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Optical conductivity of overdoped cuprate superconductors: Application to La2−xSrxCuO4
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We argue that recent measurements on both the superfluid density and the optical conductivity of high-quality
La2−xSrxCuO4 (LSCO) films can be understood almost entirely within the theory of disordered BCS d-wave
superconductors. The large scattering rates deduced from experiments are shown to arise predominantly from
weak scatterers, probably the Sr dopants out of the CuO2 plane, and correspond to a significant suppression of Tc

relative to a pure reference state with the same doping. Our results confirm the “conventional” viewpoint that the
overdoped side of the cuprate phase diagram can be viewed as approaching the BCS weak-coupling description
of the superconducting state, with significant many-body renormalization of the plasma frequency. They suggest
that, while some of the decrease in Tc with overdoping may be due to weakening of the pairing, disorder plays
an essential role.
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I. INTRODUCTION

The cuprate phase diagram has been the subject of con-
siderable controversy over the 30 years since the discovery
of high-Tc superconductivity [1]. Of the various exotic phases
observed, including pseudogap, charge order, etc., most are
located on the underdoped side. The d-wave superconducting
phase is thought to be the simplest to understand, particularly
on the overdoped side, where in many systems it exists
without obvious competing or coexisting orders of other
types. Recently, an experiment cast doubt on this simple
picture of a “garden variety” BCS d-wave superconductor.
Božović et al. [2] measured the superfluid density of a finely
spaced set of high-quality epitaxial grown films of overdoped
La2−xSrxCuO4, and showed that the superfluid density ρs and
the superconducting transition temperature Tc approached zero
together as a function of doping. This by itself contradicts BCS
theory, which predicts that the T = 0 superfluid density should
be simply the carrier density (in appropriate units) independent
of Tc in a clean system. In a dirty superconductor, the superfluid
density correlates with Tc [3–6], but the T dependence of the
penetration depth deduced from the measurements in Ref. [2]
is nearly linear down to the lowest temperatures, suggesting
that the films are in fact largely free of disorder. Under the
assumption that the systems are clean, Božović et al. [2]
concluded that the scaling of ρs with Tc implies a substantial
reduction in superfluid density relative to the nominal carrier
density, inconsistent with a BCS description.

Subsequently, two of the present authors, with J. S. Dodge,
analyzed the data of Ref. [2] and reached rather different
conclusions [7]. They pointed out that if the Sr dopants were
treated as weak (Born limit) scatterers, the lack of a T 2 term
in the penetration depth down to the lowest measurement
temperatures of Božović et al. could easily be understood.
It has been known for many years that in this limit, the

quasiparticle states near the d-wave nodes are broadened by
disorder, but that this broadening occurs significantly over an
energy range that is exponentially small in �N/�0, where �N is
the normal-state disorder scattering rate and �0 is the d-wave
gap maximum. For clean systems, states at energies greater
than this scale are largely unaffected, and the penetration depth
retains its linear dependence. Even for systems where �N/�0

becomes appreciable, however, the linear-T behavior occurs
over a surprisingly large range [7,8]. Band-structure effects
can also enhance this quasilinearity in the same intermediate
temperature range. It was shown in Ref. [7] that the data
could be fit extremely well over the entire range of doping
and temperature using a single choice of disorder parameters
and the known doping-dependent Fermi surface measured by
angle-resolved photoemission spectroscopy (ARPES) [9]. This
comparison is summarized in Fig. 1.

The most logical way to distinguish between the disorder
scenario of Ref. [7] and more exotic explanations is to measure
the spectral weight of the condensed and uncondensed carri-
ers directly using optical probes. Recently, Mahmood et al.
performed terahertz (THz) spectroscopy [10,11] on films very
similar to those used in the Božović et al. superfluid density
measurements [2]. As anticipated, they found that a significant
fraction of the carriers remains uncondensed in a broad Drude-
like peak at low temperatures. They showed consistency with
the earlier superfluid density measurements, but argued that the
broad uncondensed spectrum implied a quasiparticle scattering
rate too large to be consistent with the linear-T -penetration
depth observed. Mahmood et al. therefore concluded that their
results definitively ruled out a disorder-based explanation of
the overdoped data.

In this work, we reexamine the conductivity of a d-wave
superconductor in the presence of disorder with a view toward
refining the interpretation of the work of Mahmood et al. We
argue that the weak scattering limit used predominantly in
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FIG. 1. Comparison of superfluid density data (a) measured on
epitaxially grown La2−xSrxCuO4 thin films by Božović et al. [2] with
the (b) disorder-based theory of Lee-Hone et al. [7]. p is hole doping.
Impurity parameters from that paper, used to make the curves in (b),
are identical to one of the scenarios used in the current paper to study
the optical conductivity. Note both experimental data and theory are
plotted only down to Tmin ∼ 3 K; this obscures a slight curvature
below this scale in the theory.

Ref. [7] yields a self-energy that grows roughly with energy
up to a scale of �0 in the clean limit, becoming roughly
constant when the scattering rate is a significant fraction of
Tc0, the critical temperature of the pure system, but before
superconductivity is fully suppressed. This implies that the
conductivity spectrum has a Drude-like shape even in the
superconducting state, for reasonably dirty systems. This result
is qualitatively different from earlier works on the optical
properties of d-wave superconductors, which focused primar-
ily on underdoped to optimally doped systems where strong
in-plane defects dominated the scattering. Using exactly the
same model and parameters employed in Ref. [7] to describe
superfluid density, we obtain a qualitatively very reasonable
fit to the results of Mahmood et al. Nearly perfect fits can
be obtained with slight further fine-tuning. While for each
sample substantial pair-breaking is indeed involved, the Born
limit scattering rate parameter �N/Tc0 is still sufficiently small
compared to 1 so as to allow the near-linear T dependence of
the penetration depth in this limit. Our analysis thus implies
that a BCS-like disordered d-wave scenario can indeed explain
the unusual dependence of the superfluid density on Tc that is
observed, as well as the unexpected aspects of the measured
THz conductivity spectrum.

Our analysis has further implications for the phase diagram.
Taken at face value, our analysis suggests that the supercon-
ducting dome is suppressed at high doping in part due to
disorder, but also indicates the existence of a reference “pure”
Tc0 that is significantly higher than the observed Tc, implying
that such critical temperatures might be achieved if the given
doping level could be reached without potential scattering.
We discuss how Tc0 might depend on interactions, as well
as possible roles of spin fluctuation scattering and forward
scattering due to out-of-plane defects.

II. THEORY

Ideally, to discuss the physics of overdoped cuprates, one
should start from a microscopic Hamiltonian, find its (super-
conducting) ground state, calculate excitation spectra, Tc, and

other observables, and exhibit their dependence on doping.
A more limited yet still challenging approach would be to
derive an effective pairing interaction and solve the Eliashberg
equations [12] to obtain single-particle and anomalous self-
energies, then calculate the same properties. If one wants to
apply BCS theory to properties such as optical conductivity, as
we do here, one should then justify this from the appropriate
limit of the Eliashberg theory. Here we have no intention of
carrying through such an ambitious program, in part because
there is still no consensus on the microscopic description of
the underdoped to optimally doped cuprates, but also because
of well-known calculational difficulties in the intermediate- to
strong-coupling limit. These include the derivation of Eliash-
berg theory itself in the case of electronic pairing interactions
such as antiferromagnetic spin fluctuations [12–15], where
vertex corrections may not be a priori neglected.

We therefore proceed in a less ambitious fashion, simply
assuming that whatever the microscopic model, correlations
weaken sufficiently in the overdoped regime to allow applica-
bility of Fermi liquid and BCS theory, together with a standard
treatment of disorder. Of course such a picture can contain
strong Fermi liquid renormalizations, and we indeed find that
such corrections are required; the theory is similar to what
was referred to as “weak-coupling plus” in the 3He literature
[16]. We find that this approach fits experiment well, and the
reader may decide for him or herself whether this supports one
microscopic model or another.

A. Dirty d-wave superconductivity

The so-called “dirty d-wave” theory of cuprate supercon-
ductivity is a simple extension of the original field-theoretical
formulation of the theory of disordered superconductors by
Abrikosov and Gor’kov [17]. This theory was applied for the
first time to unconventional (nodal) superconductors indepen-
dently by Gor’kov and Kalugin [18] and by Rice and Ueda [19],
and extended to arbitrary impurity phase shifts by Hirschfeld
et al. [20] and Schmitt-Rink et al. [21]. Impurity effects on
the superfluid density of unconventional superconductors were
treated within the same formalism by Gross et al. [22] for
p-wave superconductors, and applied to d-wave systems by
Prohammer and Carbotte [23] and Hirschfeld and Goldenfeld
[24]. The latter work focused on strong scattering in an
attempt to explain Zn-substituted YBCO penetration depth
experiments by Bonn, Hardy, and co-workers that had made
the case for d-wave superconductivity in cuprates [25,26].
In the unitarity limit appropriate for the strong Zn scatterer
in the CuO2 plane, the linear density of states N (ω) ∼ ω in
the pure d-wave superconductor was found to give way to
a constant residual N (0) ∼ γ , leading to a T 2 term in the
penetration depth over a range of energies roughly equal to
γ . Above this range, in the unitarity limit, states are relatively
unaffected by disorder [24]. The success of this early work
has led to the impression that disorder always gives rise
to an immediate, strong asymptotic T 2 dependence in the
penetration depth at low temperatures. That this is not the case
in the weak scattering (Born) limit, at least in practical terms,
was noted by Hirschfeld et al. [27] and recently reemphasized
by Kogan et al. [8], and in a work by two of the current
authors [7].
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We begin with the Nambu space Green’s function for a dirty
d-wave superconductor, written as

G(k, iωn) = − iω̃nτ0 + �kτ1 + ξkτ3

ω̃2
n + �2

k + ξ 2
k

, (1)

where �k is the d-wave superconducting gap, ξk is the single-
particle dispersion relative to the Fermi level, τi are the Pauli
matrices, and ω̃n is a renormalized Matsubara frequency that, in
the self-consistent t-matrix approximation (SCTMA) [20,21],
follows

ω̃n ≡ ω̃(ωn) = ωn + i� (2)

= ωn + π�
〈Nk(ω̃n)〉FS

c2 + 〈Nk(ω̃n)〉2
FS

. (3)

Here the particular form of the self-energy � is for a single
type of scatterer characterized by parameters (�, c), where c

is the cotangent of the scattering phase shift, � is a scattering
parameter proportional to the concentration of impurities, and

Nk(ω̃n) = ω̃n√
ω̃2

n + �2
k

. (4)

We have used the definition 〈· · · 〉FS as a Fermi surface angular
average defined by

〈· · · 〉FS ≡ 1

N0

∫ 2π

0
Nφ (· · · )dφ, (5)

where

Nφ = 1

2π2h̄d

|kF |2
kF · vF

(6)

is the angle-resolved density of states on the Fermi surface,
N0 = ∫

Nφdφ is the integrated density of states (including both
spin channels), and d is the spacing of the two-dimensional
conducting layers, in La2−xSrxCuO4 taking the value
d = 13.15/2 = 6.57 Å. The Fermi wave vector, kF , and Fermi
velocity, vF , are both functions of φ, the momentum angle on
the Fermi surface.

In much of this paper, we will consider a specific, minimal
model that was found in Ref. [7] to explain the superfluid
density results well. It is assumed that scattering is determined
by a large concentration of Born scatterers (c � 1, presumably
the out-of-plane Sr dopants), and a small concentration of
unitarity scatterers (c = 0, possibly Cu vacancies). For this
model, the self-consistency condition reads

ω̃n = ωn + �B
N 〈Nk(ω̃n)〉FS + �U

N

〈Nk(ω̃n)〉FS
, (7)

with the scattering rate parameters taking on doping-
independent values of �U

N/π = 1 K and �B
N/π = 17 K, as

determined by the fit to superfluid density in Ref. [7], where
the same scattering rate was assumed to hold for all dopings,
thereby determining Tc0. In fact, we have no prediction of
the actual doping dependence, neither of �

B,U
N nor of Tc0. We

therefore consider other plausible scenarios to test how robust
the results from this simple constant-scattering-rate model
are. In particular, we explore the consequences of doping-
dependent disorder by allowing the concentration of Born
scatterers (but not unitarity scatterers) to vary with doping.

We implement this in two ways: via �B
N (p) chosen so that the

underlying Tc0 takes on a constant, doping-independent value,
and by allowing �B

N (p) to vary by a factor of 2 over the doping
range of interest. The three disorder models converge at the
overdoped critical doping.

Note that for a d-wave order parameter, which averages
to zero over the Fermi surface, there is no renormalization of
the gap �k by nonmagnetic pointlike scatterers. Impurities are
pair-breaking, however, and suppress the gap through the effect
of disorder on ω̃n in the gap equation,

�k = 2πT N0

ω0∑
ωn>0

〈
Vk,k′

�k′√
ω̃2

n + �2
k′

〉
FS

, (8)

where �k is the gap parameter at wave vector k,
ωn = 2πT (n + 1

2 ) are the fermionic Matsubara frequencies,
Vk,k′ is the pairing interaction, and ω0 is a high-energy
cutoff. This equation as �k → 0 determines the critical tem-
perature Tc, which is suppressed according to the universal
Abrikosov-Gor’kov formula [17] with a pair-breaking pa-
rameter twice the normal-state single-particle scattering rate,
�N = π�/(1 + c2).

For concreteness, in what follows we assume a separable
pairing interaction Vk,k′ = V0�k�k′ in the d-wave eigen-
function �k defined in the first Brillouin zone of the two-
dimensional CuO2 planes,

�k ∝ [cos(kxa) − cos(kya)], (9)

where a is the lattice spacing and �k is normalized such that
〈�2

k〉FS = 1.

B. Superfluid density

The superfluid density, ρs ≡ 1/λ2, and optical conductivity
are closely related, with the spectral weight available to form
the superfluid set by the normal-state conductivity, via the
Ferrell-Glover-Tinkham sum rule,∫ ωc

0
σ1(ω)dω = π

2 ε0ω
2
p. (10)

Here ωp is the in-plane plasma frequency of the conduction
electrons, with the cutoffωc chosen to capture the Drude weight
of the free carriers, leading to

ω2
p = e2N0

ε0

〈
v2

F,x

〉
FS. (11)

In the absence of disorder, the entire Drude weight would
condense to give a clean-limit zero-temperature superfluid
density

ρs00 ≡ 1

λ2
00

= μ0ε0ω
2
p. (12)

Interaction effects reduce the plasma frequency below its bare
value, and will be discussed later in the context of the cuprates.

Expressions for the penetration depth or superfluid density
of a d-wave superconductor in the presence of disorder have
been given in many places, and were specifically reviewed in
Ref. [7]. We assume, as in most of these works, that nonmag-
netic scatterers are pointlike so that impurity vertex corrections
to the current-current correlation function vanish [28].
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(a) (b) (c) (d)

FIG. 2. Predictions of dirty d-wave theory for the density of states N (ω) vs ω/�00, where �00 is the clean-limit, zero-temperature gap
magnitude. (a) Born limit scatterers, for various normal-state relaxation rates �N ; (b) unitarity limit scatterers; and (c) the mixture of Born and
unitarity scatterers discussed in Ref. [7]. (d) Variation of residual density of states with �N , proportional to impurity concentration, for the three
impurity cases.

Many references use a formulation that explicitly or implicitly
assumes a circular Fermi surface for a quasi-2D system such
as the cuprates. Here we work with a tight-binding model ap-
propriate for overdoped La2−xSrxCuO4 [9], which was shown
in Ref. [7] to be crucial to understanding the T dependence of
the superfluid density.

Within our model, where we linearize the electronic struc-
ture near the Fermi surface, the finite-temperature superfluid
density in the presence of disorder is given by

ρs (T ) = μ0e
22πT N0

∑
ωn>0

〈
v2

F,x

�2
k(

ω̃2
n + �2

k

) 3
2

〉
FS

. (13)

At T = 0, disorder suppresses ρs from the clean-limit value
ρs00. In Fig. 1, we have reproduced the results of Ref. [7]
based on Eqs. (7) and (13), and shown that the temperature
and doping dependence compares semiquantitatively with the
experimental results of Ref. [2].

C. Optical conductivity

We now proceed to calculate the real (dissipative) part of
the conductivity σ1(�) within the same framework. Again,
this has been done in many places earlier [27,29,30], so we

provide only the final expressions, which agree, e.g., with
Refs. [27,30]. We find

σ1(�) = −N0e
2

2�

∫ ∞

−∞
dω[f (ω) − f (ω + �)]

× 〈
v2

F,x Re{A++ − A+−}〉
FS, (14)

where

A+± = �2
k + ω̃+ω̃′

± + Q+Q′
±

Q+Q′±(Q+ + Q′±)
, (15)

ω± = ω ± iη, (16)

ω′
± = ω + � ± iη, (17)

Q± =
√

�2
k − ω̃2±, (18)

Q′
± =

√
�2

k − ω̃′2±, (19)

and the renormalized real axis frequencies are
ω̃±(ω) = ω̃n(iωn → ω ± iη). Here the branch cut for the
complex square-root function is the negative real axis. These
equations, taken together with the definitions of the renor-
malized frequencies (3), are sufficient to calculate the optical

(a) (b) (c) (d)

FIG. 3. Superconducting state scattering rate −2 Im�(ω) vs ω/�00 for various ratios �N/Tc0 in (a) the Born limit, (b) the unitarity limit,
and (c) the combination of the two as employed in Ref. [7]. (d) Residual scattering rate −2 Im�(ω = 0) vs �N/Tc0.
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(a) (b) (c)

FIG. 4. Schematic of the observed conductivity spectrum at low and high temperatures. (a) Unitarity limit disorder scattering plus strong
spin fluctuation scattering, as proposed for optimally doped cuprates [30]; (b) Born limit disorder scattering in the clean limit, assuming weak
spin fluctuation scattering (c); Born limit disorder scattering in the dirty limit, assuming weak spin fluctuation scattering. Note the absence of
a spectroscopic gap signature in the dirty limit.

conductivity at all frequencies and temperatures. In the normal-
state limit �k → 0, (14) reduces to the Drude conductivity

σ1N (�) = σN0

(
4�2

N

�2 + 4�2
N

)
, (20)

where σN0 is the dc conductivity e2N0〈v2
F,x〉FS/(2�N ).

III. RESULTS

A. Qualitative considerations

It is essential to appreciate the unusual and sometimes
counterintuitive effects of the different energy dependences
of the impurity scattering rate of the d-wave superconductor
in the Born and unitarity limits. In Figs. 2(a)–2(c), we illustrate
how the density of states varies with energy in the two limiting
cases, as well as a special mixture of the two that was found in
Ref. [7] to fit the superfluid density well.

It is well known that the residual density of states
N (ω → 0) scales as γ ∼ √

�N�0 in the unitarity limit, creat-
ing a plateau in N (ω) over a range of energies γ (the “impurity
band”), at the expense of the coherence peak. Relatively small
scattering rates �N are sufficient to strongly modify these
low-energy states. In the clean Born limit, on the other hand,
the corresponding density of states N (0) is also finite, but
scales with a γ that is exponentially small in �0/�N [27].
Since a scattering resonance is never produced in this limit,
all states are modified equally weakly, such that for a range
of small disorder, negligible effects are seen on one-particle
spectral quantities. In Fig. 2(d), we compare the dependence
of the residual DOS N (0) on �N , proportional to the impurity
concentration. From Figs. 2(a) and 2(d), it is clear that in the
Born limit the scattering rate must reach a very large fraction
of Tc0, i.e., a very large fraction of the critical rate to destroy
superconductivity altogether, before the density of states is
substantially modified over any significant range of energies.

To study the optical conductivity, it is even more important
to understand the differences in the energy dependences of

the scattering rate in the Born and unitarity limits, shown
in Figs. 3(a) and 3(b). It is easy to see from Eq. (3) that in
the unitarity limit c = 0, the scattering rate 1/τ ≡ 2 Im ω̃+
varies inversely proportional to N (ω) with the exception of
the impurity band region, where the 1/ω divergence is cut off
by self-consistency. On the other hand, 1/τ is proportional to
N (ω) in the Born limit, again cut off at the lowest energies,
but in a manner hardly visible in the clean limit. In the dirty
Born limit, the energy dependence of 1/τ becomes generally
smeared out over the entire energy range, a fact that will be
important for our analysis below.

The superfluid density (13) reflects the density of states
directly. In particular, the nonzero residual density of states
N (0) may be shown to lead directly to a T 2 term in the
penetration depth [22] at sufficiently low T . This is confined
to a temperature region of order T ∗ ∼ γ in the unitarity limit,
and if T ∗  �0 it is possible to observe a crossover linear-T
region as well [24]. It is sometimes assumed that the same
statement may be applied in the Born limit, with the only
difference being the much smaller γ . However, as is clear from
Fig. 2(a), in the Born limit there is no such separation of energy
scales, leading to a quasilinear T behavior in the penetration
depth over nearly the whole range, or, for sufficient disorder,
a T 2 behavior [7,8]. As emphasized in Ref. [7], the regime of
quasilinear T behavior in the intermediate T regime extends to
rather high disorder values for realistic band-structure models
appropriate for underdoped La2−xSrxCuO4.

From these considerations exhibited in Figs. 2 and 3, it is
possible to sketch the expected behavior in the conductivity
(Fig. 4). There are two additional factors that influence the
peculiar form of the spectrum in a cuprate d-wave supercon-
ductor, however. The first is the existence of a unique zero-
frequency, zero-temperature limit of σ1(�), the so-called “uni-
versal” d-wave conductivity σ00 ≡ e2N0v

2
F h̄/(2π�0), which

is, unlike a normal quasiparticle conductivity, finite in the
limit of vanishing disorder [31]. The expression for σ00 is not
strictly independent of disorder, since it depends on the gap
magnitude, which is itself suppressed within the present theory,
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such that σ00 is expected to increase slightly with the addition
of impurities. Furthermore, it is enhanced by impurity vertex
corrections if the impurity potential has nonzero range [32],
but these effects vanish in our model with pointlike scatterers.

The second effect that must be accounted for is inelastic
scattering of electrons by bosonic modes, e.g., spin fluctua-
tions. In fact, the results we will present below do not depend
on inelastic scattering by spin fluctuations, since for overdoped
samples these excitations are located at frequencies much
larger than the gap and outside the THz measurement range
of the experiments. We discuss the physics here briefly only to
explain to the reader the role they were thought to play in optical
spectra at optimal doping, so as to understand the change in
the form of the conductivity spectrum from the “conventional”
result, Fig. 4(a). The relaxation time of nodal quasiparticles that
dominate the conductivity at low frequencies may be shown to
vary as 1/τsf ∼ ω3 at T = 0 for ω  3�0 [33]. This behavior
of the relaxation time leads to a scenario for the shape of the
conductivity spectrum seen in optimally doped cuprates, as
discussed in Ref. [30]. The low-energy behavior is dominated
by disorder physics in the form of a relatively narrow residual
Drude component tied at T = 0 to σ00, while the higher-energy
physics (“midinfrared component”) arises from the crossover
between these low- and high-frequency inelastic-scattering
regimes, and is found to peak at 4�0 in weak-coupling theory
[34], or more generally at 2�0 + �0, where �0 is the frequency
of the pairing boson. This picture is sketched in Fig. 4(a),
and leads to the familiar low-T conductivity spectrum of
optimally doped cuprates, where spectral weight is lost at
finite frequencies relative to the normal state in an intermediate
frequency region between γ and 2�0 + �0. It should be noted
that there are other proposals for the origin of the midinfrared
peak, discussed in Ref. [35].

The implications of weak scattering for the conductivity
spectrum within this scenario have not been systematically
explored. In Figs. 4(b) and 4(c), we show what is anticipated
from the discussion of Figs. 2 and 3 for disorder scattering in
the Born limit. In the clean case, the conductivity must tend to
σ00 at low T , but the effect is essentially invisible due to the
exponentially small residual scattering γ . The disorder-limited
conductivity is then very small and flat out to high frequencies
[29]. We have depicted a situation in which spin fluctuation
scattering is weak, anticipating a loss of low-frequency spin
fluctuations in the overdoped cuprates under consideration.
Note that in this limit one expects the spectral weight loss
between T = Tc and T = 0 to be frequency-dependent, al-
though there is no well-defined region where it occurs, as in
the unitarity scattering case. In the dirty Born limit, on the other
hand, the spectrum is completely dominated by disorder. While
it must still approach the value σ00 as T ,� → 0, in absolute
units this value is larger due to the suppression of �0. There is
no well-defined residual Drude component, as all states over
a wide energy range are broadened [see Fig. 2(b)]. Because
the zero-temperature superfluid density is considered to be
strongly suppressed in this example, the T = 0 conductivity
should closely follow the normal-state spectrum. Again, we
have assumed in Fig. 3(c) that spin fluctuations are weak, and
may not play a major role.

B. Disorder-limited optical conductivity

We now present evaluations of Eq. (14) to illustrate ex-
plicitly the importance of the impurity phase shift to the
conductivity spectrum. Our specific goal is to compare the
predictions of the disorder-based model elaborated in Ref. [7],
and show that it explains semiquantitatively the results of
Mahmood et al. for the THz conductivity of overdoped
La2−xSrxCuO4. In Fig. 5, we plot the optical conductivity
in the normal state and at low temperatures, which should
be compared with the experimental data in Figs. 2(a)–2(c)
of Ref. [11]. Each column shows results for three different
dopings, corresponding to critical temperatures Tc = 27.5,
13.5, and 7 K. In the first column, the impurity parameters
and Tc0 are identical to those used in the minimal model of
Ref. [7]. In all cases, the normal-state curve has a pure Drude
form with physical scattering rate 2�N . In the dirty Born
limit represented here (with small unitarity limit corrections
that affect only the very-low-frequency range), the super-
conducting state conductivity spectrum is also surprisingly
Drude-like. The fact that spectral weight has indeed been lost
and condensed into a zero-energy δ function is clear in all cases
from the area between the normal-state and low-temperature
curves, but there is no sign of a well-defined low-energy
region where scattering states have been removed, as exhibited,
e.g., in the unitarity limit scenario in Fig. 4(a). As doping
increases, Tc0 decreases and the effect of disorder becomes
more pronounced, shifting more weight from the condensate
to the finite-frequency quasiparticle spectrum. Despite the
simplicity of the disorder-based model considered in Ref. [7],
the calculated conductivity shows semiquantitatively the same
behavior as the THz experiments. The only essential difference
is the decrease of the magnitude of the conductivity as the
system is overdoped, not captured here because a fixed disorder
strength has been used for all dopings [7]. Note as well that
there is no signature of the superconducting gap in either the
model or the experiment, despite the fact that the frequency
range covered (2 THz) corresponds to 100 K in temperature
units. This is a particular consequence of the d-wave order
parameter, for which disorder (especially in the dirty Born
limit) rapidly smoothes out sharp gap features in both the
density of states and conductivity, as shown in Figs. 2 and
4, respectively.

The doping dependence of the uncondensed dimensionless
spectral weight loss can now be easily calculated by integrating
Su = 2/(πε0ω

2
p )

∫ ∞
0 σ1(ω)dω. At the same time, the con-

densed spectral weight is obtained from the superfluid density
via Sδ = ρs (T )/(μ0ε0ω

2
p ), with the Ferrell-Glover-Tinkham

sum rule implying that Su + Sδ = 1 at any temperature. In
Fig. 6, we plot the components of the spectral weight as
a function of doping at T = 1.6 K, illustrating how the
condensed spectral weight indeed vanishes with doping, even
as the total carrier density (∼ω2

p ) in the model remains finite, a
signature of the disorder-dominated regime. In the same figure
are plotted the experimental data obtained by Mahmood et al.
by fitting a Drude form over the frequency range from 0.3
to 1.7 THz. It is easy to see that the model of fixed disorder
scattering rate �N considered in Ref. [7] (dotted lines) provides
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FIG. 5. Optical conductivity σ1(ν ) of overdoped La2−xSrxCuO4 calculated from Eq. (14), to be compared with Figs. 2(a)–2(c) of Ref. [11].
Each column shows normal-state (T = Tc, red) and low-temperature (T = 1.6 K, blue) results for three different dopings, corresponding to
critical temperatures Tc = 27.5, 13.5, and 7 K. The shaded areas in between show the spectral weight that condenses at low temperature to
form the superfluid. The calculated conductivities include a prefactor of 0.3 to accommodate the experimentally observed renormalization of
plasma frequency, as shown in Fig. 7. The unitarity limit scattering parameter is fixed at �U

N /π = 1 K in all cases. Three different scenarios
are presented for the doping dependence of the Born scatterers: first column: constant �B

N/π = 17 K, as in Ref. [7]; second column: �B
N (p)

adjusted such that Tc0 is doping independent; and third column: �B
N (p) increasing linearly in doping by a factor of 2 on passing from Tc = 27.5

to 7 K. Parameters for the three disorder models are plotted in Fig. 8, and have been formulated to converge on the strongly overdoped
side.

a very reasonable fit to the data except for the samples closest
to optimal doping, which we discuss further below.

IV. DISCUSSION

A. Renormalized plasma frequency

It is well known in interacting electron systems that plasma
frequency and Drude weight are reduced below the bare
values calculated from band theory [36–38]. This arises both
from many-body effects that locally flatten the dispersion
near the Fermi surface [39–41], simultaneously transferring
spectral weight to higher frequencies [38], and from Fermi-
liquid effects [22,32,42,43], in which residual quasiparticle
interactions induce a backflow that partially cancels the current
response. These effects can be accounted for by employing a
renormalized plasma frequency. To gauge the magnitude of
the renormalization in overdoped La2−xSrxCuO4, Fig. 7 plots
ω2

p calculated directly from the ARPES-derived tight-binding
energy dispersion (TB ω2

p) and compares it to fitted Drude
weights obtained from the THz experiments (expt. ω2

p ). The
calculated ω2

p is larger than the experimental value by a factor
of 3 to 4, consistent with previous work on the La2−xSrxCuO4

system [37]. Indeed, the authors of the ARPES study from
which the La2−xSrxCuO4 tight-binding band structure was
obtained [9] point out that their fitted tight-binding dispersion
does not capture the electron-phonon kink structure in εk that
appears near the Fermi energy [44]. The inset of Fig. 7 plots the
overall renormalization of the Drude weight, given by the ratio
of the experimental to tight-binding ω2

p. While some doping
dependence is apparent, for the purposes of our calculation we
simply assume the renormalization takes a doping independent
value of 0.3, and have applied this as a prefactor to the
conductivities in Fig. 5. In contrast, for the dimensionless
spectral weights plotted in Fig. 6, the renormalization of
plasma frequency cancels out, making this measurement a
particularly robust context in which to compare theory and
experiment.

B. Clean-limit critical temperature parameter Tc0

In this work, for simplicity, we have considered an idealized,
weak-coupling BCS theory. The model corresponds to a
situation in which the characteristic frequency of the exchange
bosons responsible for Cooper pairing, ω0, is much greater
than the superconducting transition temperature. This leads to
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FIG. 6. Dimensionless optical spectral weights calculated at
T = 1.6 K using the doping-dependent tight-binding parameters
discussed in Ref. [7] and the three disorder scenarios considered in
Fig. 5, compared with experiment. Su is the uncondensed spectral
weight from finite-frequency σ1(�); Sδ is the condensed spectral
weight in the superfluid; Sn is the normal-state spectral weight.
Solid circles: experimental data from Ref. [11] at the same temper-
ature, determined by Drude fits to σ1(�) over the frequency range
0.3–1.7 THz.

a pairing interaction that is roughly independent of frequency,
allowing the combined effects of coupling strength and boson
frequency to be captured by a single parameter, the notional
clean-limit transition temperature Tc0. Although it is beyond
the scope of this paper, a more realistic model, e.g., based
on spin fluctuations, would result in a boson spectrum spread
over a wide range of frequencies. As discussed in Ref. [45],
low-frequency boson spectral weight, at ω � T , gives rise
to inelastic electron-boson scattering, leading to significant
pair breaking in unconventional superconductors. Inelastic
scattering is known to be particularly strong in optimally doped
cuprates, and so in this regime we expect the Tc0 parameter of
the weak-coupling theory to substantially overestimate the Tc

of the hypothetical disorder-free reference material that might
be obtained, say, by gating.

There is one region of the phase diagram where the param-
eters of the weak-coupling model can be checked relatively
directly against experiment: near the overdoped critical point
at which Tc → 0. In the zero-temperature limit, inelastic
scattering is irrelevant and pair-breaking can be attributed
entirely to disorder. The measured transport scattering rate
τ−1

tr then places a lower bound on the single-particle elastic
scattering rate, τ−1

sp = 2 Im{ω̃+}, where in the normal state
Im{ω̃+} ≡ �N . In the THz conductivity study of Mahmood
et al. [11], the most overdoped sample (Tc = 7 K) has a normal-
state spectrum with Drude width 1.75 THz, corresponding
to �tr = 84 K in temperature units, placing a lower bound
on the normal-state scattering rate such that �N � 42 K.

FIG. 7. Plasma frequency of La2−xSrxCuO4. Solid curve (TB ω2
p)

shows the square of the plasma frequency calculated from the doping-
dependent tight-binding dispersion from Ref. [7]. Open circles are the
experimental ω2

p inferred from fitted normal-state Drude weights as
reported in the THz conductivity study of Ref. [11]. Inset: ratio of
experimental ω2

p to tight-binding ω2
p .

Equivalently, we can obtain a lower bound for the clean-limit
transition temperature by taking the Abrikosov-Gor’kov result
for the critical scattering rate of a weak-coupling d-wave super-
conductor, �c = 0.881Tc0, from which we infer Tc0 � 48 K.
Against these experimental bounds, the values assumed in our
weak-coupling model, �N =56.5 K and Tc0(p→pc ) = 64 K,
are not unreasonable.

C. Disorder dependence of Tc0 and �N

In Fig. 6, the small discrepancies for the more optimally
doped samples between experimental values of the uncon-
densed spectral weight compared to the solid line representing
the present theory may reflect one of two things: (a) these
samples are closer to the clean limit, meaning that the fit
performed on the experimental data over a limited intermediate
frequency range misses some weight at the lowest frequencies
by extrapolating the Drude form to dc [see, e.g., Fig. 4(b)]; or
(b) we have neglected the doping dependence of the scattering
rate in our minimal model (in the manner of Ref. [7]). The
actual sources of disorder and their scattering potentials are not
completely characterized, but it seems reasonable to assume
that the small number of unitarity scatterers are Cu vacancies,
and that the weak out-of-plane disorder is a combination of
Sr dopants, whose number is reasonably well known, and
O vacancies, whose number is poorly known. To give some
idea of the sensitivity of our results to differing assumptions
about these sources, we fix the number of unitarity scatterers
but consider two additional models where the Born limit
contribution, �B

N , varies with doping but is normalized to
converge to the same result as the Ref. [7] model at Tc = 0.
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FIG. 8. Upper panel: the three disorder scenarios considered in
Fig. 5: constant �B

N , as in Ref. [7]; �B
N , adjusted to give constant Tc0;

and �B
N , varying by a factor of 2 over the doping range of interest.

In all cases, the unitarity limit scattering parameter, �U
N , is fixed at

the same doping-independent value. Lower panel: superconducting
transition temperature, Tc, as a function of doping, along with the
implied doping dependence of Tc0 in the three scenarios.

In one, �B
N (p) increases linearly with doping by a factor of

2 over the relevant range, in rough correspondence to what
is observed in the terahertz experiments [11]; in the second,
we vary �B

N (p) so as to give a constant Tc0 versus hole doping.
The normal-state scattering rates for both the Born and unitarity
scatterers, along with Tc and Tc0, are plotted versus hole doping
in Fig. 8.

The values of Tc0 required to fit the experimental data in
the three models of doping dependence are all substantially
larger than Tc itself, so this qualitative feature of the weak-
coupling theory remains. It is interesting to note, however, that
the fit to the spectral weight loss in Fig. 6 improves markedly
in the near-optimally-doped samples when one includes the
doping dependence of scattering, and the correspondence with
the experimental conductivity spectra [i.e., the comparison of
columns 2 and 3 of Fig. 5 with Figs. 2(a)–2(c) of Ref. [11]] is
significantly improved. In fact, the lower scattering rate closer
to optimal doping suggests that cleaner samples may have a
weak low � residual Drude upturn below the experimental
observation window.

V. CONCLUSIONS

We have shown that a model of “dirty d-wave” supercon-
ductivity used to fit superfluid density data by Bozovic et al.
[2] on high-quality overdoped La2−xSrxCuO4 films is also

capable of fitting most features of the terahertz conductivity
measured on similar samples [11] with identical parameters.
This is surprising given that scattering rates deduced for these
films from Drude fits in the normal state appeared to be much
larger than Tc. The explanation for the excellent description
of two independent aspects of the electromagnetic response
requires two assumptions. First, we have postulated that the
intrinsic critical temperature in the absence of disorder is
substantially higher than Tc itself over the entire overdoped
range, and discussed why this may be reasonable. This ansatz
is indirectly supported, in fact, by the recent observation
of the persistence of strong magnetic fluctuations to high
doping in RIXS [46]. The effective “pure Tc0” if one goes
beyond BCS and includes inelastic scattering in the theory
may be substantially lower, but we do not expect that these
effects will alter our qualitative conclusion that disorder is
playing an essential role in current measurements of the
vanishing of Tc on the overdoped side of the cuprate phase
diagram.

The second crucial aspect of the theory that allows for
strong suppression of superfluid density, linear dependence of
superfluid density on Tc, and Drude-like conductivity spectra
at low temperatures is the unusual role of weak scattering. Here
we have explored the effect of Born scattering on the d-wave
conductivity in some detail, and tried to exhibit some of the
more salient qualitative aspects. A more complete theory of
the conductivity spectrum and the overdoped phase diagram
may require treatment of forward impurity scattering and a
more proper treatment of the dynamics of the pairing bosons.
The semiquantitative success of the present theory suggests
strongly, however, that exotic physics beyond Fermi liquid and
Eliashberg theory is probably not required to understand the
data.

We emphasize that the possibility of a “dirty d-wave”
explanation for the apparently surprising results of Bozovic
et al. [2] and Mahmood et al. [11] does not imply that
the overdoped state of the cuprates can be described by
a weakly interacting Fermi gas with a d-wave pairing in-
stability. While the dirty d-wave results fit the superfluid
density and conductivity data well, we have also shown that
a large renormalization of the plasma frequency by many-
body effects, consistent in magnitude with that reported by
other authors for this system, is required. Renormalizations
of similar magnitude have been reported for other cuprates
for some time [47]. A reliable theory of the cuprates, even
on the overdoped side of the phase diagram, must therefore
account simultaneously for these effects on a microscopic
basis.
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