq. (60) [10].
Noting u ∼ 1, the ratio is estimated by

γ v
S

γ f
S

∼ T 2
0

EF(T0 − T )
. (126)

Thus, we obtain the same conclusion as the extended Bardeen-
Stephen approach in Sec. III A 2.

C. Ratchet motion of vortex

As discussed above, for T < T0 and in the presence of
the finite out-of-plane magnetic field, the motion of quantum
vortices penetrating the superconductor gives a dominant
contribution to the voltage drop. Here, we consider another
effect for vortex dynamics. In the superconductor without
inversion center, vortices driven by the external charge current
feel an asymmetric pinning potential acting on them (ratchet
effect). This effect has been proposed to control the vortices
in superconductors [32–34]. New perspective here is that the
vortex ratchet effect naturally appears as a consequence of
disorders in noncentrosymmetric system, which is distinct
from the previously discussed artificially developed inversion-
broken environment. In this section, we analyze the classical
motion of vortices under the asymmetric periodic potential
and discuss the nonreciprocal transport there. The relevant
parameters such as potential height and its spatial periodicity
are estimated from pinning properties such as a magnitude of
the critical current density where the vortices are depinned. The

relation to the recent experimental results [10,35] will also be
discussed in Sec. IV C 2. The classical equation of motion of
the vortices in the diffusive limit is modeled as

η
dx

dt
= −∂U

∂x
+ F −

√
2ηT ξ (t ), (127)

with U being the pinning potential, which we here assume
to be periodic for simplicity: U (x + L) = U (x), and F is
the uniform force. The last term is the Langevin force with
zero mean and unit dispersion (Gaussian white noise). η is
the viscous friction coefficient, and T is the temperature. By
solving the corresponding Fokker-Planck equation

∂p

∂t
= 1

η

∂

∂x

[(
∂U

∂x
− F

)
p + T

∂p

∂x

]
(128)

for the distribution function p(x, t ), we obtain the steady
velocity of the vortex after long time expressed as [36]

vL = L

βη

1 − e−βFL∫ L

0 dy I0(y)e−βFy
, (129)

where we have introduced

I0(y) =
∫ x0+L

x0

dx eβ[U (x)−U (x−y)], (130)

with β = 1/T being the inverse temperature. We can choose
x0 arbitrarily due to the periodicity of the potential. Potential
is called symmetric when there exists certain choice of x0 ∈
[0, L) such that U (x) = U (x0 − x) is satisfied. Here, we can
choose x0 = 0 by shifting the x coordinate. By using the
evenness and the periodicity of the potential, we can easily
prove vL(−F ) = −vL(F ) which show the absence of the
nonreciprocal transport.

For asymmetric potentials, the situation is different. The
velocity vL is expanded with respect to the force F as

vL = q1F + q2F
2 + O(F 3), (131)

where the coefficients are

q1 = L

βη

βL∫ L

0 dy I0(y)
, (132)

q2 = L

βη

β2L
∫ L

0 dy
(
y − L

2

)
I0(y)[ ∫ L

0 dy I0(y)
]2 , (133)

where q2, which is a hallmark of the nonreciprocal transport,
survives only for asymmetric potentials as discussed above.

Hereafter, we adopt the fully asymmetric periodic potential
for simplicity

U (x) = U0 saw

(
x

L

)
= U0

x

L
(mod L) (134)

by using so-called sawtooth function. U0(> 0) is the height of
the pinning potential. In this potential, the steady velocity is
calculated as

vL = 1

βηL

β2(U0 − FL)2

βFL − βU0 − sinh(βU0) + [cosh(βU0) − 1] coth
(

βFL

2

) = q1F + q2F
2 + O(F 3), (135)
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with the response coefficients

q1 = 1

2η

β2U 2
0

cosh(βU0) − 1
=
⎧⎨
⎩

1
η

− β2U 2
0

12η
(βU0 → 0),

β2U 2
0

η
e−βU0 (βU0 → ∞)

(136)

and

q2 = Lβ

4η

β3U 3
0 + β2U 2

0 sinh(βU0) + 4βU0 − 4βU0 cosh(βU0)

[cosh(βU0) − 1]2
=
⎧⎨
⎩

L
η

β4U 3
0

360 (βU0 → 0),

L
η

β3U 2
0

2 e−βU0 (βU0 → ∞).
(137)

Since the voltage drop originating from the motion of vortices
is V = BzLxvL and the force acting on vortices is F = φ0

W
I ,

we can calculate the coefficients in current-voltage relation
[Eq. (4)] as a1(Bz, T ) = φ0

Lx

W
Bzq1(T ) and a2(Bz, T ) =

φ2
0

Lx

W 2 Bzq2(T ), both of which are proportional to Bz. The
nonreciprocal γ ′ parameter defined as R = R0(1 + γ ′I ) with
V = RI is expressed as

γ ′ = q2

q1

φ0

W

= φ0L

W

U 2
0 β2 + βU0 sinh(βU0) − 4 cosh(βU0) + 4

4U0 sinh2
(

βU0

2

)
=
{

φ0L

W

β4U 3
0

360 (βU0 → 0),
φ0L

W

β

2 (βU0 → ∞),
(138)

which monotonically decreases as raising temperature. Note
that the exponential temperature dependence vanishes for the
γ value.

In this calculation, we have neglected the vortex-vortex
interaction. This assumption is justified for small magnetic
field where the vortices are dilute enough. We also note that
the ratchet effect is active for trigonal symmetry, but is not
relevant for the systems with C∞ and hexagonal symmetries
where no ratchet potential is present. In the latter cases, the
effect from asymmetric spin-orbit coupling plays the central
role.

IV. DISCUSSION

Here, we discuss expected nonreciprocal charge transport
signals in 2DNS. Table I summarizes the nonreciprocal I -V
characteristics in Rashba superconductors, TI surface and
TMD for both above and below transition temperature. The
magnetic fields are applied parallel to the two-dimensional
plane for Rashba and TI-based systems, and applied perpen-
dicular to the layer for TMD. While the other configurations
can in principle be possible, the information of this paper gives
a firm basis to explore the further properties. Below we discuss
each system separately.

A. Rashba superconductors

Here, we consider the γ value for Rashba superconductors.
With electron or hole doping, the Fermi energy can be tuned
and the behavior is dependent on the sign of EF. Let us begin
with the EF < 0 case. In this case, the normal contribution to
γ value becomes finite as shown in Ref. [9] (see also Table I).

The typical values for BiTeBr have been estimated [9] by
using the effective mass m = 0.15me, the Rashba parameter
α = 2.00 eV Å, and the g factor g = 60. In the normal state
with EF = −0.01 eV, the amplitude of the magnetochiral
anisotropy is estimated as WγN � 2 × 10−5 T−1 A−1 m.

The system crosses over into the paraconductivity region
with approaching to the mean field transition temperature T0

from above. Here, as discussed in Sec. II A, the parity mixing
contribution becomes irrelevant and the cubic term in GL free
energy instead becomes dominant. The paraconductivity is
then given by Eq. (37). The ratio between normal and super-
conducting states is given by γS/γN ∼ EF/T0, and thus the
nonreciprocal signal is strongly enhanced by the appearance
of a small energy scale T0 for superconductors.

The fluctuation contribution above T0 further crossovers
to vortex contribution at lower temperatures than T0. Below
T0, the pair amplitude sufficiently develops and the free
vortices, which are generated thermally above KT transition
temperature in the present system, start to play an important
role for transport phenomena. For EF < 0 case, the cubic term
effectively renormalizes superfluid density under the transport
current as discussed in Sec. III A. As a result, the friction force
and KT transition temperature are modified and have different
values depending on the direction of source currents. The
former causes the characteristic temperature dependence in the
γ value as γS ∝ (T0 − T )−1 near T0 (> TKT). Note that this
expression smoothly connects to the fluctuation contribution
for T > T0, and does not show divergence in reality. On the
other hand, the modification of the KT transition temperature
shows the divergent γ value as γS ∝ (T − TKT)−3/2 near the
KT transition point. For T < TKT, vortex and antivortex are
bound, and the linear transport coefficient finally vanishes.
The third-order term with a3 then becomes the relevant one
in the current-voltage relation. The nonreciprocity is reflected
in the higher-order term with a4 in this case. More detailed
investigation of these higher-order contributions remains to be
clarified in the future.

Now, we switch our focus to the EF > 0 case. Although the
normal-state contribution to γ value is absent in this situation
[9], the paraconductivity is finite. There are two contributions
to paraconductivity: one from parity mixing and the other from
q-cubic term in the GL theory. Here, as the ratio is calculated
in Eq. (38), the parity-mixing contribution in Eq. (23) is much
larger than the other. Theγ value in this case has been estimated
in Ref. [18] for BiTeBr with superconducting proximity effects.
On the othe hand, the LaAlO3/SrTiO3 interface [37–40] is
also a typical two-dimensional Rashba superconductor. Its
carrier density is given by n ∼ 1013 cm−2, spin-orbit field is
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BSO = m2α2

|e| ∼ 1 T, the Debye temperature is TD ∼ 400 K, and
the mean field transition temperature is T0 ∼ 100 mK. If we
assume rt = 0.1 and the typical sample width W = 10−6 m,
the γ value is estimated as γS ∼ 8 × 104 T−1 A−1, which is
much larger than the previous studies [3,5–8].

At lower temperature below T0, the vortex contribution
dominates over the paraconductivities. For EF > 0 case, the
two-component gap parameter needs to be considered for
vortex dynamics. While detailed studies remain unexplored,
the vortex contribution should be present and is expected to
cause a singular behavior around the KT transition point as in
the EF < 0 case.

B. TI surface

We here discuss the surface of topological insulators plus
superconducting proximity effect. The Hamiltonian has the
k-linear term, but the nonreciprocal charge transport is absent
with this term only since magnetic field just shifts the wave
vector. We have thus considered the two more terms to generate
the nonreciprocity: parabolic term and hexagonal warping
term. Let us first consider the paraconductivity contribution
from parabolic term based on Eq. (43). The functional forms
of the γ values are listed in Table I, and the ratio between
normal and superconducting states is given by γS/γN ∼
EF/T0. Hence, the nonreciprocal transport signal is enhanced
in superconducting state. To estimate the typical value, we use
the expression in Eq. (43) with h̄, kB, and μB recovered. If we

assume vF = 2.84 eV Å and 1
2m

= 41.1 eVÅ
2

in Bi2Te3 [41],
and EF = 0.1 eV, T0 = 10 K, and W = 100 μm as typical
values, we obtain γS ≈ 0.33 A−1 T−1. On the other hand, the
contribution from the hexagonal warping is given in Eq. (53),
which is also estimated here. Assuming the same parameters

above and
√

λ = 250 eVÅ
3

in Bi2Te3 [22,41], we obtain
γS ≈ 0.11 A−1 T−1. Therefore, the amplitude is comparable
to that by the parabolic term.

At lower temperatures, the vortex contribution becomes
dominant as in the Rashba superconductors. Since the magnetic
field is applied along the two-dimensional plane and there is
the cubic term in GL free energy, the behavior is essentially
same as the Rashba superconductors with EF < 0. Namely,
the thermally generated vortex in the TKT < T � T0 region
creates the characteristic magnetochiral anisotropy in the forms
γS ∝ (T0 − T )−1 for T → T0 and γS ∝ (T − TKT)−3/2 for
T → TKT. We note that the above transport coefficients are
written in the form V = a1I (1 + γBI ), i.e., the magnetic
field B enters only with γ value. As shown below, however,
the situation can qualitatively change if the magnetic field is
applied perpendicular to the plane.

C. TMD

1. Paraconductivity and intrinsic vortex-flow contribution

We estimate the physical quantities of the clean MoS2. Let
us begin with the normal contribution well above T0. This sys-
tem has a valley degrees of freedom, whose contribution to the
normal γ value per valley is listed in Table I. With the situation
in MoS2, however, the γ value for each valley has different sign
and vanishes if we sum up both the contributions [10]. Near
T0, the paraconductivity contribution is developed as given
in Eq. (60). Using 2mλ/h̄2 = −0.49 and �SO � 7.5 meV,

and T0 = 8.8 K for monolayer MoS2, the γ value from the
superconducting fluctuation reaches γS � 250 T−1 A−1 for the
sample width W � 3 μm, as shown in Ref. [10].

Below T0, here again the vortex contribution becomes
relevant for the γ value, but the situation is different from the
Rashba and TI-based systems with KT transition. Namely, the
vortices with the same vorticity are induced by the out-of-plane
magnetic field and the KT transition is washed away for B �= 0.
As a result, the number of vortices is determined by the external
field B, and the ordinary resistivity a1(B ) is proportional to
B. We reflect this situation by denoting I -V characteristic as
V = a′

1BI + a2(B )I 2. As for the coefficient a2(B ), there are
two types of contributions. One is from the q-cubic term in the
GL free energy and a2 is proportional to B2. The other is from
the ratchet potential for vortices, and a2 ∝ B is satisfied. Thus,
the B dependence of a2 clearly distinguishes the underlying
mechanism to generate nonreciprocal charge transport. Since
the latter effect is discussed in detail in the next subsection, we
here focus on the cubic-term contribution. The I -V relation is
then written as V = a′

1BI (1 + γSBI ).
As discussed in Sec. III A, the q-cubic term in GL free

energy effectively renormalizes the superfluid density. We
have applied the generalized Bardeen-Stephen approach to
this system: the force balance between driving (Magnus)
force and viscous force acting on the vortex is considered.
The nonreciprocity enters in the friction force through the
anisotropically renormalized superfluid density. We have then
found that the γ value from vortex dynamics is given by γ v

S =
γ f

S × T 2
0

EF (T −T0 ) with γ f
S being the superconducting fluctuation

contribution, which has a large value near the mean-field tran-
sition temperature T0. Here, the temperature dependence enters
through the unrenormalized superfluid density which behaves
as ns ∝ (T0 − T ). Such behavior has further been justified by
the TDGL approach as demonstrated in Sec. III B. If the results
are extrapolated to zero temperature, we get γ v

S /γ f
S = T0/EF.

Since the magnitude of the paraconductivity contribution
is roughly given by γ f

S ∼ 102 T−1 A−1 as discussed above,
the order of magnitude for the vortex contribution is γ v

S ∼
1 T−1 A−1 in the low-temperature limit. This is much smaller
than the observed values at low T in the monolayer MoS2

[10], and hence we need another mechanism to account for the
experimental results.

2. Ratchet effect of vortex flow

We now consider the nonreciprocal transport from ratchet
effect of vortex dynamics based on Eq. (138). Phenomenolog-
ical parameters such as periodicity L of the pinning potential,
friction coefficient η, and potential height U0 are estimated for
MoS2 using experimental data. The parameter L is determined
from the mean distance of pinning centers. This can be
estimated from pinning-depinning transition point in the mag-
netoresistance measurement, that is about Bz � 0.2 T [35]. At
this transition point, all the pinning centers are assumed to be
filled with vortices. The total flux is BzLxW = Nv�0 and then
the vortex number density is nv = Nv/(LxW ) = Bz/�0. Thus,
the mean distance between vortices is

L ∼ 1√
nv

=
√

�0

Bz

∼ 10−7 m. (139)
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The parameter η is estimated by the normal-state resistivity.
In the absence of the pinning potentials (i.e., U0 = 0), the I -V
characteristic becomes vL = F/η or

V = BzvLLx = Bz

F

η
Lx = Bz

�0

η

Lx

W
I = RI (140)

in the Ohmic region. The resistivity R = Bz
�0
η

Lx

W
should be

same as the normal-state resistivity Rn when Bz = Bc2 �
0.1 T. Thus, the parameter η is estimated as

η = �0Bc2

Rn

Lx

W
= �0Bc2

Rn

∼ 10−18 kg/s, (141)

with Rn,sheet � 300 � [42].
The parameter U0, the height of the pinning potential of the

superconducting vortex, is estimated by the plateau of R-B
curve in weak B region. The plateau disappears for jsheet >

jc � 3 A/m [35], where jc is the critical current density
for vortex depinning. Depinning transition occurs when the
pinning potential is well tilted by the external force, namely,

U0 ∼ FL = jsheet�0L � 4 meV. (142)

Another estimation of U0 is from the thermodynamic upper
critical field. The vortex energy per unit volume is B2

c2/(2μ0).
When the vortex has the overlap with normal core in the
pinning center, the energy reduces. By using Bc2 � 0.1 T
[42], we obtain

U0 ∼ B2
c2

2μ0
πξ 2cz � 5 meV, (143)

with ξ � 8 nm and cz � 1 nm being the in-plane coherence
length (normal core radius) and the lattice constant in the
thickness direction, respectively. These two estimations are
very consistent. We note U0 � 5 meV � 58 K is much larger
than the transition temperature, therefore the low-temperature
limit βU0 � 1 is the realistic situation in MoS2.

Calculated I -V characteristic curve is shown in Fig. 4,
which displays a strong rectification behavior even at a mea-
surable temperature. For larger current such that U0 < FL,
the expansion with respect to F or equivalent to I is no
longer valid. In this regime, the I -V characteristics are strongly
non-linear and hence the higher harmonics becomes relevant.
At the critical current where U0 = FcL, the potential becomes
a multistep function and therefore the velocity begins to grow
rapidly.

The temperature dependence of γ value at low T is given
by γ ′

S ∝ 1/T for the ratchet mechanism according to Eq. (138)
in the U0 � T limit. With the original expression in Eq. (138),
the estimated γ values for the sample size LxWcz = 3 μm ×
3 μm × 1 nm are given by γ ′

S � 8 × 105 A−1 at T = 10 K
and γ ′

S � 1 × 106 A−1 at T = 2 K. Although these magni-
tudes are much larger than the ones in the experimental
observation [10], we can obtain the more close values by
controlling the spatial asymmetry in the sawtooth potential.
Namely, by tuning the potential from the asymmetric case
in Eq. (134) to symmetric case continuously, the γ value is
monotonically decreased down to zero.
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FIG. 4. I -V characteristic curve for the monolayer MoS2 at
T = 10 K and T = 2 K.

At sufficiently low temperatures, on the other hand, the
quantum nature of the vortices plays an important role. In this
case, the wave character of vortices appears, which will modify
the above physical picture. This point remains to be explored
in the future.

V. SUMMARY AND CONCLUSIONS

We have theoretically investigated the nonreciprocal charge
transports in the two-dimensional superconductors without
inversion symmetry. We have taken the concrete examples
such as the Rashba superconductors and topological insulator
surface with in-plane magnetic fields, and the monolayer
transition-metal dichalcogenide (MoS2) with out-plane mag-
netic field. The nonreciprocal properties of superconductors
are reflected in the I -V characteristics with the form V =
a1I + a2I

2 + a3I
3 + a4I

4, and the even-order terms represent
the nonreciprocal responses. These coefficients are clarified
in the temperature range both above and below the mean
field transition temperature. Table I summarizes our obtained
results.

The nonreciprocal transport signals in the normal regions
well above the mean field transition temperature T0 cross over
into superconducting fluctuation contribution (paraconductiv-
ity). We have newly investigated the topological-insulator-
based systems which have cubic term in the GL free energy, in
addition to the previously investigated Rashba superconductors
and transition-metal dichalcogenide. The γ values for all the
systems are much enhanced compared to the normal state,
which is attributed to the appearance of the small energy
scale T0 (� EF). The ratio of γ values between normal and
superconducting fluctuation regions is in general written as
(EF/T0)m with m � 1 being an integer depending on the
system.

Below T0, the amplitude of the superconducting order
parameters is developed and only the phase degrees of
freedom are left. Then, the vortex dynamics plays an important
role for T � T0. There are two different kinds of vortex
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behaviors. First, for systems with in-plane magnetic fields,
the vortices are thermally generated and are bound below
the Kosterlitz-Thouless transition temperature TKT. Due to the
inversion symmetry breaking in the system, the friction force
and the number of vortices for TKT < T < T0 are different
depending on the direction of external uniform current, to
produce the nonreciprocal charge transport. These effects
have effectively been described by the renormalization of the
superfluid density. The γ value, which is defined by V =
a1I (1 + γBI ) as in the fluctuation regime, is identified to
have the temperature-dependent forms γ ∝ (T0 − T )−1 near
T0 and γ ∝ (T − TKT)−3/2 near TKT, which originate from the
modified friction coefficient and the modified KT transition
temperature, respectively. Accordingly, we expect the two-
peak structure of the temperature dependence of the γ value
in this case.

For the system with out-plane magnetic field, the number
of vortices with a same vorticity is determined by the strength
of the external field B and the Kosterlitz-Thouless transition
does not exist. The nonreciprocal signal γ is now characterized
by the I -V relation with the form V = a′

1BI (1 + γBI ).
The renormalization of superfluid density works also for this
system, and we have derived the modified friction force for
moving vortices and the corresponding γ value has the form
γ ∝ (T0 − T )−1. This phenomenological approach is further
justified by the time-dependent Ginzburg-Landau theory. On
the other hand, we have also investigated the other effect with
ratchet potential for vortices. Here, the magnetic field plays
a role only for creating the vortex, and then the γ value is
characterized by the relation V = a′

1BI (1 + γ ′I ). We have
considered one-dimensional motion driven by the external
transport current in the sawtooth potential, and have found
that the resultant signal γ ′ can have a comparable value with
the experiments in MoS2.

We have thus systematically clarified the characteristic
transport properties for two-dimensional noncentrosymmetric
superconductors. The knowledge of this paper is useful for the
further exploration of nonreciprocal phenomena in supercon-
ductors both theoretically and experimentally.
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APPENDIX A: DERIVATION OF THE GINZBURG-LANDAU
FREE ENERGY

Following Ref. [20], we derive the GL free energy for the
model in Eq. (7). Especially, we focus on the case where the
Fermi energy is on the conduction band. The free energy is

given by

F =
∫

d2q
(2π )2

[
1

g
− T

∑
ωn

∫
d2k

(2π )2 G(k, iωn)

× G(−k + q,−iωn)

]
|�q |2, (A1)

with G(k, iωn) = (iωn − ξk )−1 being the Matsubara Green’s
function [ωn = (2n + 1)πT ]. The product of the Green func-
tions is simplified as∫

d2k

(2π )2 G(k, iωn)G(−k + q,−iωn)

= −
∫

d2k

(2π )2

1

iωn − ξ 0
k − �1(k)

1

iωn + ξ 0
k + �2(k, q )

,

(A2)

where

ξ 0
k = k2

2m
+ α|k| − EF, (A3)

�1(k) = ξk − ξ 0
k , (A4)

�2(k, q ) = ξ−k+q − ξ 0
k . (A5)

We first integrate by ξ 0
k :

−
∫

d2k

(2π )2

1

iωn − ξ 0
k − �1(k)

1

iωn + ξ 0
k + �2(k, q )

≈ −ν1

〈∫
dξ

1

iωn − ξ − �1(k)

1

iωn + ξ + �2(k, q )

〉
k

= πν1

〈
1

|ωn| + i sgn(ωn)�(k, q )

〉
k
, (A6)

where 〈. . . 〉k is the momentum average over the Fermi surface.
We have defined �(k, q ) = 1

2 [�1(k) − �2(k, q )]. When we
consider the surface state of topological insulator, which we
describe here for simplicity, we only take the inner one of the
two Fermi surfaces. The Fermi wave number is kF1 = −mα +√

mEFR, and the density of states is ν1 = m
2π

(1 − α
√

m/EFR).
Therefore, the second term in Eq. (A1) is

− πT ν1

∑
ωn

〈
1

|ωn| + i sgn(ωn)�(k, q )

〉
k

≈ −πT ν1

∑
ωn

〈
1

|ωn| − �(k, q )2

|ωn|3
+ �(k, q )4

|ωn|5
〉

k

= −ν1[S1(T ) − S3(T )〈�(k, q )2〉 + S5(T )〈�(k, q )4〉],
(A7)

with Sk (T ) = πT
∑

n |ωn|−k . The functions S1(T ) and S3(T )
are given in Eqs. (17) and (18), and S5(T ) is calculated as

S5(T ) = 31ζ (5)

16(πT )4 . (A8)
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Then, we calculate 〈�(k, q )2〉 and 〈�(k, q )4〉 up to O(Byq4).
If we shift the momentum as q → q + 2Bym

|k|+mα
x̂, we find

〈�(k, q )2〉 = (kF1 + mα)2

8m2
q2

+ 3(5kF1 + 3mα)

32mkF1(kF1 + mα)
Byqxq2 + O(q4), (A9)

〈�(k, q )4〉 = O(q4). (A10)

This result is reasonable because the third-order term in the
momentum vanishes for m → ∞. The case of the valence
band (EF < 0) can be obtained in a similar manner, and
we can show that the free energy is obtained by replac-
ing α with −α, By with −By , kF1 = −mα + √

mEFR with
kF2 = mα − √

mEFR, and ν1 = m
2π

(1 − α
√

m/EFR) with ν2 =
m
2π

(−1 + α
√

m/EFR). We can also derive the GL free energy
for the model with the hexagonal warping [Eq. (50)] in the
same way.

APPENDIX B: IMPURITY EFFECT IN TMD

The effect of superconducting fluctuation is more prominent
for dirty samples according to the Ginzburg-Levanyuk criterion
[13]

|ε| �
[

kFξ0

(kFξ )D

] 2
4−D

, (B1)

where D is the dimension of the system, ε = (T − T0)/T0,
and ξ0 ∼ vF/T0. ξ is the coherence length for either clean or
dirty samples. Here, we consider the impurity effect on the GL
equation with q-cubic term originating from trigonal warping
for MoS2. To deal with the impurities, we take quasiclassical
Green function method [29]. We introduce the normal and
anomalous quasiclassical Green functions by g(k̂, iωn; r ) and
f (k̂, iωn; r ), respectively, where k̂ is the unit vector in the
direction of k on the warped Fermi surface. The gap equation
is given by

�(r ) = πiνV gT
∑

n

〈f (k̂, iωn; r )〉k, (B2)

where the angle brackets mean the average with respect to k.
V g and ν are the attractive interaction parameter and density
of states at the Fermi level, respectively. To derive the GL
theory, we expand the right-hand side of Eq. (B2). The terms
without spatial derivatives are not affected by impurities, which
is known as the Anderson theorem. Hence, we only keep the
linear term in � and consider spatial derivatives. With this
condition we can use g(k̂, iωn; r ) = sgn ωn, since it does not
have the linear term of �. The anomalous Green function is
described by the Eilenberger equation

ivF(k̂) · ∇f + 2iωnf − 2�g + i

τ
(〈g〉kf − 〈f 〉kg) = 0,

(B3)

where vF is the Fermi velocity and τ is the relaxation time.
The self-energy from impurities has been included by the
self-consistent Born approximation. The Zeeman energy can
be accounted for by the simple replacement iωn → iωn + Bz,

and we do not write this explicitly for the moment. Now,
we perform the gradient expansion as f = f0 + f1 + f2 +
f3 + · · · . The zeroth- and first-order terms can be explicitly
written as

〈f0〉k = f0 = � sgn ωn

iωn

, (B4)

〈f1〉k = − i〈vF〉k · ∇f0

2iωn

, (B5)

where ω̃n = ωn + 1
2τ

sgn ωn. We conclude 〈f1〉k = 0 since
〈vF〉k = 0 is satisfied. The higher-order terms can also be
derived as

〈f2〉k = 〈(ivF · ∇)2f0〉k

4iωniω̃n

, (B6)

〈f3〉k = −〈(ivF · ∇)3f0〉k

4iωn(iω̃n)2
. (B7)

〈f3〉k can be finite if the system has a trigonal warping. To be
compatible with the results in TMD, there are the relations

〈(ivF · ∇)2〉k = C2∇2, (B8)

〈(ivF · ∇)3〉k = iC3∂x

(
∂2
x − 3∂2

y

)
. (B9)

The real constants C2 and C3 are determined to be consistent
with the expressions in the clean limit which has already been
obtained in Ref. [10].

We now replace iωn by iωn + Bz to include the Zeeman
energy, and take the lowest-order contribution of the external
magnetic field Bz. We substitute these expressions into the
gap equation. The coefficient γ (τ ) of q-square term and K (τ )
of q-cubic term in the GL free energy (92), which are now
dependent on the mean-free time τ , are given by

γ (τ )/γ (∞) =
∑

n

1

|ωn|2
(|ωn| + 1

2τ

)
/∑

n

1

|ωn|3 , (B10)

K (τ )/K (∞) = 1

2

∑
n

1

|ωn|2
(|ωn| + 1

2τ

)2

×
(

1

|ωn| + 1

|ωn| + 1
2τ

)/∑
n

1

|ωn|5 .

(B11)

These results can be used at any purity of samples and go to
unity for the clean limit. The q-square coefficient here is not a
new result which can be seen in, e.g., Ref. [43], but the q-cubic
coefficient is first derived. Particularly for the γ value, the ratio
between dirty (τT0 � 1) and clean (τT0 � 1) limits is given
using Eq. (60) by

γ f
S,dirty

γ f
S,clean

∼ τT0 (B12)

for superconducting fluctuation contribution. For vortex flow
contribution, on the other hand, the transport coefficients are
dependent on σn (� nee

2τ/m) and cannot be written in a
simple way, but can be in general estimated from the above
information.
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APPENDIX C: EFFECT OF LANDAU LEVEL
FOR PARACONDUCTIVITY IN TMD

1. Formulation

We here extend the calculation for the paraconductivity in
the low-field limit to the case in the presence of quartic term and
magnetic field. The paraconductivity from superconducting
fluctuations can be evaluated at arbitrary strength of the
magnetic field by considering the Landau levels. Let us begin
with the GL free energy

F =
∫

d2r �∗
[
a + P2

2m∗ + �Bz

(
P 3

x − 3PxP 2
y

)]
�, (C1)

where P = −i∇ − e∗ A with e∗ = 2e and m∗ = 2m. The
quartic term with |�|4 can be effectively included in the square
term by using the self-consistent harmonic approximation and
is dropped here. We will explain this point later. The spatially
averaged supercurrent is given in the simple form

Jsx = −|e∗|
∫

d2r
�

�∗
[

1

m∗ Px + 3�Bz

(
P 2

x − P 2
y

)]
�, (C2)

where � = ∫
d2r 1 is a two-dimensional system volume. The

y component can be constructed by symmetry and we do not
consider here. We choose the vector potential as Ax = −Ext

and Ay = −Eyt + Bzx. Now, we expand the complex function
� as

�(r, t ) =
∑
kn

ckn(t )e−ikyei|e|Ext[x−x0k (t/2)]hn[x − x0k (t )],

(C3)

x0k (t ) = k + |e∗|Eyt

|e∗|Bz

, (C4)

where hn(x) is an eigenfunction of the one-dimensional har-
monic oscillator with the quantum number n. We can show the
following relations:

Px� = −i

√
m∗ω

2
(b − b†)�, (C5)

P2

2m
� = ω

(
b†b + 1

2

)
�, (C6)

(
P 3

x − 3PxP 2
y

)
� = 4i

(
m∗ω

2

)3/2

(b3 − b†3)�, (C7)

(
P 2

x − P 2
y

)
� = −m∗ω(b2 + b†2)�, (C8)

with ω = |e∗|Bz/m∗ being a cyclotron frequency. We have
used the relations

∂xhn(x) =
√

m∗ω
2

(b − b†)hn(x), (C9)

xhn(x) =
√

1

2m∗ω
(b + b†)hn(x). (C10)

The operators b and b† act only on hn as

bhn = √
nhn−1, (C11)

b†hn = √
n + 1hn+1. (C12)

Let us consider the TDGL equation in the presence of thermal
fluctuations:

−�∂t� = δF

δ�∗ − f. (C13)

We note that � here is different from the one in Eq. (91) by
a constant factor. Equation (C13) can be rewritten in terms of
ckn(t ) as

−�∂tcn =
[
a + ω

(
n + 1

2

)]
cn − f ′

n

+ 4i�Bz

(
m∗ω

2

)3/2

[
√

n+3P3cn+3 −
√

nP3cn−3]

+ i|e|�√
2m∗ω

[
√

n + 1Ecn+1 + √
nE∗cn−1], (C14)

where we have defined the complex electric field E = Ex +
iEy and have omitted k. The symbol nPm = n!/(n − m)! is the
permutation. This equation can be solved perturbatively. We
expand the solution as

cn(t ) =
∞∑

p,q=0

cpq
n (t ), (C15)

where c
pq
n is a contribution of O(Ep�q ), and each term

satisfies the following recursive equation:

cpq
n (t ) = i

�

∫ t

−∞
dt ′
[
β
(√

n+3P3c
p,q−1
n+3 −

√
nP3c

p,q−1
n−3

)
+ α

(√
n + 1Ec

p−1,q

n+1 + √
nE∗cp−1,q

n−1

)]
e(t ′−t )An.

(C16)

Here, we have defined

α = − |e|�√
2m∗ω

, β = −4�Bz

(
m∗ω

2

)3/2

, (C17)

An = a + ω
(
n + 1

2

)
�

, (C18)

to make the notation simple.
We rewrite the current along x direction as

Jsx = |e∗|2Bz

π

Ec/ω∑
n=0

[√
ω

2m∗
√

n + 1 Im 〈c∗
n+1cn〉

+ 3�Bzm
∗ω
√

n+2P2 Re 〈c∗
n+2cn〉

]
, (C19)

where we have used the relation for the number of degeneracy:∑
k

1 = �

2π�2
B

(C20)

with �B = √
1/|e∗|Bz being the magnetic length. The cutoff

energy is given by Ec ∼ T0.
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2. Evaluation of current

We first consider the zeroth-order component:

〈
c00∗
n (t1)c00

n (t2)
〉 = T/�

An

e−|t1−t2|An. (C21)

To evaluate the current we need only the equal-time component
of the forms 〈c∗

n+1cn〉 and 〈c∗
n+2cn〉. The O(E1) components

are calculated from Eqs. (C16) and (C21) as

〈
c10∗
n+1c

00
n

〉 = − iαET

�2

√
n + 1

1

An(An + An+1)
, (C22)

〈
c10∗
n−1c

00
n

〉 = − iαE∗T
�2

√
n

1

An(An + An−1)
. (C23)

The O(E2) components are calculated as

〈
c10∗
n+2c

10
n

〉 = α2E2T

�3

√
n+2P2 H1(n + 1, n + 2, n), (C24)

〈
c00∗
n+2c

20
n

〉 = −α2E2T

�3

√
n+2P2 H2(n + 2, n, n + 1), (C25)

〈
c00∗
n−2c

20
n

〉 = −α2(E∗)2T

�3

√
nP2 H2(n − 2, n, n − 1), (C26)

where

H1(i, j, k) = 1

Ai (Aj + Ak )

[
1

Ai + Ak

+ 1

Ai + Aj

]
, (C27)

H2(i, j, k) = 1

Ai (Ai + Ak )(Ai + Aj )
. (C28)

The O(E2�1) components are also calculated as

〈
c11∗
n+1c

10
n

〉 = −(C21)∗
[

n+1P3√
n + 1

F1(n − 1, n + 1, n, n − 2) + n+2P3√
n + 1

F1(n − 1, n + 1, n, n + 2)

]
, (C29)

〈
c11∗
n−1c

10
n

〉 = −C21

[
n+2P3√

n
F1(n + 1, n − 1, n, n + 2) + n+1P3√

n
F1(n + 1, n − 1, n, n − 2)

]
, (C30)

〈
c20∗
n+1c

01
n

〉 = (C21)∗ n+3P3√
n + 1

F1(n + 3, n + 1, n, n + 2), (C31)

〈
c20∗
n−1c

01
n

〉 = C21 nP3√
n
F1(n − 3, n − 1, n, n − 2), (C32)

〈
c21∗
n+1c

00
n

〉 = (C21)∗
[

n+1P3√
n + 1

F2(n, n + 1, n − 2, n − 1) + n+3P3√
n + 1

F2(n, n + 1, n + 2, n + 3)

+ n+2P3√
n + 1

F2(n, n + 1, n + 2, n − 1)

]
, (C33)

〈
c21∗
n−1c

00
n

〉 = C21

[
n+2P3√

n
F2(n, n − 1, n + 2, n + 1) nP3√

n
F2(n, n − 1, n − 2, n − 3) n+1P3√

n
F2(n, n − 1, n − 2, n + 1)

]
, (C34)

where we have defined the complex constant by C21 = iα2βE2T/�4 and the functions F1,2 by

F1(i, j, k, l) = 1

Ai (Aj + Ak )

[
1

(Ai + Al )(Ak + Al )
+ 1

(Ai + Ak )(Ak + Al )
+ 1

(Ai + Al )(Ai + Aj )

]
, (C35)

F2(i, j, k, l) = 1

Ai (Ai + Al )(Ai + Ak )(Ai + Aj )
. (C36)

The quantities other than those listed above can be evaluated using complex-conjugation relations. Substituting the above
expressions into the current, we obtain the linear and nonlinear paraconductivities. We define the transport coefficients by
Jsx = σ1Ex + σ2(E2

x − E2
y ) + O(E3) and each coefficient is given by

σ1 = |e∗|2ωT

2π�

∑
n

n + 1

An + An+1

(
1

An

− 1

An+1

)
, (C37)

σ2 = −|e∗|3m∗�BzωT

2π�2

∑
n

[ωX(n) + 3�Y (n)], (C38)
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where

X(n) = n+1P3F1(n − 1, n + 1, n, n − 2)

+ n+2P3F1(n − 1, n + 1, n, n + 2)

+ n+3P3F1(n + 2, n, n + 1, n + 3)

+ n+2P3F1(n + 2, n, n + 1, n − 1)

− n+3P3F1(n + 3, n + 1, n, n + 2)

− n+1P3F1(n − 2, n, n + 1, n − 1)

− n+1P3F2(n, n + 1, n − 2, n − 1)

− n+3P3F2(n, n + 1, n + 2, n + 3)

− n+2P3F2(n, n + 1, n + 2, n − 1)

− n+3P3F2(n + 1, n, n + 3, n + 2)

− n+1P3F2(n + 1, n, n − 1, n − 2)

− n+2P3F2(n + 1, n, n − 1, n + 2), (C39)

Y (n) = n+2P2[H2(n + 2, n, n + 1) + H2(n, n + 2, n + 1)

− H1(n + 1, n + 2, n)]. (C40)

One can check that the function in the n summation behaves
as O(n−2) or faster at large n, so we do not need the
cutoff for convergence. The ordinary paraconductivity σ1 here
reproduces the results derived in the previous work [44].

3. Effect of quartic term

Here, we consider the quartic term in GL free energy

F4 = b

2

∫
d2r |�|4. (C41)

We use the self-consistent harmonic approximation [45]

|�|4 = �∗�∗�� � 2〈|�|2〉|�|2. (C42)

Hence, the coefficient a is replaced by a′ = a + b〈|�|2〉. We
have the self-consistent equation to determine a′:

〈|�|2〉 = 1

�

∑
kn

〈|ckn|2〉 = m∗T
2π

Ec/ω∑
n=0

1

n + 1
2 + a+b〈|�|2〉

ω

.

(C43)
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FIG. 5. Magnetic field Bz dependence of the γ value from
paraconductivity. The unit for the magnetic field is B0 = m∗T0/|e∗|.
The parameters are chosen as a(T ) = 0.02(T − T0 ), bm∗ = 0.005,
and Ec = 4T0. Note that the normal conductivity is neglected.

Note that here we need the cutoff energy Ec ∼ T0 for conver-
gence, and have neglected the P-cubic term which is irrelevant
in the leading-order contribution for the equilibrium case. With
this consideration, the finite transition temperature in mean
field theory is washed away in the two-dimensional system
reflecting the Mermin-Wagner theorem.

Figure 5 shows the exemplary results for the magnetic
field dependence of γS(Bz) = σ2/σ

2
1 BzW which is normalized

by the value at Bz = 0. Above the mean field transition
temperature T0, the γ value decreases with increasing Bz, and
it becomes nearly half at high fields. On the contrary, below
T0, the γ value is small at low Bz and increases by applying
magnetic field. Although γS(Bz)/γS(0) goes to 1 at zero field,
the corresponding Bz range is so narrow that such regime (i.e.,
a′ � ω) cannot be seen practically. This is because the value
of a′ for T < T0 remains positive but is so tiny, and therefore
the behavior is very sensitive to the small value of Bz. We note
that in actual systems the component of normal conductivity
is also finite and modifies the γ value down to zero at high
magnetic fields.
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