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J̃-pseudospin states and the crystal field of cubic systems
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The theory of J̃ pseudospin for the f element in a cubic environment is developed. By fulfilling the symmetry
requirements and the adiabatic connection to the atomic limit, the crystal-field states are uniquely transformed
into J̃ -pseudospin states. In terms of the pseudospin operators, both the total angular momentum and the
crystal-field Hamiltonian contain higher-rank tensor terms than the traditional ones do, which means the present
framework naturally includes effects such as covalency and J mixing beyond the f -shell model. Combining the
developed theory with ab initio calculations, the J̃ -pseudospin states for Nd3+ and Np4+ ions in octahedral sites
of insulators are derived.
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I. INTRODUCTION

Crystal-field theory [1] has been widely used for the in-
vestigation of the electronic, magnetic, and optical properties
of metal ions in complexes and solids [2,3], and it is still
intensively used [4–7]. Although the traditional electrostatic
approach seems to provide the basic character of the elec-
tronic structures, as is well known, it does not take account
of various effects such as covalency [8,9], J mixing [3],
and shielding [10]. To address accurately the properties of
electronic states in metal ions, state-of-the-art ab initio quan-
tum chemistry methodology, including covalency, electron
correlation, spin-orbit coupling, and other relativistic effects
is nowadays an alternative popular approach. Indeed, recently
post–Hartree-Fock methods are starting to be applied to the
study of strongly correlated materials containing heavy d

elements [11,12]. A common problem of ab initio approaches
is that the computed electronic states do not directly provide a
clear physical picture. For example, in the case of magnetic
systems, they are characterized in terms of a pseudospin
Hamiltonian [2]. While the ab initio states must contain all
necessary information, it is not a priori clear how to extract
the pseudospin Hamiltonians on their basis.

This issue has been recently addressed, and general prin-
ciples for the derivation of the uniquely defined pseudospin
Hamiltonian from ab initio calculated electronic states was
proposed [13–15]: the principles consist of (1) symmetry
requirements and (2) adiabatic connection to the well-defined
limiting cases. N low-energy electronic states are selected for
the description of low-energy phenomena, the S̃-pseudospin
states (N = 2S̃ + 1) are derived by a unitary transformation of
these electronic states, and then the pseudospin Hamiltonian
is derived using the obtained pseudospin states. The unitary
matrix should be uniquely determined based on these princi-
ples. There is no difficulty for the unique definition of small

*naoya.iwahara@gmail.com
†liviu.chibotaru@gmail.com

pseudospins (S̃ = 1/2 and 1). Indeed, when only the small
pseudospins are relevant, by combining the theoretical frame-
work with ab initio calculations, various magnetic properties
of metal complexes have been explained [16,17] and predicted
[18,19]. On the other hand, the derivation of large pseudospin
S̃ � 3/2, which is relevant to, e.g., J̃ pseudospin for the
crystal-field states of f elements, remains under development
[20,21] because a practical algorithm to determine a large
number of the unitary matrix elements (≈N2/2) fulfilling both
requirements is not obvious.

In this work, we develop the methodology to uniquely
transform the crystal-field states of f elements in cubic envi-
ronment into the J̃ -pseudospin states satisfying the symmetry
requirements and the adiabatic connection between the J̃ -
pseudospin states and the corresponding atomic J multiplet.
The present J̃ -pseudospin states naturally include the effects
beyond the traditional crystal-field model based on isolated
f orbitals, resulting in the presence of the higher-rank tensor
terms in total angular momentum and crystal-field Hamilto-
nian than in conventional approaches based on the atomic J

multiplet. The developed theory is applied to Nd3+ and Np4+

ions in a cubic environment.

II. UNIQUE DEFINITION OF PSEUDOSPIN

For a description of the local electronic structure and
properties of magnetic ions, phenomenological pseudospin
Hamiltonians are often employed [2,22]. The pseudospin
Hamiltonian acts on the abstract pseudospin states |S̃M〉
(M = −S̃,−S̃ + 1, . . . , S̃), and its eigenstates describe the
low-energy states. On the other hand, if the exact electronic
states responsible for the low-energy phenomena of interest
are given,

H = {|�i〉|i = 1, 2, . . . , N}, (1)

the pseudospin states |S̃M〉 should be obtainable directly from
this set of states. However, the relation between them is not
a priori evident. This problem has been recently addressed
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TABLE I. The relation between J , its decomposition into � irreducible representations of cubic group G (= O, Oh, Td ), and crystal-field
parameters Bk in a cubic environment. f ions (Ln: lanthanide, Ac: actinide [26]) whose ground atomic multiplets are characterized by J are
also shown. Parity (g or u) is not shown.

J f n Ln Ac J ↓ G Bk

0 �1 –
1 �4 –
2 �3 ⊕ �5 B4

3 �2 ⊕ �4 ⊕ �5 B4, B6

4 f 2, f 4 Pr3+, Pm3+ U4+, Np3/5+, Pu4/6+ �1 ⊕ �3 ⊕ �4 ⊕ �5 B4, B6, B8

5 �3 ⊕ 2�4 ⊕ �5 B4, B6, B8, B10

6 f 8, f 12 Tb3+, Tm3+ Bk3+, Cf4+ �1 ⊕ �2 ⊕ �3 ⊕ �4 ⊕ 2�5 B4, B6, B8, B10, B12

7 �2 ⊕ �3 ⊕ 2�4 ⊕ 2�5 B4, B6, B8, B10, B12, B14

8 f 10 Ho3+ Es3+ �1 ⊕ 2�3 ⊕ 2�4 ⊕ 2�5 B4, B6, B8, B10, B12, B14, B16

1/2 �6 –
3/2 �8 –
5/2 f 1, f 5 Ce3+, Sm3+, Pr4+ Pa4+, U5+, Pu3+, Am4+ �7 ⊕ �8 B4

7/2 f 13 Yb3+ �6 ⊕ �7 ⊕ �8 B4, B6

9/2 f 3 Nd3+ U3+, Np4+, Pu5+ �6 ⊕ 2�8 B4, B6, B8

11/2 �6 ⊕ �7 ⊕ 2�8 B4, B6, B8, B10

13/2 �6 ⊕ 2�7 ⊕ 2�8 B4, B6, B8, B10, B12

15/2 f 9, f 11 Dy3+, Er3+ Cf3+, Es2+ �6 ⊕ �7 ⊕ 3�8 B4, B6, B8, B10, B12, B14

by some of us and the methodology to uniquely define the
pseudospin states was proposed [13–15].

The pseudospin states may be obtained by unitary transfor-
mation of the electronic states |�i〉:

|S̃M〉 =
N∑

i=1

UiM |�i〉, (2)

where UiM are elements of a unitary matrix U and N = 2S̃ +
1. Once pseudospin states are established, the pseudospin
operators such as

S̃z =
S̃∑

M=−S̃

M|S̃M〉〈S̃M|

and irreducible tensor operators Ykq (S̃) can be assigned in
their basis, where k and q indicate the rank and the compo-
nent of the tensor, respectively. Nevertheless, for an arbitrary
choice of U , the obtained operators S̃ would not behave as
expected for the phenomenological effective spin under sym-
metry operations, and the obtained pseudospin Hamiltonian
will also differ from the phenomenological one. In order to
choose adequate unitary transformation U in Eq. (2), two
requirements (principles) are employed [13–15]:

(1) The pseudospin states |S̃M〉 transform as the true
spin states |SM〉 (S = S̃) under the time-reversal and spatial
symmetry operations.

(2) The pseudospin states are adiabatically connected to
the well-defined pure-spin/orbital/total angular momentum
states.

The first principle simply requires the pseudospin states
to be consistent with the symmetries of the system [2,23].
The second principle requires the existence of the one-to-one
correspondence between the pseudospin and a well-defined
pure spin. This correspondence is established by adiabatically
turning on the interaction which only exists in the materials

[13,15]. The latter may include covalency, spin-orbit coupling,
and deformation of the environment, depending on the choice
of the reference situation. Such an adiabatic connection is
used in various fields of condensed matter physics to char-
acterize the systems [24,25].

The proposed principles state the requirements for the
unique definition of pseudospins, while they do not provide
the practical way to achieve it. In practice, low-dimensional
pseudospins (S̃ = 1/2, 1) can be uniquely defined by iden-
tifying their states with the Zeeman states along one of the
principal magnetic axes of the system [14,15]. These pseu-
dospin states automatically obey the symmetry requirements
of principle 1. On the other hand, the unique definition of
larger pseudospin S̃ � 3/2 is technically more difficult than
that of small pseudospins due to the quadratically increas-
ing number of free parameters (∝N2) defining the unitary
transformation U in Eq. (2) [15]. If as in the small pseu-
dospins, the eigenstates of the magnetic moment μ̂Z along
the principal magnetic axis Z are taken as pseudospin states
[20], the spatial symmetry requirement may not be completely
fulfilled. For example, the crystal-field states of a Kramers
ion in a cubic environment may contain fourfold-degenerate
�8 states (Table I), whereas the eigenstates of μ̂Z never do
so because they satisfy at most a tetragonal symmetry under
Zeeman splitting. Although the definition of the pseudospins
via eigenstates of μ̂Z is one of the possible choices, the
obtained Hamiltonian will not have a priori the expected
form for a cubic system. Another issue is the requirement
of the adiabatic connection: in principle this can be satisfied
by defining the pseudospin by several consecutive ab initio
calculations in which some controlling parameters are varied
(see Ref. [13] and Sec. VI in Ref. [15]). It is evident that such a
brute force approach is far from practical for most systems of
interest. Towards the establishment of the practical scheme to
determine large pseudospins, the theory of the J̃ pseudospin
in a cubic environment is developed below.
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III. PSEUDOSPIN IN A CUBIC ENVIRONMENT

The low-energy crystal-field states of f elements mainly
originate from the ground atomic J multiplet [2]. Thus,
the crystal-field Hamiltonian is described in terms of J̃ -
pseudospin operators. Here, the algorithm to derive the J̃ -
pseudospin crystal-field Hamiltonian in an octahedral envi-
ronment from the crystal-field states is shown, taking J̃ = 9/2
pseudospins as an example because the latter is the simplest
nontrivial case where both requirements in Sec. II have to be
fully taken into account. Other cases can be done using the
formulas in Appendix A. The developed method is applied to
derive the crystal-field Hamiltonian of Nd3+ (4f 3) and Np4+

(5f 3) ions in an octahedral environment.

A. � pseudospin

In an octahedral (O or Oh) environment, the ground atomic
J = 9/2 multiplets split into two sets of fourfold-degenerate
�8 multiplets and one �6 Kramers doublet (Table I). Since
the �8 and �6 states, respectively, transform as S = 3/2 and
S = 1/2 spin states under the symmetry operations of the
Oh group [27], each of the multiplets can be unambiguously
transformed into a �-pseudospin state by requirement 1 (H
corresponds to a set of degenerate � states) [15,21]. Hereafter,
the three C4 axes of the cubic environment correspond to the
x, y, z axes (right-handed coordinate system), the z axis is
taken as the quantization axis of the angular momentum, and
the basis of the irreducible representations given in Ref. [27]
is used. Using the generators of the rotational symmetry
operations of the Oh group, for example, π/2 rotations around
the y and z axes (Ĉy

4 and Ĉz
4), the � multiplets are transformed

as, respectively,

Ĉ
y

4 |�M〉 =
∑
M ′

dS̃
M ′M

(
π

2

)
|�M ′〉 (3)

and

Ĉz
4|�M〉 = e−i π

2 M |�M〉. (4)

Here, S̃ = 1/2 for � = �6, S̃ = 3/2 for � = �8, M,M ′ =
−S̃,−S̃ + 1, ..., S̃, and dS̃

M ′M is the rotation matrix around the
y axis (Wigner D function) [28]. The relative phase factors
between |�M〉’s are fixed by using time-reversal symmetry
[2,27,29]:

θ̂ |�M〉 = (−1)S̃−M |�,−M〉, (5)

where θ̂ is the time-reversal operator. A similar consideration
holds for a Td system by replacing C4 with S4.

B. J̃ pseudospin

The J̃ -pseudospin states are described by linear com-
binations of the �-pseudospin states [H = {|�M〉|� =
�6,�

(1)
8 ,�

(2)
8 }]:

|J̃M〉 =
∑
μ�M ′

U�(μ)M ′,J̃M |�(μ)M ′〉, (6)

where the index μ distinguishes the repeated � multiplets
(two �8 states in the present case) and U�(μ)M,J̃M are coeffi-
cients. The latter are restricted by the first requirement. |J̃M〉
with M = ∓7/2,±1/2,±9/2 transforms as |�,±1/2〉 under
the Cz

4 rotation. The relation between the |J̃ ,M〉 states and
|�6,±1/2〉 states is unambiguously given by taking account
of the transformations under C

y

4 rotation. On the other hand,
the relation between the |J̃M〉 and two |�8 ± 1/2〉 states is
given up to the arbitrary mixing (rotation) of the two �8 states
described by one angle α. Finally, making use of the compo-
nents of |�8,±3/2〉 appearing in Ĉ

y

4 |�8,±1/2〉, the unitary
matrix U in Eq. (6) is determined up to angle α. The obtained
J̃ = 9/2 pseudospin states are

∣∣∣∣J̃ ,∓9

2
(α)

〉
= 1

2

√
3

2

∣∣∣∣�6,∓1

2

〉
∓ 1

2

√
5

2

[
cos α

∣∣∣∣�(1)
8 ,∓1

2

〉
− sin α

∣∣∣∣�(2)
8 ,∓1

2

〉]
,

∣∣∣∣J̃ ,∓7

2
(α)

〉
= 1

2
√

6

∣∣∣∣�6,±1

2

〉
± 1

2

√
23

6

[
sin(α + φ1)

∣∣∣∣�(1)
8 ,±1

2

〉
− cos(α + φ1)

∣∣∣∣�(2)
8 ,±1

2

〉]
,

∣∣∣∣J̃ ,∓5

2
(α)

〉
= ±

[
sin(α + φ2)

∣∣∣∣�(1)
8 ,±3

2

〉
+ cos(α + φ2)

∣∣∣∣�(2)
8 ,±3

2

〉]
, (7)

∣∣∣∣J̃ ,∓3

2
(α)

〉
= ±

[
− cos(α + φ2)

∣∣∣∣�(1)
8 ,∓3

2

〉
+ sin(α + φ2)

∣∣∣∣�(2)
8 ,∓3

2

〉]
,

∣∣∣∣J̃ ,∓1

2
(α)

〉
= 1

2

√
7

3

∣∣∣∣�6,∓1

2

〉
± 1

2

√
5

3

[
sin(α + φ3)

∣∣∣∣�(1)
8 ,∓1

2

〉
+ cos(α + φ3)

∣∣∣∣�(2)
8 ,∓1

2

〉]
,

where φ1 = arccos
√

3/115, φ2 = arccos
√

7/10, and φ3 =
arccos(2/5). The phase factors of the J̃ -pseudospin states
are determined to satisfy θ̂ |J̃M〉 = (−1)J̃−M |J̃ ,−M〉 under
time inversion as in Eq. (5) for �-pseudospin states. (See
Ref. [29] for the phase factors and time-reversal symmetry.)

The angle α is explicitly present in the left-hand sides of
Eq. (7) because it is not fixed yet. In addition to α, there are
two possibilities for the assignment of two �8 states in H. By
similar procedures, all the important cases for f elements can
be derived (see Appendix A).
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Using the pseudospin states (7), we can define the irre-
ducible tensor operators (Appendix B)

Ykq ( J̃ (α)) = Ykq ( J̃ (α))

Yk0(J̃ )

=
∑
M,M ′

〈(J̃ k)J̃M ′|J̃Mkq〉
〈(J̃ k)J̃ J̃ |J̃ J̃ k0〉 |J̃M ′(α)〉〈J̃M (α)|.

(8)

Here, J̃ is the J̃ -pseudospin operator, Ykq ( J̃ ) is the irre-
ducible tensor operator of rank k (k = 0, 1, ..., 2J̃ ) and argu-
ment q (q = −k,−k + 1, ..., k), Yk0(J̃ ) = 〈J̃ J̃ |Yk0( J̃ )|J̃ J̃ 〉,
and 〈(j1j2)jm|j1m1j2m2〉 are Clebsch-Gordan coefficients
[28]. The tensor operator behaves as a pseudospin state |J̃ =
k,M = q〉 under time inversion, Ykq → (−1)k−qYk,−q . Any
electronic operators acting on the crystal-field states in H can
be decomposed into Ykq’s (see Appendix B).

For the unique definition of J̃ pseudospin, the variable α

in Eq. (7) has to be fixed. To this end, the second principle is
used. The J̃ -pseudospin states (7) and thus J̃ have to converge
to the atomic J multiplet and pure total angular momentum Ĵ ,
respectively, by adiabatically reducing the interactions with

the environment. This is achieved by choosing α so that the
first-rank parameter of Ĵz, j10(α), becomes the largest:

Ĵz =
2J̃∑
k=1

k∑
q=−k

jkq (α)Ykq ( J̃ (α)). (9)

In general, j10 < J̃ because the degree of the mixing of
the atomic J multiplets |JM〉 to the crystal-field states |�i〉
depends on M owing to, e.g., the covalency and J mixing.
Substituting α0 which maximizes j10(α) into Eq. (7), the J̃ -
pseudospin states are uniquely defined. In this procedure, all
possible assignments of �8 crystal-field levels to �

(1)
8 and �

(2)
8

in Eq. (6) also have to be examined. If another angle α such as
the one at the other extremum is chosen, J̃ does not converge
to Ĵ in the atomic limit (see Sec. III C 2) because such a choice
makes |J̃M (α)〉 dissimilar from |JM〉. The same procedure
uniquely defines J̃ � 9/2, whereas the J̃ < 9/2 pseudospin
states are uniquely defined by symmetry.

With the use of the Ykq ( J̃ (α0)), the crystal-field Hamilto-
nian Ĥcf = ∑

μ�M E
(μ)
� |�(μ)M〉〈�(μ)M| is expressed as (see

Appendix C)

Ĥcf = B0 + B4

⎛
⎝Y40 +

∑
q=±4

√
5

14
Y4q

⎞
⎠ + B6

⎛
⎝Y60 −

∑
q=±4

√
7

2
Y6q

⎞
⎠ + B8

⎛
⎝Y80 +

∑
q=±4

1

3

√
14

11
Y8q +

∑
q=±8

1

3

√
65

22
Y8q

⎞
⎠, (10)

where Ykq ( J̃ (α0)) is replaced by Ykq for simplicity, and Bk are calculated as

B0 = 1

10

[
2E�6 + 4

(
E

(1)
�8

+ E
(2)
�8

)]
,

B4 = 3

1430

[
49

(
2E�6 − E

(1)
�8

− E
(2)
�8

) + (133 cos 2α0 − 4
√

21 sin 2α0)
(
E

(1)
�8

− E
(2)
�8

)]
,

(11)

B6 = 1

220

[ − 4
(
2E�6 − E

(1)
�8

− E
(2)
�8

) + (8 cos 2α0 +
√

21 sin 2α0)
(
E

(1)
�8

− E
(2)
�8

)]
,

B8 = 1

1040

[
3
(
2E�6 − E

(1)
�8

− E
(2)
�8

) + (−3 cos 2α0 + 4
√

21 sin 2α0)
(
E

(1)
�8

− E
(2)
�8

)]
.

Contrary to the conventional crystal-field Hamiltonian con-
taining only fourth- and sixth-rank terms [30], the present
one contains up to eighth-rank terms (in general up to rank
k � 2J̃ ). The conventional form is recovered by imposing
the constraint that all local crystal-field levels arise from the
atomic f shell.

The proposed algorithm for the unique definition of J̃ -
pseudospin states in a cubic environment is summarized as
follows:

(1) Express J̃ -pseudospin states |J̃M〉 using Eq. (7) or the
corresponding formulas in Appendix A.

(2) Maximize the first-rank parameter j10 of Ĵz (9) with
respect to the free parameters.

These two procedures satisfy the principles 1 and 2
(Sec. II), respectively. With the obtained J̃ -pseudospin states
with the fixed angles, any operators acting on the same Hilbert
space H can be decomposed into the irreducible tensor opera-
tors Ykq’s (see Appendix B). In the next section, this algorithm
is applied to two systems.

C. Ab initio derivation of J̃ = 9/2 pseudospin states

Combining the developed theory and ab initio calculations,
the J̃ = 9/2 pseudospin states of Nd3+ ion in the octahedral
site of Cs2NaNdCl6 [31] and Np4+ impurity ion in the octahe-
dral Zr site of Cs2ZrCl6 [32,33] are derived. It is also shown
that the present approach fulfills requirement 2.

1. Ab initio method

In order to obtain the electronic structure, embed-
ded cluster calculations were performed with a post–
Hartree-Fock method. For the Cs2NaNdCl6 cluster, one
Nd3+ ion and the nearest eight Cl− ions are treated
ab initio, and the distant atoms are replaced by point
charges. The electronic structure was calculated using a
complete active space self-consistent field (CASSCF), ex-
tended multistate complete active space second-order per-
turbation theory (XMS-CASPT2) [34,35], and spin-orbit
restricted active space state interaction (SO-RASSI) methods
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(a) (b)

FIG. 1. (a) j10(α) for Nd (solid line) and Np (dashed line) clusters. (b) j10 of the Nd cluster with respect to the totally symmetric deformation
from the equilibrium Nd-Cl bond length, � Nd-Cl (Å). The filled circles and open triangles indicate j10 with α at the global maximum
(α ≈ π/2) and the local maximum (α ≈ −π/2), respectively.

with atomic-natural-orbital relativistic-correlation consistent-
minimal basis (ANO-RCC-MB). In the CASSCF calcula-
tions, 14 orbitals were included in the active space: 4f of
the Nd3+ ion alongside with an additional set of seven f

functions (of the 5f kind of the metal site). The dynam-
ical electron correlation for these orbitals was taken into
account within the XMS-CASPT2 approach. The spin-orbit
coupling was taken into account with SO-RASSI method,
and the scalar relativistic effects were included in the basis
set. The crystal-field states of Nd3+ were calculated using
two approaches: (a) CASSCF/SO-RASSI and (b) CASSCF/
XMS-CASPT2/SO-RASSI. All calculations were performed
using the MOLCAS 8 suite of programs [36]. The crystal-
field states of the Cs2ZrCl6:Np4+ cluster within the same
computational level were taken from the previous work [21].

2. J̃ pseudospins of Cs2NaNdCl6 and Cs2ZrCl6:Np4+

The calculated crystal-field levels of Cs2NaNdCl6 and
Cs2ZrCl6:Np4+ clusters are given in Table II. In both cases,
the irreducible representations of the crystal-field levels are
�8, �6, �8 in the order of increasing energy. The obtained lev-
els of Cs2NaNdCl6 are in good agreement with experimental
data [31], and the dynamical electron correlation makes the
agreement better. The ab initio � multiplets were assigned by
comparing the ab initio magnetic moment μ̂ matrices and the
structure of symmetry adapted model of μ̂, which also enabled
us to fix the relative phase factors.

TABLE II. Crystal-field levels of Cs2NaNdCl6 and
Cs2ZrCl6:Np4+ (cm−1)a. (a) and (b) indicate the ab initio
methodology (Sec. III C 1) and “Exp.” the experimental data [31].
The ground �8 energy is set to zero.

Energy

Cs2NaNdCl6 Cs2ZrCl6:Np4+

� (a) (b) Exp. [31] (a)

�6 90.225 95.318 97 506.834
�8 267.562 315.578 335 1352.775

a�8 levels within the method (b) are slightly split: 0.2 cm−1 and
0.4 cm−1 for the ground and excited �8 levels, respectively. In this
work, the averaged values of the slightly split �8 levels were used.

Following the method in Sec. III B, J̃ = 9/2 pseudospin
states were defined. Figure 1(a) shows the plot of j10(α) as a
function of α, and the obtained α0, jkq (α0), and Bk are listed
in Table III. The �

(1)
8 and �

(2)
8 states in Eq. (6) correspond

to the excited and the ground �8 multiplets, respectively.
In order to check principle 2, we consider j10 of the Nd
cluster with respect to the strength of the crystal field which
is controlled by the totally symmetric displacements of ligand
atoms. Figure 1(b) shows j10 using two different α: one at the
maximum point (α = α0 ≈ π/2) and the other at the second
highest point (α ≈ −π/2) in Fig. 1(a). The first one (filled
circle) continues to approach the atomic limit: j10 = 4.494
at the largest Nd-Cl. On the contrary, the second one (open
triangle) remains a much smaller value than the atomic one.
This demonstrates that the pseudospin states defined by the
proposed algorithm indeed fulfill the two principles outlined
in Sec. II.

The coefficients jkq in Table III show that the first-rank
term in Ĵz is dominant, whereas the higher-order terms are
not negligible. The discrepancy would be mainly explained
by the covalency effect [20]. The effect of covalency is seen
by comparing Nd3+ and Np4+ ions: due to the stronger

TABLE III. α0 (rad), the total angular momentum jkq and crystal-
field parameters Bk (cm−1) of Cs2NaNdCl6 and Cs2ZrCl6:Np4+.
(a) and (b) indicate the ab initio methodology (Sec. III C 1).

Cs2NaNdCl6 Cs2ZrCl6:Np4+

k q (a) (b) (a)

α0 1.620 1.614 1.631
jkq 1 0 4.455 4.452 4.242

3 0 6.88 × 10−3 9.28 × 10−3 2.68 × 10−2

5 0 −3.15 × 10−3 −4.34 × 10−3 −1.10 × 10−2

±4 1.70 × 10−4 2.41 × 10−3 −4.54 × 10−4

7 0 6.03 × 10−4 6.80 × 10−4 1.25 × 10−3

±4 −3.23 × 10−4 2.15 × 10−4 −6.15 × 10−4

9 0 −3.76 × 10−5 −4.71 × 10−5 −1.12 × 10−5

±4 4.56 × 10−6 1.09 × 10−5 1.44 × 10−5

±8 3.55 × 10−6 8.31 × 10−6 1.12 × 10−5

Bk 4 −82.24 −99.53 −370.65
6 −8.65 −9.74 −39.73
8 0.05 0.07 −0.22
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delocalization of the 5f orbital in comparison with the 4f

orbital, the bonding to the ligand becomes more important
in the former, which results in a stronger reduction of j10 in
Np4+ than in Nd3+. The discrepancy between the traditional
crystal-field approach [30] and the ab initio wave-function-
based treatment described here also arises in the form of the
crystal-field Hamiltonian, which involves eighth-rank terms in
the latter case. We stress that the J̃ -pseudospin Hamiltonian is
more exact because, being derived directly from the ab initio
electronic states, it reproduces by definition not only their
energies but also all their electronic properties.

IV. DISCUSSION

The present J̃ -pseudospin states fulfill both requirements
presented in Sec. II. The same methodology will apply to
other cases. For J̃ < 9/2, the pseudospin states are uniquely
defined by using the first principle as shown in Appendix A,
whereas there are a few arbitrary parameters in the case
of J̃ � 9/2. The mixing parameters have to be introduced
because some � representations of the cubic group appear
more than once under the descent of symmetry, J̃ ↓ Oh (see
Table I and Appendix A).

One also should note that the present definition is one of
many equivalent definitions. In the case of octahedral systems,
the eigenstates of μ̂z cannot be used as the pseudospin states
which satisfy the symmetry requirements. This is explained by
the fact that the applied magnetic field (Zeeman interaction)
lowers the symmetry to and the eigenstates fulfill at most
tetragonal symmetry. A similar situation arises in all systems
of cubic or icosahedral symmetry. In such cases, the idea of
the approach proposed here should be applied. On the other
hand, if the system has a low symmetry which in practice
cannot be adiabatically changed into the cubic or higher one
and the Zeeman interaction does not lower the symmetry, the
conventional definition using the eigenstates of μ̂Z [20] will
be reasonable.

In Sec. III C, to check the adiabatic connection between the
obtained J̃ -pseudospin states in cubic symmetry and atomic
J multiplets, ab initio calculations were performed at many
cubic structures. However, this procedure could be signifi-

cantly simplified by applying the indicator function approach
proposed in Ref. [15]. With this method, the information of
the atomic limit will be extracted from the wave function of
the embedded system.

V. CONCLUSIONS

In this work, the theory of J̃ pseudospin for cubic systems
is developed. Using the symmetry, we derived the analytical
expressions for all important J̃ -pseudospin states. Despite the
high spatial and time-reversal symmetries, the large-J̃ pseu-
dospin states cannot be completely determined due to the pres-
ence of several arbitrary parameters. These free parameters
are fixed by using the requirement of adiabatic connection.
In the case of J̃ pseudospin for the crystal-field model of f

elements, the free parameter is determined by maximizing
the first-rank term of total angular momentum because this
definition allows the J̃ pseudospin to converge to pure total
angular momentum in the atomic limit. Although the original
idea to fulfill the second requirement of the adiabatic connec-
tion is by performing many consecutive ab initio calculations,
varying the strength of interaction, the present algorithm
enables us to determine the J̃ pseudospin based only on one
calculation. With the derived J̃ -pseudospin states, the total
angular momentum and the crystal-field Hamiltonian contain
terms of higher rank than fourth and sixth, which do not exist
in the conventional model based on f shells. The discrepancy
can arise due to effects which are not contained within the
atomic shell model. Combining the developed approach and
ab initio calculations, the crystal-field Hamiltonian of the
Nd3+ and Np4+ ions in a cubic environment were successfully
derived. Finally, we emphasize that the current methodology
is not specific to the method for the calculations of wave
functions and is applicable to any multiplet states. Thus, with
the increase of the accuracy of the ab initio calculations, an
accurate definition of pseudospins can be achieved.
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APPENDIX A: J̃-PSEUDOSPIN STATES

The relation between the J̃ -pseudospin states and � crystal-field states,

(|�γ 〉, |�′γ ′〉, ...) = (|M〉, |M ′〉, ...)U, (A1)

is derived up to J = 8, where (|�γ 〉, ...) and (|M〉, ...) are indices of crystal-field states and J̃ -pseudospin states, respectively,
U is an orthogonal matrix, and |M〉 stands for |J̃M〉. The basis of the irreducible representations of cubic symmetry are taken
from Ref. [27], and |J̃M〉 transform as spherical harmonics [28]. The procedure of the derivation is similar to that of J̃ = 9/2
pseudospin states (Sec. III). The transformation coefficients U between the nonrepeating � states (Table I) and the J̃ -pseudospin
states are unambiguously determined by symmetry. The other � states are determined up to their linear combinations, which are
described by using the rotational matrices [28],

R(2)(α) =
(

cos α − sin α

sin α cos α

)
, (A2)
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and

R(3)(�) =

⎛
⎜⎝

cos α cos β cos γ − sin α sin γ − cos α cos β sin γ − sin α cos γ cos α sin β

sin α cos β cos γ + cos α sin γ − sin α cos β sin γ + cos α cos γ sin α sin β

− sin β cos γ sin β sin γ cos β

⎞
⎟⎠, (A3)

where α, β, γ are angles, and � = (α, β, γ ). For the description of the J̃ -pseudospin states of non-Kramers systems, symmetric
and antisymmetric states are sometimes used: for positive M = m (m � J̃ ),

|m±〉 = 1√
2

(| − m〉 ± | + m〉). (A4)

1. Non-Kramers ion

a. J̃ = 2

|�3θ〉 = |0〉, |�3ε〉 = |2+〉, |�5, 0〉 = |2−〉, |�5,∓1〉 = ±| ± 1〉. (A5)

The crystal-field parameter B4 is given by

B4 = E�3 − E�5

10
. (A6)

b. J̃ = 3

(|�2〉, |�4, 0〉, |�4,−1〉, |�4,+1〉, |�5, 0〉, |�5,−1〉, |�5,+1〉) = (|2−〉, |0〉, |2+〉, | − 1〉, | + 3〉, | + 1〉, | − 3〉)

×

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 M1 0 0 0 M2

0 0 0 M1 0 M2 0

⎞
⎟⎟⎟⎟⎟⎠, (A7)

where

M1 =
⎛
⎝− 1

2

√
3
2

− 1
2

√
5
2

⎞
⎠, M2 =

⎛
⎝ 1

2

√
5
2

− 1
2

√
3
2

⎞
⎠. (A8)

The crystal-field parameters are

B4 = −6E�2 + 9E�4 − 3E�5

44
, B6 = −4E�2 − 5E�4 + 9E�5

616
. (A9)

c. J̃ = 4

(|�1〉, |�3θ〉, |�3ε〉, |�4, 0〉, |�4,−1〉, |�4,+1〉, |�5, 0〉, |�5,−1〉, |�5,+1〉)

= (|4+〉, |0〉, |2+〉, |4−〉, |2−〉, | − 1〉, | + 3〉, | + 1〉, | − 3〉)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

√
5
3 − 1

2

√
7
3 0 0 0 0 0 0 0

1
2

√
7
3

1
2

√
5
3 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 −M1 0 0 0 −M2

0 0 0 0 0 M1 0 M2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A10)
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where

M1 = 1

2
√

2

(√
7

1

)
, M2 = 1

2
√

2

(
−1√

7

)
. (A11)

The crystal-field parameters are given by

B4 = 7(14E�1 + 4E�3 + 21E�4 − 39E�5 )

858
, B6 = −20E�1 + 32E�3 + 3(E�4 − 5E�5 )

990
, B8 = 5E�1 + 7E�3 − 12E�4

1560
.

(A12)

d. J̃ = 5

(|�3θ〉, |�3ε〉,
∣∣�(1)

4 , 0
〉
,
∣∣�(2)

4 , 0
〉
,
∣∣�(1)

4 ,−1
〉
,
∣∣�(2)

4 ,−1
〉
,
∣∣�(1)

4 ,+1
〉
,
∣∣�(2)

4 ,+1
〉
, |�5, 0〉, |�5,−1〉, |�5,+1〉)

= (|4−〉, |2−〉, |4+〉, |0〉, |2+〉, | − 5〉, | − 1〉, | + 3〉, | + 5〉, | + 1〉, | − 3〉)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 R(2)(α) 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 M1R
(2)(α) 0 0 0 M2

0 0 0 0 M1R
(2)(α) 0 M2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A13)

where M1 and M2 are defined by

M1 = 1

8
√

2

⎛
⎜⎝

√
5 3

√
7√

42
√

30

−9
√

35

⎞
⎟⎠, M2 = 1

4
√

2

⎛
⎜⎝

√
15

−√
14

−√
3

⎞
⎟⎠. (A14)

e. J̃ = 6

(|�1〉, |�2〉, |�3θ〉, |�3ε〉, |�4, 0〉, |�4,−1〉, |�4,+1〉, ∣∣�(1)
5 , 0

〉
,
∣∣�(2)

5 , 0
〉
,
∣∣�(1)

5 ,−1
〉
,
∣∣�(2)

5 ,−1
〉
,
∣∣�(1)

5 ,+1
〉
,
∣∣�(2)

5 ,+1
〉)

= (|4+〉, |0〉, |6+〉, |2+〉, |4−〉, |6−〉, |2−〉, | − 5〉, | − 1〉, | + 3〉, | + 5〉, | + 1〉, | − 3〉)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

√
7
2 0 1

2
√

2
0 0 0 0 0 0 0

− 1
2
√

2
0 1

2

√
7
2 0 0 0 0 0 0 0

0
√

5
4 0

√
11
4 0 0 0 0 0 0

0 −
√

11
4 0

√
5

4 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 R(2)(α) 0 0

0 0 0 0 0 M1 0 0 0 M2R
(2)(α)

0 0 0 0 0 0 −M1 0 −M2R
(2)(α) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A15)

where

M1 = 1

4
√

2

⎛
⎜⎝

−√
11√
6

−√
15

⎞
⎟⎠, M2 = 1

16

⎛
⎜⎝

√
3

√
165

3
√

22
√

10√
55 −9

⎞
⎟⎠. (A16)
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f. J̃ = 7

(|�2〉, |�3θ〉, |�3ε〉,
∣∣�(1)

4 , 0
〉
,
∣∣�(2)

4 , 0
〉
,
∣∣�(1)

4 ,−1
〉
,
∣∣�(2)

4 ,−1
〉
,
∣∣�(1)

4 ,+1
〉
,
∣∣�(2)

4 ,+1
〉
,
∣∣�(1)

5 , 0
〉
,
∣∣�(2)

5 , 0
〉
,∣∣�(1)

5 ,−1
〉
,
∣∣�(2)

5 ,−1
〉
,
∣∣�(1)

5 ,+1
〉
,
∣∣�(2)

5 ,+1
〉)

= (|6−〉, |2−〉, |4−〉, |4+〉, |0〉, |6+〉, |2+〉, | − 5〉, | − 1〉, | + 3〉, | + 7〉, | + 5〉, | + 1〉, | − 3〉, | − 7〉)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

√
11
6 0 − 1

2

√
13
6 0 0 0 0 0 0

1
2

√
13
6 0 1

2

√
11
6 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 R(2)(α) 0 0 0 0 0

0 0 0 0 0 0 R(2)(β ) 0 0

0 0 0 0 M1R
(2)(α) 0 0 0 M2R

(2)(β )

0 0 0 0 0 M1R
(2)(α) 0 M2R

(2)(β ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A17)

where

M1 = 1

32

⎛
⎜⎜⎜⎜⎝

25 −√
231

−3
√

33 −5
√

7√
11 −3

√
21

−√
91 −√

429

⎞
⎟⎟⎟⎟⎠, M2 = 1

32
√

2

⎛
⎜⎜⎜⎜⎝

5
√

13
√

11√
429 15

√
3

−3
√

143 19

−√
7 −√

1001

⎞
⎟⎟⎟⎟⎠. (A18)

g. J̃ = 8

(|�1〉,
∣∣�(1)

3 θ
〉
,
∣∣�(2)

3 θ
〉
,
∣∣�(1)

3 ε
〉
,
∣∣�(2)

3 ε
〉
,
∣∣�(1)

4 , 0
〉
,
∣∣�(2)

4 , 0
〉
,
∣∣�(1)

4 ,−1
〉
,
∣∣�(2)

4 ,−1
〉
,
∣∣�(1)

4 ,+1
〉
,
∣∣�(2)

4 ,+1
〉
,
∣∣�(1)

5 , 0
〉
,
∣∣�(2)

5 , 0
〉
,∣∣�(1)

5 ,−1
〉
,
∣∣�(2)

5 ,−1
〉
,
∣∣�(1)

5 ,+1
〉
,
∣∣�(2)

5 ,+1
〉)

= (|8+〉, |4+〉, |0〉, |6+〉, |2+〉, |8−〉, |4−〉, |6−〉, |2−〉, | − 5〉, | − 1〉, | + 3〉, | + 7〉, | + 5〉, | + 1〉, | − 3〉, | − 7〉)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 M2R
(2)(α) 0 0 0 0 0 0 0

0 0 M3M2R
(2)(α) 0 0 0 0 0 0

0 0 0 R(2)(β ) 0 0 0 0 0

0 0 0 0 0 0 R(2)(γ ) 0 0

0 0 0 0 −M4R
(2)(β ) 0 0 0 −M5R

(2)(γ )

0 0 0 0 0 M4R
(2)(β ) 0 M5R

(2)(γ ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A19)

where

M1 = 1

8
√

3

⎛
⎜⎝

√
65

2
√

7

3
√

11

⎞
⎟⎠, M2 = 1

8
√

93

⎛
⎜⎝

√
2145 −16

√
7

2
√

231 8
√

65

−31
√

3 0

⎞
⎟⎠, M3 = 1

96

(
3
√

10 6
√

182 −3
√

286√
6006 −2

√
330 −3

√
210

)
,

(A20)

M4 = 1

32

⎛
⎜⎜⎜⎜⎝

√
35 3

√
13√

715
√

77√
273 −5

√
15

1
√

455

⎞
⎟⎟⎟⎟⎠, M5 = 1

32
√

2

⎛
⎜⎜⎜⎜⎝

7
√

21 −√
715

−√
429 −√

35√
455 3

√
33

3
√

15
√

1001

⎞
⎟⎟⎟⎟⎠.
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2. Kramers ion

a. J̃ = 5/2

(∣∣∣∣�7,−1

2

〉
,

∣∣∣∣�7,+1

2

〉
,

∣∣∣∣�8,−3

2

〉
,

∣∣∣∣�8,+3

2

〉
,

∣∣∣∣�8,−1

2

〉
,

∣∣∣∣�8,+1

2

〉)
=

(∣∣∣∣−5

2

〉
,

∣∣∣∣+3

2

〉
,

∣∣∣∣+5

2

〉
,

∣∣∣∣−3

2

〉
,

∣∣∣∣−1

2

〉
,

∣∣∣∣+1

2

〉)

×

⎛
⎜⎜⎜⎝

M1 0 0 M2 0 0

0 M1 M2 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎠, (A21)

where

M1 =
⎛
⎝ 1√

6

−
√

5
6

⎞
⎠, M2 =

(√
5
6

1√
6

)
. (A22)

The crystal-field parameter is given by

B4 = −E�7 − E�8

6
. (A23)

b. J̃ = 7/2

(∣∣∣∣�6,−1

2

〉
,

∣∣∣∣�6,+1

2

〉
,

∣∣∣∣�7,−1

2

〉
,

∣∣∣∣�7,+1

2

〉
,

∣∣∣∣�8,−1

2

〉
,

∣∣∣∣�8,+1

2

〉
,

∣∣∣∣�8,−3

2

〉
,

∣∣∣∣�8,+3

2

〉)

=
(∣∣∣∣+7

2

〉
,

∣∣∣∣−1

2

〉
,

∣∣∣∣−7

2

〉
,

∣∣∣∣+1

2

〉
,

∣∣∣∣−5

2

〉
,

∣∣∣∣+3

2

〉
,

∣∣∣∣+5

2

〉
,

∣∣∣∣−3

2

〉)

×

⎛
⎜⎜⎜⎝

M1 0 0 0 M3 0 0 0

0 −M1 0 0 0 M3 0 0

0 0 M2 0 0 0 0 M4

0 0 0 −M2 0 0 M4 0

⎞
⎟⎟⎟⎠, (A24)

where

M1 =
⎛
⎝ 1

2

√
5
3

1
2

√
7
3

⎞
⎠, M2 =

(
−

√
3

2
1
2

)
, M3 =

⎛
⎝− 1

2

√
7
3

1
2

√
5
3

⎞
⎠, M4 =

( − 1
2

−
√

3
2

)
. (A25)

The crystal-field parameters are calculated as

B4 = 49E�6 − 63E�7 + 14E�8

264
, B6 = −5E�6 − 3E�7 + 8E�8

264
. (A26)

c. J̃ = 9/2

(∣∣∣∣�6,−1

2

〉
,

∣∣∣∣�6,+1

2

〉
,

∣∣∣∣�(1)
8 ,−1

2

〉
,

∣∣∣∣�(2)
8 ,−1

2

〉
,

∣∣∣∣�(1)
8 ,+1

2

〉
,

∣∣∣∣�(2)
8 ,+1

2

〉
,

∣∣∣∣�(1)
8 ,−3

2

〉
,

∣∣∣∣�(2)
8 ,−3

2

〉
,

∣∣∣∣�(1)
8 ,+3

2

〉
,

∣∣∣∣�(2)
8 ,+3
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⎞
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where

M1 = 1
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√
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√
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√
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2 2
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42 2
√

3 −√
42

)
. (A28)

d. J̃ = 11/2

(∣∣∣∣�6,−1

2

〉
,

∣∣∣∣�6,+1

2

〉
,

∣∣∣∣�7,−1

2

〉
,

∣∣∣∣�7,+1

2

〉
,

∣∣∣∣�(1)
8 ,−1

2

〉
,

∣∣∣∣�(2)
8 ,−1

2

〉
,

∣∣∣∣�(1)
8 ,+1

2

〉
,

∣∣∣∣�(2)
8 ,+1

2

〉
,

∣∣∣∣�(1)
8 ,−3

2

〉
,

∣∣∣∣�(2)
8 ,−3

2

〉
,

∣∣∣∣�(1)
8 ,+3

2

〉
,

∣∣∣∣�(2)
8 ,+3

2

〉)

=
(∣∣∣∣+7

2

〉
,

∣∣∣∣−1

2

〉
,

∣∣∣∣−9

2

〉
,

∣∣∣∣−7

2

〉
,

∣∣∣∣+1

2

〉
,

∣∣∣∣+9

2

〉
,

∣∣∣∣−5

2

〉
,

∣∣∣∣+3

2

〉
,

∣∣∣∣+11

2

〉
,

∣∣∣∣+5

2

〉
,

∣∣∣∣−3

2

〉
,

∣∣∣∣−11

2

〉)

×

⎛
⎜⎜⎜⎝

M1 0 0 0 M3R
(2)(β ) 0 0 0
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0 0 M2 0 0 0 0 M4M3R
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0 0 0 −M2 0 0 M4M3R
(2)(β ) 0

⎞
⎟⎟⎟⎠, (A29)

where

M1 = 1
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(A30)

M4 = 1
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√

3
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15√

6 −2
√

35 −3
√

30

−√
55 −√

462 −√
11
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e. J̃ = 13/2
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f. J̃ = 15/2
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M4 = 1
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APPENDIX B: DECOMPOSITION OF OPERATOR

An operator Â acting on the electronic states from H (1) is
decomposed into the irreducible tensor operators (8):

Â =
∑
kq

akqYkq . (B1)

Here, J̃ is omitted for simplicity from the argument of Ykq ,
and the coefficients akq are calculated as

akq = (−1)q
[k]

[J̃ ]
[〈(J̃ k)J̃ J̃ |J̃ J̃ k0〉]2Tr[Yk,−qÂ], (B2)

where [x] = 2x + 1, and Tr is the trace over H. The irre-
ducible tensor operators Ykq are written in slightly differ-
ent form compared to conventional Stevens operators [37].
The advantages of the current form are that (a) the explicit
form of the Stevens operators is not necessary (only easily
obtainable Clebsch-Gordan coefficients are necessary), (b) it
is suitable form for the use of group theoretical techniques,
and (c) the coefficients akq directly indicate the strength of the
contribution because the magnitude of Ykq is expected to be
of the order of unity.

APPENDIX C: THE FORM OF THE CRYSTAL FIELD

The totally symmetric kth-rank tensor of the cubic group is
expressed as

V̂k = vk,0Yk0 +
∑
q=±4

vk,4Ykq +
∑
q=±8

vk,8Ykq

+
∑

q=±12

vk,12Ykq +
∑

q=±16

vk,16Ykq . (C1)

TABLE IV. Coefficients vk,|q| in Eq. (C1).

k vk,0 vk,4 vk,8 vk,12 vk,16

4 1
√

5
14

6 1 −
√

7
2

8 1 1
3

√
14
11

1
3

√
65
22

10 1 −
√

66
65 −

√
187
130

12 1 0
√

429
646 4

√
91

7429

0 1 −4
√

42
323 9

√
11

7429

14 1 − 3
2

√
143
595 −

√
741

1190 − 1
2

√
437
119

16 1 0
√

442
2185

16
5

√
17
437 7

√
493

135470

0 1 −6
√

6
805 − 31

5

√
13
483 4

√
754

74865
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The coefficients vk,|q| listed in Table IV are determined by
making use of the fact that Eq. (C1) is invariant under C

y

4 and
Cz

4 rotations. The 12th- and 16th-order operators contain two
independent sets of coefficients which are shown in different
lines in Table IV. The crystal-field Hamiltonian is a linear
combination of Eq. (C1):

Ĥcf =
∑

k

BkV̂k. (C2)

B0 is the average of the crystal-field energies. There is one
Bk for each rank k = 4, 6, 8, 10, 14 and there are two Bk for
each k = 12, 16.
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