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Josephson-effect diagnostic of competing orders in quantum critical multiband superconductors
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Motivated by the recent experimentally observed manifestations of the quantum critical point fluctuations in
the thermodynamic properties of multiband superconductors, we derive a general expression for the Josephson
current of various junctions between two superconductors in the phase of superconductivity coexistence with the
spin-density wave. We demonstrate that the critical current peaks at the quantum critical point that separates pure
and mixed superconducting phases. We argue that our results are generic and, in particular, can be adopted to
explain the recent observations of a nonmonotonic dependence of the supercurrent on the external pressure in
the heavy fermion superconductor CeRhIn5 and on the chemical doping in iron-based superconductors such as
Ba(Fe1−xCox )2As2.
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I. INTRODUCTION AND MOTIVATION

Competition of electronic pairing correlations in multiband
metals leads to a formation of different long-range orderings
most prominently in the form of superconductivity, itinerant
magnetism, and various possible forms of density waves. In
some instances these collective electronic phases may coexist
over the extended parts of the phase diagram. In particular,
despite being different at the microscopic level, cuprates, iron
pnictides, and heavy-fermion compounds exhibit qualitatively
similar global features at the level of phase diagram with dome-
shaped superconductivity as a function of an experimental
control parameter such as chemical doping or pressure (see
reviews [1–3] and references therein). In the context of iron
pnictides specifically, spin-density wave (SDW) can coexist
with superconductivity (SC) [4,5]. If the line of the SDW
transition extends all the way to zero temperature beneath the
line of superconducting state it could ultimately terminate at the
quantum critical point (QCP) [6]. This scenario is somewhat
complicated by the fact that SDW occurs in proximity to a
structural transition that also enters the superconducting dome.
The possibility of having multiple quantum critical points
surrounded by superconductivity was recently investigated
theoretically [7].

A magnetic QCP without superconductivity has been
extensively studied [8–10]. Quantum fluctuations near this
point are known to give rise to non-Fermi-liquid behavior
and to singularities in various electronic characteristics. SDW
instability inside the d-wave SC state has been analyzed in
Ref. [11] and was shown to lead to non-Fermi-liquid behavior
of nodal fermions. The observation of SC-SDW coexistence
in iron pnictides brought up the new issue of whether there
are electronic singularities at a magnetic QCP which de-
velops in the presence of an s±-wave order. This problem
attracted a great deal of interest recently. Measurements of
the London penetration depth in BaFe2(As1−xPx )2 [12,13]
and (Ba1−xKx )Fe2As2 [14] revealed a sharp peak feature near
the putative QCP at the optimal doping leading a flurry of

theoretical proposals to explain this effect [15–18]. Additional
evidence was also obtained from the subsequent specific-heat-
jump and de Haas-van Alphen effect experiments that point
towards strong increase in the quasiparticle mass at the QCP
[19]. The lower and upper superconducting critical fields were
also found to behave anomalously [20].

Since gapped SC state expels quasiparticle degrees of
freedom and makes it difficult to probe quantum critical
behavior of electronic response functions, the question arises of
whether a native observable to superconducting state, such as
supercurrent, can provide an effective diagnostic for competing
orders under superconducting dome. In this paper we give an
affirmative answer to that question. One of our main results
is that maximal current of the Josephson weak link between
two pnictide superconductors peaks at the QCP of optimal
doping and a similar peak occurs in the thermodynamic critical
current of a bulk sample. It is important to mention here
that the early works on Josephson currents in iron pnictides
focused primarily on the issues of phase-sensitive probe that
could reveal the pairing symmetry of the underlying order
parameter and elucidate the nature of the induced anomalous
proximity effect [21–36]. The emphasis of our work is on
the coexistence region, for which we derive several universal
Josephson current-phase relationships for contacts of different
types.

II. MICROSCOPIC MODEL AND PHASE DIAGRAM

To study the essential physics of the Josephson-effect probe
in the context of competing orders it will be sufficient to
adopt the simplest minimal two-band model for the inter-
play between itinerant SDW and s±-wave SC [4,5]. For that
purpose, we consider a circular hole pocket at the center of
the Brillouin zone and an electron pocket displaced from the
center by Q = (0, π ) [or (π, 0)]. We assume that chemical
doping acts as a source of disorder and induces both intra-
and interband scattering. In an effective low-energy theory
we account for particle-hole and particle-particle interaction
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channels with angle-independent couplings λsdw and λsc, and
high-energy cutoff �. We treat these interactions within a
mean-field approximation, by introducing SC and SDW order
parameters, � and M, respectively, and decomposing the
four-fermion interactions into effective quadratic terms via
Hubbard-Stratonvich transformation. For this model we derive
the Eilenberger equation for the semiclassical Green function
Ĝ which reads [37–39]

[iωnτ̂3ρ̂3σ̂0, Ĝ] − [Ĥ τ̂3ρ̂3σ̂0, Ĝ] − [�̂τ̂3ρ̂3σ̂0, Ĝ]

= ivF · ∇Ĝ, (1)

where ωn is the Matsubara frequency, vF is the Fermi velocity,
and brackets stand for commutators of matrices. The interac-
tion part of the mean-field Hamiltonian has the form

Ĥ = −�τ̂3ρ̂2σ̂2 + Mτ̂1ρ̂3σ̂3, (2)

which is written in the basis of two flavor of fermions

�p = (ĉ†p↑, ĉ
†
p↓, ĉ−p↑, ĉ−p↓, f̂

†
p↑, f̂

†
p↓, f̂−p↑, f̂−p↓) (3)

that correspond to electron and hole pockets of the two-band
model. Three sets of Pauli matrices {ρ̂i , σ̂i , τ̂i} are needed
to describe Gorkov-Nambu, spin, and band subspaces. The
expression for the disorder potential in this basis reads

Û (r ) =
∑

l

[U0τ̂0ρ̂3σ̂0 + Uπ τ̂1ρ̂3σ̂0]δ(r − Rl ), (4)

where summation goes over the impurities at random locations
Rl . The first term in this expression describes the scattering
within each band, while the second term scatters quasiparticles
between the two bands. The self-energy due to the scattering
of the quasiparticles on disorder potential can be found by the
standard methods of the many-body theory. At the level of
the self-consistent Born approximation we find the following
self-energy

�̂ = − i�0τ̂3ρ̂0σ̂0

∫
d�

4π
Ĝ(iωn, vF , r )τ̂0ρ̂3σ̂0

− i�π τ̂2ρ̂0σ̂0

∫
d�

4π
Ĝ(iωn, vF , r )τ̂1ρ̂3σ̂0, (5)

where �0 = πνF nimp|U0|2/4 and �π = πνF nimp|Uπ |2/4 are
the intraband and interband scattering rates that are propor-
tional to the impurity concentration nimp, the total quasiparticle
density of states at the Fermi energy νF , and strength of the
disorder potential U . The integration in Eq. (5) is performed
over the directions of the Fermi velocity. Without loss of
generality, we assumed in Eq. (2) M is along the z axis.
Finally, SC and SDW order parameters are subject to the
self-consistency equations

�

νF λsc
= 2πT

�∑
ωn

Tr[Ĝ(τ̂0 + τ̂3)ρ̂+σ̂+],

M

νF λsdw
= 2πT

�∑
ωn

Tr[Ĝτ̂+(ρ̂0 + ρ̂3)σ̂3], (6)

where we adopted the following notation σ̂+ = (σ̂1 + iσ̂2)/2.
By combining Eqs. (1) and (6) under assumption that all
quantities remain spatially homogeneous we reconstruct the

FIG. 1. Panel (a): The mean-field phase diagram for the two-band
model as a function of intraband and interband disorder with an
emphasis on the coexistence region. Inset shows the full expanded
phase diagram on a larger scale of doping. Panel (b): The dependence
of the superconducting and SDW order parameters on the intraband
disorder scattering rate.

temperature-intraband scattering rate (T ,�0) phase diagram
shown in Fig. 1(a) for a particular value of interband scattering
�π . The corresponding self-consistent order parameters are
shown in Fig. 1(b). The scale of plots is normalized to Tc0 =
1.13� exp[−2/(νF λsc)], which is the bare critical temperature
of SC state in the absence of disorder and SDW. TheTsc(M ) line
defines the part of superconducting dome that emerges from the
preexisting SDW order. The Tsdw(�) line separates mixed and
pure phases and terminates at the QCP for an optimal doping
level of �0/(2πTc0) ≈ 0.057. This model was successfully
used in the past to describe the main qualitative features of the
doping dependence for the specific heat jump [37], Knight shift
[38], enhancement of superconducting critical temperature by
disorder [40], and explain nonmonotonic behavior of the Lon-
don penetration depth [39]. The only drawback of the model
is that it yields a very narrow region of coexistences between
� and M in the parameter space set by �0,π , yet it captures the
main physics and is appealing because of its simplicity.
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III. JOSEPHSON CURRENT-PHASE RELATIONS
AND CRITICAL CURRENT

In what follows, we envision a Josephson junction made
of two FeSCs. We assume that the length L of the weak link
between them is small compared to both superconducting and
magnetic coherent lengths L � {vF /�, vF /M}. This limit
enables us to treat the junction as an effective multichan-
nel point contact with transmission eigenmodes labeled by
D ∈ [0, 1]. We consider a quasi-one-dimensional geometry
where all functions depend on a single coordinate x which
is a direction along the junction with the contact located at
x = 0. Lastly, it is important to keep in mind that within
the semiclassical formalism Eilenberger Green function must
satisfy a nonlinear boundary condition [41,42]:

Ĝa (0)
(
RĜ2

s+(0) + Ĝ2
s−(0)

) = DĜs−(0)Ĝs+(0), (7)

where Ĝs(a) = [Ĝ(iωn, vx, x) ± Ĝ(iωn,−vx, x)]/2,
Ĝs±(0) = [Ĝs (+0) ± Gs (−0)]/2, and R = 1 − D is
the reflection coefficient from the interface. Provided
that one knows the solution to Eq. (1) and is able to resolve the
nonlinear matrix constraint in Eq. (7), the current across the
junction can be expressed in terms of the Eilenberger function
as follows

J = eνF vF T
∑
ωn

∫ π
2

0
Im{Tr[τ̂0ρ̂3σ̂0Ĝa (iωn, vF sin φ, 0)]}

× sin φ
dφ

2π
. (8)

In realistic contacts scattering is rather described by a continu-
ous transmission distribution ρ(D) than by discrete transmis-
sion eigenvalues D. It is thus of practical importance to find an
averaged Josephson current. There are several generic contact
types that have been discussed in the literature in the context
of mesoscopic transport. Their distributions are described by
the function of the form

ρ(D) ∝ 1

Dα
√

1 − D
, α = 1/2, 1, 3/2. (9)

The case with the power exponent α = 1/2 corresponds to two
ballistic connectors with equal conductances in series [43]. The
case with α = 1 corresponds to a diffusive connector [44]. The
case with α = 3/2 describes an interface with a high density
of randomly distributed scatterers [45].

It is important to realize that Eq. (7) can be brought to
the form analogous to the circuit-theory boundary conditions
of Andreev refection [46]. Indeed, it can be shown that the
nonlinear boundary condition can be equivalently rewritten in
terms of the bounded quasiclassical functions Ĝ

r/l

b(
2 − D + D

2

{
Ĝr

b(0), Ĝl
b(0)

})
Ĝa (0) = D

2

[
Ĝr

b(0), Ĝl
b(0)

]
.

(10)

These functions from the left/right (l/r) side of the junction can
be computed separately by employing the method of finding the
auxiliary solutions to the quasiclassical equations (see Ref. [42]
for the detailed description of this method). The calculation is
tedious so we omit technical details and present only the final

result

Ĝ
r/l

b (0) = − 1

Enj

(ωnτ̂3ρ̂3σ̂0 + �j τ̂0ρ̂1σ̂2 + Mj τ̂2ρ̂0σ̂3), (11)

where �j and Mj for j = 1, 2 are SC and SDW order
parameters from the left/right side of the junction, and Enj =√

ω2
n + �2

j + M2
j . We use this expression in Eq. (10), compute

commutators, and take a trace to arrive at

Tr[τ̂0ρ̂3σ̂0Ĝa]

= 8iD�1�2 sin χ

(2 − D)En1En2 + D
(
ω2

n + M1M2 + �1�2 cos χ
) .

(12)

In this formula �j should be understood as absolute values
of the gaps whereas the global phase difference χ across
the junction was accounted explicitly. Equation (12) gives us
Josephson current-phase relation as defined by Eq. (8) and the
distribution function (9) allows us to find its average:

J (χ ) = 2πT

eRN

∑
ωn

�1�2 sin χ

En1En2

∫
Dρ(D)dD

(2 − D) + Dp(χ )
, (13)

where RN is the normal state resistance of the junction, χ is the
global phase difference of superconducting order parameters
across the junction, and the phase-dependent parameter is

p(χ ) = ω2
n + M1M2 + �1�2 cos χ√

ω2
n + M2

1 + �2
1

√
ω2

n + M2
2 + �2

2

. (14)

Integration over D can be completed in elementary functions
for all the cases under consideration. At zero temperature, the
remaining Matsubara sum can be converted into an integral,
2πT

∑
ωn

→ ∫
dω, that also can be computed analytically in

the case of a symmetric contact with identical order parameters
on both sides of the junction. For this case specifically we can
compactly write the current

J (χ ) = J0fα (χ,m) (15)

with m = M/�, J0 = cα�/eRN , the numerical coefficients
cα for α = 1/2, 1, 3/2 are all of the order of unity, and fα are
universal dimensionless functions whose explicit expressions
read

f3/2 = sin(χ )√
m2 + cos2(χ/2)

,

f1 = cos(χ/2)

√
m2 + 1

m2 + cos2(χ/2)

× arctan

(
sin(χ/2)

m2 + cos2(χ/2)

)
,

f1/2 = cot(χ/2)
√

m2 + 1

⎛
⎝

√
m2 + 1

m2 + cos2(χ/2)
− 1

⎞
⎠. (16)

The corresponding current-phase relationships are plotted
in Fig. 2. They display strong sensitivity to magnetic order
parameter and anharmonic nonsinusoidal behavior. The two
limiting cases of interest are weak and strong superconductivity
that correspond to looking at different parts of the phase

054501-3



MAXIM DZERO AND ALEX LEVCHENKO PHYSICAL REVIEW B 98, 054501 (2018)

FIG. 2. Josephson current-phase relationship for different m = {0.005, 0.05, 0.25, 0.5, 1, 2.5, 5} plotted from Eq. (15). Current is
normalized in units J0 = cα�/(eRN ). Left panel corresponds to α = 3/2, middle to α = 1, while the right panel corresponds to α = 1/2.

diagram [see Figs. 1(a) and 1(b)]. In the case when M � �,
which occurs close to the Tsc(M ) line of the phase diagram,
maximal Josephson current is suppressed, Jc ∝ �2/(eRNM ),
for all contact types discussed above. In the opposite limit,
� � M , that is relevant in the proximity to Tsdw(�) line
which separates mixed and pure phase, Josephson current
amplitude saturates to a maximum set by superconducting gap,
Jc ∝ �/eRN .

Our model allows us to study doping evolution of the
current across the entire range of parameters that define the
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FIG. 3. Panel (a): critical current as a function of the intraband
scattering rate for a fixed ratio �π/�0. Panel (b): contour plot of the
critical current (arb. units) as a function of �π/�0 and �0.

phase diagram. The results are shown in Fig. 3. The initial
sharp increase of the current on panel (a) corresponds to
the regime when magnetic order is suppressed quicker by
disorder than superconducting order. This happens because
M is sensitive to the total scattering rate �0 + �π , whereas
superconducting order is suppressed by interband scattering
only. Such a steep dependence is, however, an artifact of the
model where coexistence region is very narrow. Nevertheless it
captures the main effect that current peaks at the optimal doping
that sets the critical point beneath the dome. In the overdoped
regime current amplitude gradually decays as superconducting
order parameter bends to zero [see Fig. 1], which happens pro-
gressively quicker for higher values of interband scattering �π

that acts as an effective pair breaking for s± superconducting
state.

The general formula in Eq. (13) also enables us to study
the temperature dependence of the critical current. This com-
putation has to be done numerically as temperature enters
directly in the Matsubara sum and also via the order parameters
as determined by self-consistency equations. From the plots
presented in Fig. 4 it becomes clear that current is primarily
determined by the temperature dependence of the gap which
manifests by a rapid saturation of the current in the low
temperature range.

FIG. 4. Temperature dependence for the critical current in the
model of the contact when α = 3/2. The scale of temperature is
normalized to Tc0 and scattering parameters �0,π for all three curves
are chosen to lie inside the coexistence region.
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IV. DISCUSSIONS AND OUTLOOK

We presented results for the critical Josephson current and
current-phase relationship of pnictide superconductor junc-
tions with the focus on the coexistence region of superconduct-
ing and spin-density wave order. We studied several types of
junctions and used generic circuit-theory boundary conditions
within the underlying semiclassical Eilenberger approach. Our
main result concerns the doping dependence of the maximal
attainable current that exhibits a peak that is correlated with the
location of the quantum critical point hidden under the dome
of superconductivity. This makes Josephson-effect response
to be an effective diagnostic of competing orders in addition
to experimental techniques that exploit measurements of the
magnetic penetration depth at low temperatures.

A few comments are in order in relation to the results
we presented in this paper. We performed calculations at the
mean field level and the peak of the critical current has a
cusp dependence at its maximum (see Fig. 3). The account for
magnetic quantum fluctuations near the critical point will likely
smear this feature but it remains to be verified with the explicit
computation. In addition, this model can be generalized to
include nodes of the superconducting order parameter. This
effect will be important to understand how critical current
scales with temperature and along Tsdw(�) second-order phase
transition boundary in particular. We expect that the peak
of Jc is pinned to the Tsdw(�) line beneath the dome of
superconductivity.

We also comment on the relevance of our theory to recent
experiments and directions for further developments. The
results presented in this work are perhaps the most rele-
vant in the context of thermodynamic Jc measurements in
Ba(Fe1−xCox )2As2 [47]. It is known that cobalt substitution
adds appreciable amount of scattering so the application of
the model when doping acts as a source of disorder is natural.
Experiment shows that magnitude of Jc significantly changes
with x, exhibiting a sharp maximum at x ∼ 0.057, which is a
slightly underdoped composition for Co-Ba122 that marks the
onset of the coexistence between the itinerant antiferromag-
netic and superconducting phases. This behavior is consistent
with predictions of the model that we explored in this paper.
In addition, it has been demonstrated that under controlled
electron irradiation that adds nonmagnetic point defects, the
topology of the superconducting gap in BaFe2(As1−xPx )2

changes from being nodal to gapped and back to nodal but
of the other symmetry [48]. The results were interpreted from
the analysis of the low-temperature scaling of the London
penetration depth. Our theory can be fruitful to address and
model this peculiar behavior. As Josephson effect provides a
natural phase-sensitive probe it will be of interest to investigate
behavior of the critical current for various possible symmetries
of the order parameters and different contact types.

Thermodynamic critical current has been recently mea-
sured in the bulk sample of CeRhIn5 [49] and in films of

YBa2Cu3O7−δ as well as other high-Tc superconductors [50].
In the heavy-fermion case Jc peaks at the critical pressure
where antiferromagnetic line ends inside superconducting
dome. In the cuprate case, Jc peaks on a critical hole dop-
ing where the pseudogap boundary line projects to T = 0.
Obviously these critical currents differ from the maxim current
of the weak link in a Josephson junction, yet we argue that
all of them will exhibit the same feature of having a peak
at the optimal value of the control parameter that separates
SC and the mixed phase with other competing order. This
can be understood in our model as well in the context of
FeSCs. Indeed, for simplicity of argument consider a part of
the phase diagram in the proximity to Tsc(M ). Near that line SC
order parameter is small, and Ginzburg-Landau expansion is
justified. The difference to a conventional case is that quadratic
and quartic coefficients of this expansion in powers of � will
vary strongly with M as SC emerges from preexisting magnetic
state. Then one can consider a supercurrent carrying state and
follow the textbook procedure [51] to find critical current. The
results will exhibit a sharp rise of Jc when doping is varied
towards the tetracritical point of the phase diagram since M

is diminished, followed by a decay when superconductivity
is extinguished at higher dopings. We thus take a point of
view that peak effect in the supercurrents near critical point
is a generic property of a wide class of quantum critical
superconductors.

As a concluding remark we wish to mention that it is
of conceptual theoretical interest to study hybrid circuits of
FeSCs with inhomogeneous doping where an optimally doped
superconducting film of iron pnictide is proximitized on the
surface of a parent material that is in a magnetic SDW phase. In
this multilayered structure a proximity induced superconduc-
tivity may develop in a nonsuperconducting part of the device.
Conversely, an inverse proximity effect is possible where SDW
order may penetrate inside the superconducting part of the de-
vice. The system is rather unique, as the use of the same parent
compound with different doping should form a nearly perfect
interface between superconducting and magnetic phases. The
extended Eilenberger formalism developed in this paper is
exactly tailored to tackle such problems and should generate
further developments and applications.
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