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Effective anisotropy due to the surface of magnetic nanoparticles
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Analytical solution has been found for the second-order effective anisotropy of magnetic nanoparticles of a
cubic shape due to the surface anisotropy (SA) of the Néel type. Similarly to the spherical particles, for the simple
cubic lattice the grand-diagonal directions (±1,±1, ±1) are favored by the effective cubic anisotropy but the
effect is twice as strong. Uniaxial core anisotropy and applied magnetic field cause screening of perturbations
from the surface at the distance of the domain-wall width and reduce the effect of SA near the energy minima.
However, screening disappears near the uniaxial energy barrier, and the uniform barrier state of larger particles
may become unstable. For these effects the analytical solution is obtained as well, and the limits of the additive
formula with the uniaxial and effective cubic anisotropies for the particle are established. Thermally-activated
magnetization-switching rates have been computed by the pulse-noise technique for the stochastic Landau-Lifshitz
equation for a system of spins.
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I. INTRODUCTION

In magnetic nanoparticles, a significant fraction of atoms
belongs to the surface, and their magnetic properties such
as exchange and anisotropy can be strongly modified. Suc-
cesses in synthesis of magnetic particles of a controlled
shape stimulate investigating the effects of the surface on
the magnetic properties numerically and even analytically.
One of the important ingredients is surface anisotropy (SA)
proposed by Néel [1] and modeled microscopically by Victora
and MacLaren [2]. SA arises due to missing neighbors for the
surface spins and breaking the symmetry of their crystal field,
and it must be much stronger than a typical crystallographic
anisotropy in the particle’s core. However, there is still not
much information on the SA in different materials [3–5]. The
most common manifestation of the SA is decreasing of the
effective anisotropy of magnetic films with the thickness d as
Keff = KV + KS/d, where KV and KS are volume and surface
contributions [3–6]. It was found that atomic steps on surfaces
strongly contribute to the effective anisotropy [3,7].

In small magnetic clusters, individual spins are tightly
bound together by the exchange interaction, and they form an
effective rigid giant spin with an effective anisotropy dependent
on the surface. In particular, the Néel SA (NSA) was used to
model the effective anisotropy of Co nanoclusters of the form
of truncated octahedrons [8,9]. In this case, contributions of
different faces and edges partially cancel each other, leading
to a significantly reduced result. For totally symmetric shapes
such as spherical and cubic, the cancellation of the SA for the
rigid cluster’s spin is complete.

However, individual spins can deviate from collinearity
for stronger SA and larger particles [10–13]. Examples of
strong noncollinearity are “throttled” and “hedgehog” spin
configurations [10,11,14,15]. Small noncollinearity can be
treated perturbatively [16,17], that results into the second-order
effective anisotropy [16] Keff ∼ D2

S/J , where DS is the SA
and J is the exchange. For particles with simple cubic (sc)

lattice and spherical shape it was found that the effective
second-order anisotropy has a cubic symmetry with the lowest
energy along the grand diagonals (±1,±1,±1) of the sc
lattice, where the deviations from collinearity and the resulting
energy gain are maximal. The result scales with the particle’s
volume as perturbations from the surface penetrate into the
particle’s core. Thus in experiments, the second order effective
anisotropy cannot be easily identified with the surface. If
the particle’s size becomes too large, deviations from the
collinearity become so strong that the perturbation theory
becomes invalid. For magnetic particles with shapes close to
symmetric, the first- and second-order effective anisotropies
can coexist and compete with each other [18].

An example of high-symmetry magnetic particles are iron
nanocubes [19,20] having a 13.6 nm edge length and a typical
small bulk cubic anisotropy of iron. However, the surface
anisotropy in this system is not mentioned as the surface is
oxidated and thus these nanocubes are better described by the
core-shell model.

As the SA must be much stronger than the core anisotropy,
both first-and second-order surface terms can compete with the
latter. In the simplest additive approximation, for symmetric
shapes one can just add the uniaxial core anisotropy and the
cubic second-order surface anisotropy that leads to compli-
cated energy landscapes [18,21]. In Refs. [18,22] it was shown
that for the face-centered (fcc) lattice the sign of the second-
order surface anisotropy is inverted, so that the directions
(±1, 0, 0) etc. have the lowest energy. Different temperature
dependences of the core and effective surface anisotropies
may cause reorientation transitions on temperature, as was
shown in Ref. [23] using the constrained Monte Carlo method
[24]. Additive effective anisotropy of magnetic particles affects
their dynamic properties such as magnetic resonance [25] and
thermally-activated switching [26–28].

As was mentioned in Ref. [16], in the presence of the
uniaxial core anisotropy D, the effect of the surface will
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be screened at the distance of the domain-wall width δ =
a
√

J/(2D) from the surfaces, a being the lattice spacing. Thus
the effect of the surfaces should be reduced for the particle’s
sizes L � δ. Another effect is the mixing term in the effective
anisotropy arising from both core and surface anisotropies and
having another symmetry [18].

All analytical and numerical investigations mentioned
above were performed on spherical particles, plus ellipsoidal
and truncated octahedron shapes in Refs. [18,22]. Analyti-
cal solution for the deviations from collinearity in spherical
particles uses the Green’s function for the internal Neumann
problem for the Laplace equation in a sphere. Studying the
screening requires solving the Helmholtz equation for which
the Green’s function in a sphere is unknown. For this reason,
screening was investigated only perturbatively in the L/δ � 1
limit in Ref. [18]. A closed-form expression for the Green’s
function of Laplace and Helmholts equations for cubes and
parallelepipeds is unknown. This hampered the investigation of
these shapes, although they are no less important than spherical
and ellipsoidal. For instance, recently Fe nanocubes have been
synthesized [19,20].

Fortunately, for the cubic shape there is an exact analytical
solution that is direct and not using Green’s functions. This
solution is much simpler than that for the spherical shape and
it allows an extension for the case of screening by the core
anisotropy and by the applied field. This is the subject of this
paper. In particular, it will be shown that screening is active near
the energy minima but becomes “antiscreening” closer to the
barriers, that leads to stronger noncollinearities and eventually
to the destruction of the quasiuniform barrier states.

The plan of the paper is the following. In Sec. II the model
of classical spins with surface anisotropy is introduced and
the expression for the first-order effective particle’s surface
anisotropy is obtained for parallelepipeds. In Sec. III the
method of constrained energy minimization needed to deal
with deviations from spin collinearity in the particle is reviewed
and further developed in comparison to previous publications.
This method is needed for both numerical and analytical work.
In Sec. IV the numerical implementation of the constrained
energy minimization is discussed. Section V contains the
analytical solution for the second-order effective anisotropy
for the cubic particle with sc lattice in the absence of the core
anisotropy and magnetic field. Section VI shows the numerical
results obtained by the constrained energy minimization and
their comparison with the analytical results. In Sec. VII a more
general analytical solution in the presence of the uniaxial core
anisotropy and the magnetic field is obtained and the effects of
screening are investigated. Section VIII presents the results for
the thermally-activated magnetization switching of the cubic
particle considered as a many-spin system.

II. THE MODEL

The magnetic particle will be described by the classical spin
Hamiltonian

H = −D
∑

i∈core

s2
zi+

∑
i∈surface

HSA,i

−h ·
∑

i

si − 1

2

∑
ij

Jij si · sj , (1)

where h ≡ μ0H is the magnetic field in the energy units,
μ0 is the magnetic moment of the spin, HSA is the surface
anisotropy, Jij is the exchange with the coupling J between
the neighboring spins on a simple cubic (sc) lattice with
the lattice spacing a, and D is the core uniaxial-anisotropy
constant. The spins are normalized by one, |si | = 1, and the
spin value S is absorbed in the energy constants D and J . The
Néel’ s surface anisotropy is given by [1,2]

HSA,i = 1

2
DS

∑
j∈nn

(si · uij )2, (2)

where uij is the unit vector connecting the surface site i to its
nearest neighbor on site j . This anisotropy arises due to missing
nearest neighbors for the surface spins. In particular, for the
simple cubic lattice and xy surfaces (those perpendicular to the
z axis), the Néel anisotropy becomes HSA,i = − 1

2DSs
2
iz . This

means that for DS > 0 the spins tend to align perpendicularly
to the surface, while for DS < 0 the surface spins tend to align
parallel to the surface. In a parallelepiped-shaped particle, the
Néel anisotropy on the edges along the z axis becomesHSA,i =
− 1

2DS (s2
ix + s2

iy ) or, equivalently, HSA,i = 1
2DSs

2
iz. Thus for

DS > 0 the z-edge spins tend to align perpendicularly to the
z axis. The Néel anisotropy vanishes at the corners and in the
core of the particle.

The effect of surface anisotropy essentially depends on the
lattice structure (see, e.g. Ref. [18]). Here, for simplicity, only
the sc lattice is considered.

Energy-dimensional atomic values of the exchange and
anisotropy constants are most convenient for atomistic cal-
culations. In particular, the dimensionless ratio D/J is a small
parameter in all substances that allows the magnetization to
change only at the domain-wall scale δ = a

√
J/(2D) � a. In

experimental papers, usually the bulk anisotropic energy con-
stant K in erg/cm3 is given. The relation between the micro-
and macroscopic anisotropy constants reads K = D/v0, where
v0 is the unit-cell volume (here v0 = a3). The experimental
values of the surface anisotropy, if known, are given in a similar
way in erg/cm2. The exchange constant can be estimated
from the Curie temperature TC that within the mean-field
approximation is given by kBTC = (1/3)S(S + 1)Jz, where
kB is the Boltzmann constant, S is the atomic spin value, and z

is the number of nearest neighbors (here z = 6). Numerous
experimental results [4,29–31] show that the value of the
surface anisotropy in Co particles embedded in different
matrices such as alumina, Ag or Au, as well as in thin films
and multilayers, could vary from DS = 10−4J to DS = J .

Spins in particles small enough, L � δ, are tightly bound
together by the exchange and forming an effective giant spin.
For a parallelepiped-shaped particle of the size Nz × Ny ×
Nz = N the effective Hamiltonian

Heff = −NcoreDs2
z + H(1)

SA − Nh · s, (3)

where Ncore = (Nz − 2) × (Ny − 2) × (Nz − 2) and H(1)
SA is

the sum of contributions from six surfaces and 12 edges

H(1)
SA = −DS

[
(NyNz − 4)s2

x + (NzNx − 4)s2
y

+ (NxNy − 4)s2
z

]
. (4)
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This expression vanishes for Nx = Ny = Nz = 2 since in this
case there are neither faces nor edges, only corners. For
DS > 0, the lowest-energy direction is perpendicular to the
biggest faces. For DS < 0, the lowest-energy direction is
perpendicular to the smallest faces. For Nx = Ny ≡ N⊥ the
model becomes uniaxial

H(1)
SA = −DSN⊥(N⊥ − Nz)s2

z . (5)

The first-order effective anisotropy due to the surface scales
with the surface, thus for large particle sizes L it becomes
small as 1/L in comparison to the contribution of the core
anisotropy.

III. DEVIATIONS FROM COLLINEARITY
AND CONSTRAINED ENERGY MINIMIZATION

For the particle of a cubic shape, H(1)
SA = 0 but there still is a

second-order contributionH(2)
SA ∼ D2

S/J due to deviation from
collinearity generated by the SA. These deviations depend on
the orientation ν of the particle’s magnetization m, where

m ≡ 1

N
∑

i

si , ν ≡ m
m

. (6)

Larger deviations correspond to a larger adjustment energy
gain, thus the corresponding directions of m have lower energy
[16]. Deviations from the collinearity ψ i are introduced via the
formula

si = ν

√
1 − ψ2

i + ψ i
∼= ν

(
1 − 1

2
ψ2

i

)
+ ψ i ,

∑
i

ψ i = 0.

(7)

Below ψ i will be calculated within the linear approximation
that is valid for ψ2

i � 1.
To define the particle’s energy for different m directions ν,

one has to constrain the latter. This can be done by using the
method of Lagrange multipliers [16,18,21,32] in which one
minimizes the function

F ≡ H − Nλ · (ν − ν0), (8)

where ν0 is the preset direction, |ν0| = 1. The constrained
equilibrium solution satisfies the equations

si × ∂F
∂si

= 0,
∂F
∂λ

= −N (ν − ν0) = 0. (9)

From the second equation follows ν = ν0. In the first equation

−∂F
∂si

= heff,i + hλ, heff,i ≡ −∂H
∂si

(10)

and the constraint field is uniform and given by

hλ ≡ N ∂ (λ · ν)

∂si

= 1

m
[λ − ν · (ν · λ)]. (11)

Note that hλ is perpendicular to m since it constrains only its
direction ν, leaving its magnitude m free to change.

Analytically, the constraint field can be found at zero order
in ψ i , considering the rigid particle’s spin and averaging the
effective field over the particle to get the contribution of the
surface. Thus the first of equations (9) becomes

ν × (h̄eff + hλ) = 0, (12)

where from Eq. (3) one obtains

h̄eff = h + 2D̃νzez + hSA, D̃ ≡ Ncore

N D (13)

and

hSA ≡ − 1

N
∂H(1)

SA(ν)

∂ν
. (14)

In particular, for Nx = Ny ≡ N⊥ one obtains

hSA = 2DS

N⊥ − Nz

N⊥Nz

ssez. (15)

Since hλ is perpendicular to ν, the solution of Eq. (12) is

hλ = −h̄eff + ν(ν · h̄eff ). (16)

IV. NUMERICAL METHODS

One practical method of numerically solving Eq. (9) is the
method of relaxation in which the evolution equations

_si = −αsi × [si × (heff,i + hλ)]
(17)

λ̇ = αλ

N
∂F
∂λ

= −αλ(ν − ν0)

with relaxation constants α and αλ are solved [16,18,21]. A
faster method is a combination of the field alignment and
overrelaxation used in Refs. [33–35] for finding local energy
minima in magnetic systems with quenched randomness. In
this method, all spins si are updated consecutively by the field
alignment si,new = heff,i/|heff,i | or the overrelaxation si,new =
2(si,old · heff,i )heff,i/h2

eff,i − si,old with the probabilities α and
1 − α, respectively. The first procedure is pseudorelaxation
while the second is pseudodynamics flipping the spins by 180◦
around the effective field. The highest efficiency of this method
is achieved in the underdamped regime α = 0.1 ÷ 0.01. For
the constrained minimization here, one has to replace heff,i ⇒
heff,i + hλ and add the iteration λnew = λold − αλ(ν − ν0) at
the end of each full-system spin update. The spin updates
within this method are parallelizable that leads to a significant
speedup.

The method of constrained energy minimization works well
if the spin noncollinearity is small enough. In this case the
particle’s energy is a nice one-valued function showing minima
for the grand-diagonal directions for spherical [16,18,21]
and cubic particles with an sc lattice. For larger DS and
L, the solution looks distorted and can become multivalued.
Further increase of these parameters may results in the loss of
convergence. The physical reason for this is that the particle
is no more in the single-domain state that is a prerequisite for
the method’s validity. In particular, even in the absence of the
SA, large particles are overcoming the energy barrier due to
the uniaxial anisotropy via a nonuniform rotation in which a
domain wall is moving across the particle. Onset of this regime
leads to the failure of the constrained minimization method. In
the numerical work, J ⇒ 1 and a ⇒ 1 are set.

V. CUBIC PARTICLE WITH SURFACE
ANISOTROPY ONLY

The analytical solution for the second-order effective sur-
face anisotropy is simpler for the cubic-shaped particle with
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the SA only. In this case, in the rigid-spin approximation, there
is no effective field acting on the spin, so according to Eq. (16)
there is no constraint field hλ as well. (A similar problem was
considered in Ref. [17], however, no effective cubic anisotropy
was obtained.) In the continuous approximation, the particle’s
energy has the form

H = 1

a3

∫
dV

[
1

2
a2J

(
∂sα

∂r

)2

− 1

2
DSaδS (n · s)2

]
(18)

with summation over the repeated α. Here δS is the surface δ

function and n is the outer normal to the surface. Minimizing
this energy leads to the equation

s × �s = 0 (19)

with the boundary condition

s ×
(

a
∂s
∂rα

nα − DS

J
(n · s)n

)
= 0 (20)

at the surfaces.
Now, considering DS/J as small and starting from a

collinear state of a fixed direction ν, one can consider surface-
induced deviations ψ from this state,

s(r) = ν

√
1 − ψ2(r) + ψ (r) ∼= ν

[
1 − 1

2ψ2(r)
] + ψ (r),

(21)

where s(r) · ψ (r) = 0 and ψ satisfies the sum rule∫
d3rψ (r) = 0. (22)

Below ψ will be found within the linear approximation,
whereas the quadratic term will be used to calculate the
decrease of the particle’s magnetization m—the magnetization
deficit. The equation for ψ becomes

�ψ = 0, a
∂ψ

∂rα

nα = DS

J
f (ν, n), (23)

where

f (ν, n) ≡ (n · ν)[n − (n · ν)ν] (24)

is perpendicular to ν and vanishes if ν is perpendicular to
any particle’s face, n · ν = ±1. For the parallelepiped of linear
sizes Lx,y,z, the boundary conditions become

±a
∂ψ

∂x

∣∣∣∣
x=±Lx/2

= DS

J
f (ν, n) (25)

etc. At the opposite faces of the particle f (ν, n) is the same as
it is quadratic in n. At different faces, f (ν, n) are, in general,
different. The explicit values are given by

f (ν, n) =
⎧⎨
⎩

νx (ex − νxν), x = ±Lx/2
νy

(
ey − νyν

)
, y = ±Ly/2

νz(ez − νzν), z = ±Lz/2.

(26)

For the cube of linear size L, one can search for the solution
in the form

ψ (r) = DS

LaJ

(
Cxx

2 + Cyy
2 + Czz

2) (27)

that satisfies the Laplace equation and at the same time Eq. (22)
for

Cx + Cy + Cz = 0. (28)

From the boundary conditions above one finds

Cx,y,z = f (ν, n)|x,y,z=±L/2, (29)

the values from Eq. (26). One can check that this solution
satisfies Eq. (28).

The maximal value of ψ reached at the surfaces of the
particle should be small,

ψ ∼ L

a

DS

J
� 1, (30)

that defines the applicability range of the linearization. For
νx = νy = νz = 1/

√
3 at the center of the face x = L/2, y =

z = 0 one has 6
√

2 � 8.5 in the denominator of this formula,
thus the applicability condition is milder than above. On the
other hand, there are instabilities of the found states at larger
L and DS that were observed numerically but haven’t been
yet worked out analytically. These instabilities also limit the
applicability of the method.

Now the particle’s magnetization can be computed using
the quadratic terms in Eq. (21) as

m = 1

V

∫∫∫ L

0
dxdydz

{
ν

[
1 − 1

2
ψ2(r)

]
+ ψ (r)

}
. (31)

Here the linear term vanishes while the quadratic term yields

m = ν

[
1 − 1

360

(
L

a

DS

J

)2(
1 − ν4

x − ν4
y − ν4

z

)]
. (32)

Clearly, the magnetization deficit vanishes if ν is perpendicular
to any particle’s face and reaches its maximum for the grand-
diagonal directions (±1,±1,±1). Again, the small coefficient
in this formula suggests that the applicability condition for the
linearization method is milder than given by Eq. (30).

The energy of the particle for the state found above at the
lowest, quadratic, order in DS becomes

H(2)
SA =

∫
dV

a3

[
1

2
a2J

(
∂ψα

∂r

)2

− DSaδS (n · ν)(n · ψ )

]
,

(33)

i.e., H(2)
SA = Eex + EDS . After integration one obtains

H(2)
SA = −ND2

S

6J

(
1 − ν4

x − ν4
y − v4

z

)
, (34)

whereas Eex = −H(2)
SA > 0 and EDS = 2H(2)

SA < 0. This result
is similar to that for the spherical particle [16] and differs from it
by the missing factor κ � 0.53. Adding the first-order effective
particle’s Hamiltonian, Eq. (3), one obtains

Heff = −NcoreDs2
z − Nh · s + H(1)

SA + H(2)
SA, (35)

where H(1,2)
SA are given by Eqs. (4) and (34), respectively. This

additive approximation does not take into account screening
and is good for not too large particle’s sizes, L � δ.
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FIG. 1. Energy landscape for the cubic particle with the surface
anisotropy in terms of the polar and azimuthal angles θ and ϕ:
Numerical and analytical results for the particle sizes L = 16, 32 and
the SA strengths DS = 0.1, 0.03. “Analytical” curves use Eq. (34)
while “Analytical, finite size” curves use Eq. (34) with the additional
factor (1 − 0.7/L)4.

VI. NUMERICAL RESULTS

Figure 1 shows the energy landscapes of cubic particles
of sizes L = 16 and 32 computed by the constrained energy
minimization as explained in Sec. IV together with the an-
alytical result of Eq. (34). There is a fair overall agreement
between the numerical and analytical results, although Eq. (34)
shows deeper energy minima. The discrepancy must be due to
finite-size effects. Indeed, each face contains only (L − 2)2

sites subject to the SA rather than L2 sites. This suggests
renormalization of DS as DS ⇒ D̃S = (1 − 2/L)2DS that
results in the additional factor (1 − 2/L)4 in H(2)

SA. However,
this renormalization would be too strong for the results in
Fig. 1 making the energy minima way too shallow. However,
there are edges working in the same directions as faces,
only weaker. Also the exchange interaction weakens near the
surfaces because of the missing neighbors. In the absence of
an analytical solution for the lattice problem, one can fit the
finite-size effect replacing the effective number of spins in the
face by (L − ς )2. The results of Eq. (34) with the additional

FIG. 2. Spin structures in a cubic particle of the size L = 32
for DS = 0.1, scans through middle of the particle. Upper panel:
particle’s magnetization direction (1, 1, 0) etc. Spins slightly canted to
lower the system’s energy in accordance with the analytical solution,
Eq. (27). Lower panel: particle’s magnetization direction (0, 0, 1).
Spins slightly turned toward the directions perpendicular to the right
and left surfaces as the result of the instability of the collinear state
(for L = 16 spins are still strictly collinear).

factor (1 − ς/L)4 with ς = 0.7 in H(2)
SA shown in Fig. 1 as

“Analytical, finite size” are closer to the numerical results than
the pure results of Eq. (34) labeled “Analytical.”

Whereas for L = 16 the numerical results for the two
different values of DS scale, for L = 32 there are visible
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FIG. 3. Energy landscape for prolate and oblate particles with SA.
The second-order effective anisotropy computed as H(2)

SA = Heff −
H(1)

SA is comparable with the first-order one. Upper panel: prolate
particle. Lower panel: oblate particle.

deviations from scaling. In particular, for DS = 0.1 the energy
of the (0, 0, 1) state is lowered due to the instability of the
collinear state in which spins near some surfaces turn by
90◦ under the influence of the SA. This can be seen in the
lower panel of Fig. 2. This state cannot be obtained within the
linear approximation. For L = 16 there is still no instability
and the (0, 0, 1) state is strictly collinear. On the other hand,
the (1, 1, 0) state in the upper panel of Fig. 2 is that given
by Eq. (27) and its numerically found magnetization is m =
0.9898 while Eq. (32) yields a close value m = 0.9858. Within
a typical experimental accuracy, these values are the same. On
the other hand, the magnetization in the unstable (0, 0, 1) state
for L = 32 is lower: m = 0.9680.

Numerical results for the energy landscape of prolate and
oblate box-shape particles with DS = 0.1 are shown in Fig. 3.
In this case there is the first-order contribution to the effective
anisotropy H(1)

SA given by Eq. (5). The second-order term can
be computed as the difference:H(2)

SA = Heff − H(1)
SA, whereHeff

is the numerically obtained particle’s energy. One can see that
the second-order term can be large enough to compete with

FIG. 4. Second-order effective anisotropy for cubic, prolate, and
oblate particles with SA. The result is practically independent of the
particle’s aspect ratio.

the first-order one. For prolate and oblate particles, H(2)
SA is

very close to the cubic-particle result, as shown in Fig. 4.
Figure 5 shows the energy landscapes for three different

particle’s sizes and three different values of DS for the core
anisotropy D = 0 and D = 0.01. In contrast to Fig. 1, the
energy is shown not scaled with D2

S . One can see that for
larger L and DS the barrier in the middle is flattened and
lowered because of the instability leading to the deviation from
the single-domain barrier state with all spins perpendicular
to the z axis. As the result of this instability, spins on one
side of the cube turn toward the z axis to lower the energy,
whereas spins on the other side turn in the opposite direction
[36]. Further increasing L results in forming a domain wall
in the middle of the particle, and the constrained energy
minimization fails. This state cannot be obtained within the
linear approximation. The lower panel of Fig. 5 shows the
energy landscape dominated by the core anisotropy, however,
strongly modified by the SA. Here, too, the uniform barrier
state is destroyed for large particles and strong SA.

Dependence of the particle’s magnetization on the particle’s
size L is shown in Fig. 6. The role of the core anisotropy D

is strikingly different for the energy-mimina and the energy-
barrier states. For D = 0 at the minima at (±1,±1,±1), the
magnetization deficit is growing with L according to Eq. (32),
so m goes down. However, for larger L the saturation state
is reached in which the surface spins are oriented according
to the SA (perpendicular to the surfaces near the surfaces for
DS > 0). In this state, instead of Eq. (27), ψ (r) [or, rather,
s(r) ] is a function of r/L only, independently of a. Thus m

becomes a geometrical constant m � 0.85 independent of L

andDS . Experiments on nanocubes in Ref. [19] show a stronger
demagnetization, m ≈ 0.7 that should be a consequence of the
surface oxidation. For D > 0, perturbations from the surface
become screened at the distance of the domain-wall width
δ = a

√
J/(2D). Thus on increasing L the magnetization m

at first decreases until L ∼ δ, then increases again because of
the screening. This is clearly seen in the upper panel of Fig. 6
where the extremely large values of L should be noticed.
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FIG. 5. Energy landscapes for cubic particles with the surface and
core anisotropies: Numerical results for the particle sizes L = 16, 20,
24 and the SA strengths DS = 0.1, 0.2, 0.3. For larger L and DS , the
barrier in the middle is lowered because of the instability leading to
deviations from the single-domain state. For even larger L and DS , the
result of the constrained energy minimization becomes multivalued.
Upper panel: D = 0. Lower panel: D = 0.01.

In the lower panel of Fig. 6, the magnetization in the
barrier state (110) is close to 1 for L small enough, while
the spin configuration is shown in the upper panel of Fig. 2.
Further increase of L causes instabilities of the surface spins
in the xy surfaces: For DS > 0 these spins turn perpendicular
to the surfaces parallel to the z axis. In the limit L → ∞
for D = 0, a state with s(r) depending on r/L only should
be reached, in which m is another geometrical constant.
However, D > 0 leads to the instability at smaller L with
the subsequent formation of a domain wall in the middle of
the particle. After that the constrained energy minimization
method fails, that’s why the D > 0 curves in the lower
panel of Fig. 6 could not be computed for larger L. To the
contrary, DS < 0 stabilizes surface spins in the xy planes,
so that the discussed instability does not happen for D = 0
and requires the values of D exceeding some threshold to
develop.

FIG. 6. Particle’s magnetization m vs its linear size L for DS =
0.1 and different values of the core anisotropy D. Upper panel: mag-
netization in the direction of the energy minimum, (1, 1, 1) for D = 0.
Here D > 0 stabilizes the quasicollinear state by screening the surface
perturbations. Lower panel: magnetization in the direction of the
energy barrier, (1, 1, 0). Here D > 0 destabilizes the quasicollinear
state because of the tendency to form a domain wall across the particle.

VII. SCREENING AND OTHER GENERALIZATIONS

In this section the results of Sec. V will be generalized
for the model with the uniaxial anisotropy and magnetic field.
Some calculations will be made for a parallelepiped particle
where the first-order effective surface anisotropy is present. In
the continuous approximation, the Hamiltonian has the form

H=
∫

dV

a3

[
a2J

2

(
∂sα

∂r

)2

−Ds2
z − h · s − DS

2
aδS (n · s)2

]
.

(36)

Using Eq. (21), from the first of equations (9) one obtains

0 = (ν + ψ ) × [h + 2D(νz + ψz)ez + a2J�ψ + hλ], (37)

where hλ is given by Eq. (16). The boundary conditions are
defined by Eq. (25). Substituting hλ and rearranging keeping
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only the linear-ψ terms, one arrives at

ν × [2Dψzez + a2J�ψ − hSA

− ν · (h + 2Dνzez + hSA)ψ] = 0. (38)

One can search for the solution in the form

ψ = ψ1ν1 + ψ2ν2, (39)

where ν1 and ν2 are unit vectors perpendicular to ν and to each
other, so that ν × ν1 = ν2. It is convenient to choose ν1 · ez = 0
and ν2 in the plane spanned by ez and ν. Then equations for ψ1

andψ2 decouple, and after some algebra one obtains Helmholtz
equations with sources

�ψ1 − κ2
1 ψ1 = ν1 · hSA

(40)
�ψ2 − κ2

2 ψ2 = ν2 · hSA,

where

κ2
1 ≡ ν · (h + hSA) + 2Dν2

z

a2J

κ2
2 ≡ ν · (h + hSA) + 2D

(
2ν2

z − 1
)

a2J
. (41)

Here κ2 > 0 corresponds to the exponentially decaying per-
turbations (screening), whereas κ2 < 0 describes proliferating
perturbations (antiscreening). For instance, for h = hSA = 0
and νz > 1/

√
2(θ < π/4) both κ2

1 and κ2
2 are positive and

the uniaxial anisotropy stabilizes the particle’s magnetization.
Larger deviations from the easy axis lead to κ2

2 < 0 and
destruction of the particle’s magnetization. For the source
terms in the case Nx = Ny ≡ N⊥ from Eq. (15) one obtains

ν1 · hSA = 0, ν2 · hSA = −2DS

N⊥ − Nz

N⊥Nz

νz

√
1 − ν2

z .

(42)

In the sequel, we consider cubic particles for which hSA =
0. The solution of Eqs. (40) can be searched for in the form

ψα = DS

aJ

Cαx cosh καx + Cαy cosh καy + Cαz cosh καz

κα sinh (καL/2)
,

(43)

where α = 1, 2 and ψ is defined by Eq. (39). This function sat-
isfies the Helmholtz equations, if the sum of the C coefficients
is zero. They can be determined from the boundary conditions,
Eq. (25). Using Eq. (26), one obtains

Cαx = fα (ν, n)|x=L/2 = νxναx

Cαy = fα (ν, n)|y=L/2 = νyναy (44)

Cαz = fα (ν, n)|z=L/2 = νzναz,

where ναx = να · ex , etc. One can see that

Cαx + Cαy + Cαz = ν · να = 0, (45)

as it should be. With the current choice of the vectors ν1 and
ν2, the explicit form of the C coefficients is

C1x = −C1y = νxνy√
1 − ν2

z

, C1z = 0, (46)

and

C2x = C2y = ν2
yνz√

1 − ν2
z

, C2z = −νz

√
1 − ν2

z . (47)

In the case κ = ik (the antiscreening case), Eq. (43) be-
comes

ψα = −DS

aJ

Cαx cos kαx + Cαy cos kαy + Cαz cos kαz

kα sin (kαL/2)
. (48)

At kα → 0 this expression is regular but it diverges at kαL →
2π . For instance, for h = 0 and νz = 0 in Eq. (41) one has
k2 = 1/δ, so that the particle’s size should satisfy L < 2πδ.
However, in the model with a uniaxial anisotropy there is
another stability criterion [36], L < πδ, for the same state with
the spin perpendicular to the easy axis—the barrier state. If this
condition is violated, then there is a finite ψ even in the absence
of the surface anisotropy. Thus, the divergence of the solution at
L = 2πδ is beyond the applicability range of the linearization
method. For D = 0, there is no corresponding instability, but
screening and antiscreening can be created by the magnetic
field. In this case, the point kαL = 2π can be approached, and
this defines the applicability of the method.

The energy of the particle at second order in ψ is given by
Eq. (33) with the additional term −Dψ2

z in square brackets.
The terms linear in ψ vanish because of Eq. (22). After some
algebra one arrives at the final result

Heff = −N
(
Dν2

z + h · ν
) − ND2

S

3J

[
ν2

xν
2
y

1 − ν2
z

F (κ1L)

+
(

ν2
z

(
ν2

x + ν2
y

) − ν2
xν

2
yν

2
z

1 − ν2
z

)
F (κ2L)

]

− L2

δ2

ND2
S

J
ν2

z

(
ν4

x + ν4
y + ν2

xν
2
y

)
FD (κ2L), (49)

where δ = a
√

J/(2D),

F (x) = 3

x

3 sinh (x) + x

cosh (x) − 1
− 24

x2
∼=

{
1 − x4

2520 , x � 1
9
x

− 24
x2 , x � 1

(50)

and

FD (x) = 1

x3

sinh (x) + x

cosh (x) − 1
− 4

x4
∼=

{
1

180 − x2

3780 , x � 1
1
x3 − 4

x4 , x � 1.

(51)

In the case of κ = ik one has to replace F (ikL) ⇒ G(kL),
where

G(x) = 24

x2
− 3

x

3 sin (x) + x

1 − cos (x)
(52)

has the same behavior as F (x) at x � 1 but diverges at x = 2π .
The last term in Eq. (49) is the cross-term originating from
−Dψ2

z in the integrand of the energy.
For D = 0, one has κ1 = κ2 = κ , and the energy simplifies

to

Heff = −Nh · ν − ND2
S

3J
F

(
L

a

√
h · ν

J

)

× (
ν2

xν
2
y + ν2

yν
2
z + ν2

z ν
2
x

)
. (53)
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FIG. 7. Hysteresis loops for H along the z axis, using the additive
effective particle’s Hamiltonian, Eq. (35), and the exact analytical
solution, Eq. (49), that depends on the ratio L/δ.

Here there can be screening or antiscreening because of the
magnetic field. For h = 0, Eq. (34) is recovered.

In the limit of κ1L, κ2L � 1, the second-order part of
Eq. (49) simplifies to Eq. (34). In this case, the first- and
second-order terms in the effective particle’s anisotropy are
additive. The leading correction term of order (L/δ)2 comes
from the cross-term in the energy with a small numerical factor.
The corrections from the terms with the function F are of order
(L/δ)4 with an extremely small numerical factor.

Energy landscapes plotted using Eq. (49) for L small
enough show very small deviations from the results obtained
using the additive effective Hamiltonian, Eq. (35). For larger L,
some deviations are seen but then, with the further increase of
L, the solution quickly diverges for the orientations having the
imaginary κ—near the barriers and opposite to the magnetic
field, where antiscreening occurs. As an example, hysteresis
loops for H along the z axis are shown in Fig. 7. The results
of the additive model do not depend on L/δ. The exact results
using Eq. (49) are very close to the latter for L/δ � 5. However,
for L/δ � 5 the solution diverges and the hysteresis loop
breaks down.

For the field along the z axis, the energy of the particle can
be minimized with respect to the azimuthal angle ϕ that yields
ϕ = π/4 and equivalent solutions. For these values of ϕ, one
can write down the compact expression of the energy in terms
of x ≡ cos θ . Equation (49) in the reduced form becomes

e(x) = −x2 − 2αx − 1
4β(1 − x2)[F (κ1L) + 3x2F (κ2L)]

− 9
4βx2(1 − x2)2L̃2FD (κ2L), (54)

where

e ≡ Heff

ND
, α ≡ h

2D
, β ≡ D2

S

3DJ
, L̃ ≡ L

δ
(55)

and

κ1L = L̃
√

αx + x2, κ2L = L̃
√

αx + 2x2 − 1. (56)

In the case of zero field and dominating uniaxial anisotropy,
the dimensionless energy barrier is given by

u = e(0) − e(1) = 1 − 1

4
β. (57)

It does not depend on screening and is the same as within
the additive approximation. To investigate the stability of the
state along the z axis, x = 1, one can expand e(x) in terms of
δx ≡ 1 − x. This yields

e ∼= −1 − 2α + 2[1 + α − βF (L̃
√

1 + α)]δx (58)

thus the energy minimum is stable for

1 + α

F (L̃
√

1 + α)
> β. (59)

For small particles screening is negligible, F ∼= 1, and one
obtains the condition 1 + α > β. For large particles, one uses
the asymptotic form F (x) ∼= 9/x that results in the condition
(1 + α)3/2 > 9β/L̃ that means a greater stability against the
surface effects parametrized by β. In the upper panel of
Fig. 7, β = 1, so that within the additive approximation the
energy minimum x = 1, i.e., mz = 1 exists for α > 0, i.e.,
H > 0. Screening in the exact solution makes this energy
minimum more stable, so that it disappears at the negative
field corresponding to α = (9β/L̃)

2/3 − 1, as can be seen in
Fig. 7. These results are also related to precession frequencies
near energy minima and can be important for the magnetic
resonance in magnetic nanoparticles [25,37].

VIII. THERMALLY-ACTIVATED
MAGNETIZATION SWITCHING

At low temperatures, the particle spends much time in
the vicinity of the energy minima, seldom switching to other
energy minima over energy barriers. The characteristic time
of the magnetization switching is important, for instance, for
memory storage applications. The theory gives the Arrhenius
thermal activation law for the escape rate,

� = �0e
−U/T , (60)

whereU is the energy barrier. In the case of a cubic particle with
the surface anisotropy only in zero field, the barrier between
the energy minima at (1, 1, 1) and (1, 1,−1) is at (1, 1, 0),
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and the value of the energy barrier following from Eq. (34) is
given by

U = ND2
S

36J
. (61)

Switching rates for the additive core-surface effective
anisotropy of magnetic particles within the single-spin model
were calculated analytically in Ref. [26] and analytically and
numerically in Ref. [27]. The ac susceptibility of assemblies
of magnetic particles taking into account the effective cubic
surface anisotropy and dipolar interaction between the particles
was studied in Ref. [28].

To test the predictions above for the simplest case of
a particle with the SA only, considered as a many-particle
system, computations using the recently proposed pulse-noise
method [38] of solving the stochastic Landau-Lifshitz equation
for a system of classical spins have been performed on cubic
particles of cubic shape. This method replaces a quasicon-
tinuous random field by equidistant pulses rotating all spins
by random angles around random axes. Between the pulses,
the deterministic Landau-Lifshitz equation is solved with an
efficient high-order differential-equation solver. The overall
speed of this method is defined by the latter, so the method
is fast and suitable for computing on many-spin systems.
Although the values of DS in these computations are negative,
it does not matter because the effect of DS is quadratic.
Switching was detected when any of the three magnetization
components changed its sign.

The results are shown in Fig. 8. In the upper panel, jumping
of the magnetization of a 4 × 4 × 4 cube between the eight
energy minima at a very low temperature is shown via the three
magnetization components. The behavior is typical for the
strong Landau-Lifshitz damping λ = 0.1 used in these com-
putations. The escape rates were computed with the method
explained in the appendix to Ref. [36] for the particle’s sizes
8 × 8 × 8 and 10 × 10 × 10 and different values of DS . The re-
sults shown in the lower panel of Fig. 8 are in a fair accord with
the theory, although the barriers given by Eq. (61) and shown by
the dotted line for the 10 × 10 × 10 particle with DS = −0.1
are too high. In fact, because of finite-size effects the barrier
given by Eq. (61) should be lower, as discussed in Sec. VI. Here,
replacing DS ⇒ D̃S = (1 − 1.3/L)2DS corrects the barriers,
as shown by the solid Arrhenius lines with fitted prefactors �0,
as even small temperature dependence of the barrier strongly
affects the prefactor and makes comparison with the theory
for the latter hardly possible. Even without these corrections,
one can see that the theory works comparing the slopes of the
temperature dependence for L = 10, DS = −0.1 and L = 8,
DS = −0.15. As the product L3D2

S is nearly the same in both
cases, the barriers should be nearly the same; that is indeed so,
as can be seen in the figure.

IX. DISCUSSION

The cubic magnetic particle turned to be an easier ob-
ject than the spherical particle for analytically calculating
the second-order effective surface anisotropy since the lin-
earized Laplace and Helmholtz equations for the deviations
from the collinearity can be solved directly without using
Green’s functions. This is, probably, a matter of luck since

FIG. 8. Thermally-activated switching of a magnetic particle with
SA, considered as a many-spin system. In all computations λ = 0.1.
Upper panel: An example of the time dependence of the particle’s
magnetization components for a 4 × 4 × 4 cube with DS = −0.1
at T = 0.002. (+++) means mx, my, mz > 0 etc. Lower panel:
Switching rate � vs the temperature for different particle’s sizes and
DS values. Dashed Arrhenius line is Eq. (61) for L = 10, DS = −0.1.
Solid Arrhenius lines contain finite-size corrections, see text.

the analytical solution found for the cube cannot be easily
generalized for a parallelepiped. On the other hand, the
solution for the parallelepiped should be close to that for the
cube as the numerically computed effective particle’s energy
is practically independent of the particle’s aspect ratio, see
Fig. 4.

The analytical solution found here allows us to study
the effect of screening of the surface perturbations at the
distances of the domain-wall width δ in the presence of the
uniaxial core anisotropy in the whole range of L/δ, where
L is the particle’s linear size. These results are useful near
the energy minima, where screening increases their stability.
On the other hand, closer to the energy barriers screening is
replaced by the antiscreening that leads to the instability of the
linearized solution found here. It was shown that for small and
moderate L/δ the effect of screening is very small, so that the
applicability range of the additive approximation for the terms
in the effective anisotropy is rather broad.
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Magnetic particle of a cubic shape can be an analytically
solvable model for other types of crystal lattices. It would be
worth it to investigate whether the sign of the effective cubic
anisotropy is opposite for the fcc lattice, as has been found
numerically for the spherical particles [18]. Another possible
extension is analytically solving the discrete problem on the lat-
tice instead of the Laplace equation in the continuous approxi-

mation since for small particles the finite-size effects are quite
pronounced.
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