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Nonreciprocal flexural dynamics of Dzyaloshinskii domain walls
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We revisit the description of ferromagnetic domain wall dynamics through an extended one-dimensional model
by allowing flexural distortions of the wall during its motion. This is taken into account by allowing the domain
wall center and internal angle to be functions of position in the direction parallel to the wall. In the limit of small
applied fields, this model accounts for the nonreciprocity in the propagation of wall modes and their stability in
the presence of the Dzyaloshinskii-Moriya interaction and in-plane magnetic field.
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I. INTRODUCTION

The dynamics of ferromagnet domain walls encompasses
a wide range of nonlinear phenomena. A prime example is
Walker breakdown, which represents the transition between
the steady state motion of a wall under applied fields or currents
and the precessional regime in which the wall motion is oscilla-
tory. Despite the complexity of the magnetic interactions and
dynamics governing individual moments in a given material
system, many of the salient features of domain wall motion
can be captured by a one-dimensional model in which the wall
center, u(t), and internal wall angle, ¢ (¢ ), are the only variables
that describe the dynamics [1,2]. For example, the magnetic
field dependence of the wall velocity predicted by the model
has been observed in in-plane magnetized wires [3].

Despite the utility of the one-dimensional model, a large
number of experimental observations cannot be accounted
for by this description. For example, magnetic disorder can
prevent the Walker transition from being attained or even
identified clearly [4], and leads to a low-field creep regime
where thermally activated processes are dominant [5]. Beyond
the creep regime, other deviations from the one-dimensional
picture have been observed in perpendicularly magnetized
ultrathin ferromagnets. Instabilities in the wall structure lead
to plateaus in the velocity versus field curves [6,7], which
are largely driven by incoherent magnetization precession
at the wall center [8]. Due to this incoherent precession,
Néel or Bloch lines are created within and move along
these domain walls, leading to periodic annihilation events
resulting in spin wave bursts [9]. A number of previous works
have addressed such shortcomings in different ways. For the
dynamics of vortex walls in in-plane magnetized systems,
an extended model has been developed that also accounts
for the internal dynamics of the vortex in addition to the
usual wall variables [10,11]. This approach is based on the
method of collective coordinates, which provides a framework
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to incorporate internal degrees of freedom (such as spin waves)
into the dynamics of the underlying spin texture [ 12—14]. Other
work has sought to account for flexural modes of the domain
wall, which can be excited during propagation and can lead
to clear deviations from the one-dimensional behavior [15].
Evidence of wall flexing has been obtained in low-moment
ferromagnets [16].

In ultrathin ferromagnets, the proximity of a strong spin-
orbit coupling material can give rise to an additional chiral in-
teraction of the Dzyaloshinskii-Moriya form [17-19]. Besides
favoring Néel-type domain walls at equilibrium [20-25], this
interfacial Dzyaloshinskii-Moriya interaction (iDMI) results
in the asymmetric nucleation [26] and growth of magnetic
domains in perpendicularly magnetized ferromagnetic films
under in-plane applied fields, where domain wall propaga-
tion is affected in the creep, steady state, and precessional
regimes [21,27-38]. With respect to internal modes, it has
also been shown that spin wave channeling by domain walls
can acquire a nonreciprocal character [39,40], which is similar
to behavior seen for magnetostatic spin wave modes induced
by dipolar effects [41]. Some theoretical work has been
undertaken to explore how the iDMI affects the wall motion in
the creep regime [42], but there remain open questions on its
role in the dynamics of flexural modes.

Here, we introduce an intermediate model between a full
micromagnetic description of a domain wall and the 1D
model [21]. We explicitly allow for a nonuniform propagation
of the domain wall, where the spatial dependence of the wall
center is taken into account. This model allows us to have a
more complete description of the domain wall dynamics. We
will focus on the bending motion of a straight domain wall
with the iDMI and in-plane field. To describe the dynamics
of the domain wall, especially at long wavelengths, we model
the evolution of the domain wall dynamics in a system with
perpendicular magnetic anisotropy and in the presence of the
iDMI. We also examine the effect of a small in-plane magnetic
field and pinning potentials.

The article is organized as follows. In Sec. II, we compute
the dynamics of the domain wall via a Lagrangian description
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FIG. 1. Geometry for the domain wall dynamics. The domain wall
is set at the center (dotted line). An anisotropy well where K, < K, ;
is used to model the effect of the pinning. The two functions ¢(y, t)
and u(y, t) parametrize respectively the in-plane angle and the domain
wall position. The red line is a schematic of the domain wall position
during an excitation.

of the magnetic texture. Our model is a direct extension of
the 1D model where the magnetization is supposed rigid. In
Sec. II1, we compare the obtained result for the flexural motion
with micromagnetic simulations. In Sec. IV, we discuss in
more detail the nonreciprocity of the flexural modes. Some
concluding remarks are provided in Sec. V.

II. DOMAIN WALL ENERGY AND DYNAMICS

We describe the energy and dynamics of a magnetic domain
wall in an ultrathin film in this section. Within the micromag-
netic description, the magnetization unit vector m = M/M;
can be described by the two spherical angles 6 and ¢,

m(9, ¢) = (sin b cos ¢, sin b sin ¢, cos H). (D

We consider a domain wall running along the y direction
that separates two magnetic domains along the x direction.
The magnetization within each domain is taken to point along
the z direction, perpendicular to the film plane. A schematic
illustration of this geometry is given in Fig. 1.

We assume that the component of the magnetization per-
pendicular to the plane, parametrized by the polar angle 8, can
be described by the usual profile,

O(x,y,t)= 2tan”! |:exp <%(y,t))j| 2)

where u(y,t) represents the domain wall center and A =
/A /K is the domain wall width, which remains constant.
A is the exchange constant and Kg is the perpendicular
anisotropy constant. Both 6 and ¢ are assumed to be uniform
across the film thickness along z. We also assume that ¢ is
uniform along the x direction, ¢ = ¢(y, t), and that the domain
wall remains close to a straight configuration (||du/dy|| < 1).

We now describe the different contributions to the magnetic
energy densities with this ansatz. The effective perpendicular
uniaxial anisotropy is given by

1
Eunis = Keged / sin9dx = and, 3)

where d is the film thickness and o¢g = 4,/ A K¢ is the Bloch
wall energy. This energy is independent of the displacement
u and the angle ¢. The exchange interaction energy density is

given by

Eex = Ad / [(VO)? + sin® (V) 1dx

1 du\® (9

- 200d|:1 " (ay) i (ay) } @
The (positive) squared derivative terms are a reminder that
the exchange energy favors a uniform configuration along the
transverse (i.e., y) direction. The sum of these two terms give
the usual domain wall energy, o, with additional contributions
to the wall elastic energy, proportional to (d,u)* and (3,¢)?,
which arise from small deformations from the straight wall
profile.

In perpendicularly magnetized films described by these two
magnetic energies only, domain walls are of the Bloch type
which minimize volume dipolar charges. Deviations from this
profile can appear when other interactions are present.

First, proximity of a strong spin-orbit coupling material
to the ferromagnetic film induces an iDMI, which can be
described by [21,43]

&p = Dd/[mZ(V m) — (m - V)m,]dx

u .
= —wDd <cos¢ — 5 sin ¢>, (5)

where D is the iDMI constant expressed in J/m”. One can
rewrite this equation as a function of ¢ + tan™! (du/dy) and
the length of the domain wall which shows that the iDMI
effective field [44] is always normal to the domain wall.

Second, applied magnetic fields can also modify the wall
profile. The effect of a magnetic field H can be separated
into two parts, an in-plane (//) and an out-of-plane (L)
component. The out-of-plane component results in domain
wall displacement and contributes to the total energy density
through the Zeeman interaction as

&z = —2poM,H,ud. ©)

In contrast, the in-plane component leads to changes in the
internal structure ¢ of the domain wall. In the limit of a
small applied in-plane magnetic field, vV H? + H; < Hg,
where Hy = 2K/ o M; is the effective anisotropy field, the
associated Zeeman term is

&z, = —mpuoMsAd(Hy cos ¢ — Hysing). (7

Note that as compared to the one-dimensional model [44]
we have an additional term proportional to d,u in the iDMI
energy, which is absent in the Zeeman energy. While part
of the iDMI energy can still be assimilated to an effective
magnetic field along the x direction, we note that the y
component of the effective field is linked to gradients in the
domain wall displacement u, d,u. This result may provide
a theoretical basis for asymmetric domain growth that has
been observed experimentally in the presence of in-plane
fields [27,29,32,34,42,45].

We approximate the dipolar interaction with a transverse
anisotropy term, &, . We assume that the domain wall profile
varies slowly compared to the domain wall width and consider
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flexural modes in the long-wavelength limit, kA <« 1. Under
this approximation, we can write [46]

W
&, = 2K Adcos |:¢ + tan™! <£)i| , (®)

where K| = (In 2)M0M3d /7 A accounts for the difference in
dipolar energy between the Néel and Bloch wall profiles [47].
We note that the dipolar interaction, like the iDMI, leads to
a coupling between the internal angle ¢ and deformations in
the wall, d,u. The dipolar interaction favors the Bloch profile,
where the magnetization at the wall center is tangent to the
domain wall, while the interfacial iDMI favors the Néel profile,
where the magnetization at the wall center is normal to the
domain wall. Finally, domain wall pinning due to material
inhomogeneities needs to be taken into account for realistic
systems. This can be introduced by assuming a quadratic
potential well of the form

Epin ~ Liu’d, ©)

where k characterizes the strength of the pinning potential. A
quadratic well will be valid only close to the pinning line. For
larger displacements of the domain wall we might consider the
real pinning landscape. This pinning landscape corresponds to
the convolution between the function describing the change
in anisotropy and the hyperbolic form of the Bloch domain
wall profile. For a line defect the pinning potential is the same
as in the 1D domain wall framework [48] where the pinning
potential of a line defect located at u is

Epintine = Vosech?[(u — ug)/Al. (10)

In the case of a point defect, we should use a similar function
for the pinning landscape and replace the distance u — ug by
the distance between the pinning center and the domain wall
coordinate. In this case a strong attractive pinning center will
tend to fix the domain wall at the pinning center.

For systems with uniform properties along the y axis, such
as the line anisotropy defect shown in Fig. 1, we can assume
that the equilibrium domain wall profile is also uniform along
this direction. As such, ¢(y) = ¢ and all spatial derivatives
in the domain wall position are vanishing, du/dy = 0. The
equilibrium angle ¢y can be determined by minimizing the
total energy. In the case where the in-plane field is applied
along the x direction, ¢y is given by [47]

T, wpuorMsH, <nwD/A—-2K,,
¢0= 0, MO?TMSHX >7TD/A+2KJ_, (11)

-1 2K, +7D/A+pomw M H, .
2 tan [\/ZKlinD/AimnMst , otherwise.

Depending on the in-plane field the domain wall structure
transforms from a right-handed Néel wall to a left-handed Néel
passing through a mixed Néel/Bloch wall.

We now discuss the dynamics of the domain wall as an
elastic line using Lagrangian formalism to derive the equa-
tions of motion of the domain wall. For spin dynamics, the
Lagrangian density for the spherical angles 6 and ¢ can be
written as [49,50]

M]‘/‘d/d)(l —cosf)dx — E[0, $], (12)

L=

where the first term on the right-hand side is the Berry phase
term and E(6, ¢) is the total energy density of the domain wall,
which is the sum of the different contributions given in Egs. (3)
to (8). By using the domain wall ansatz in Eq. (2), integrating
over x, and neglecting terms which are not relevant for the
dynamics of the system, we find

Md .

—pu — Elu, 1. (13)
14

Gilbert damping can be accounted for through the dissipation

function

L=-2

M,d . I
W =« 5 /(92 + ¢?sin® 0)dx, (14)
14
which, with the same ansatz, leads to the density
aM,Ad [ * .
Ws = : (—2 + ¢2). (15)
y A

The equations of motion correspond to the usual Euler-
Lagrange equations,

d oL d L AL dWs o a6
dt 3(u)  dy d(0yu)  du  3(du)

d dL  d L AL aWs _ an
dt 3(d,¢)  dyd(d,p) 3¢  I@B¢p)

Explicitly, this leads to the set of coupled nonlinear differential
equations,

2Ms ¢ Mo Ou 9%u
— + — — 00— —ntD—cos¢
y 0ot yA ot dy? dy

d
—2uoMst H, + xu — KLA[a—X sin2(x + ¢)sin2y
y

a d
—2cos2(x + ¢) —¢+—X cos’ x | =0, (18)
dy  dy
2M; 0 My 0 92
_ a S(XA_(ZS_4AA_¢
y 0t y ot dy?

d
+er<a—u cos ¢ + sin¢) — K1 Asin(2x + 2¢)
y

+ poMsm A(H, sing — Hy cos¢p) =0, (19)

where x = tan~!(du/dy). Note that we recover the usual
one-dimensional domain wall model [21] when the spatial
derivatives in u and ¢ are set to zero.

III. DISPERSION RELATION OF THE FLEXURAL MODE

In this section we focus on the dispersion relation for
the flexural dynamics of the domain wall derived from the
Lagrangian formalism in the previous section. We limit our
study to the case where the slope of the wall is small,
du/dy < 1, for large wavelengths, kA <« 1, and for small
applied in-plane fields along the normal to the domain wall,
H,, = H, <« Hg,. A first-order series expansion on the set
of two coupled differential equations is done over u(y, t) and
¢(y, t)around ¢ = ¢ and u = 0, where ¢y is the equilibrium
angle of the magnetization. We then look for the propagating
solutions of theses equations to get the dispersion relation w(k),
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which is found to be

w(k) = Qnr + /820, (20)

where Qng is linear with respect to the wave vector and is
responsible for nonreciprocal propagation,

QNR = wp k COS Py — kAw, cos 2. 21
2, describes the stiffness of the domain wall position,
Qu = o + wpin — (kA cos 2¢y, (22)

and € describes the stiffness of the angle ¢ of the magneti-
zation,

WD,k

Qp = wy + Ecosqbo + wp.x cOs Po — wy cos2¢y. (23)
The angular frequencies in Egs. (21) to (23) are given by [40]
YA ,
=2"—k", 24
wy M (24
wyD
= — k, 25
@pk =5 M. (25)
vK,
= , 26
W] M, (26)
b4
WHx = Eyuon, (27)
1yA
in = — . 28
Wp A K (28)

We note that this description provides a more accurate treat-
ment of the dipolar interaction at long wavelengths in compar-
ison to previous work [40,51,52], since we take into account
fluctuations in the wall position through the term 9, u.

The variation of the flexural mode frequency with applied
in-plane field, H,, and the wave vector, k, is presented in
Fig. 2. In this figure the saturation magnetization is taken to
be M; = 788 kA/m, the exchange stiffness A = 22.5 pJ/m,
the uniaxial anisotropy Ko = 641.5 kJ/m?, and the iDMI D =
0.28 mJ/m?. These values represent the material system W(3
nm)/CoFeB(1 nm)/MgO, as discussed in Ref. [35]. The disper-
sion relation allows us to identify instabilities in the straight
domain wall configuration assumed as the equilibrium profile.
Instabilities occur when the mode frequency vanishes, which
typically corresponds to a change in the equilibrium state. We
note that the uniform mode, k = 0, which corresponds to the
uniform displacement of the domain wall, is not necessarily the
eigenmode with the lowest energy. This can be seen in Fig. 2,
where there are two field intervals over which the straight
domain wall is unstable. Similarly to the case where the iDMI
is strong enough to create maze domain patterns [40], this
instability occurs for one propagation direction of the flexural
mode.

Unlike this case, here the domain wall energy is still positive
and the sign of the wave vector which leads to negative fre-
quency depends on the chirality of the domain wall and on D.
This instability is shown in Fig. 2, where the frequency reaches
negative values for wave vectors between 0 and 10 um™!
at around —50 mT and for —5 um~! <k < —1 um™! at
—20 mT. For an applied in-plane field value close to the field
value corresponding to the iDMI strength a straight wall is
stable. This result is surprising since one expects faceting

|J0Hx (mT)

20 10 0 10 20
k (rad pm™)

FIG. 2. Dispersion relation of the flexural motion of the domain
wall with respect to the in-plane field poH, normal to the domain
wall and the wave vector k, which propagates along the domain wall
[from Eq. (20)]. The wall is pinned in an anisotropy well with a width
of 80 nm. Contour lines are separated by 100 MHz and the black areas
close to —20 mT and —50 mT represent the (uoH,, k,) space range
in which the frequencies are negative, indicating straight domain wall
instabilities.

of the wall when the in-plane field compensates the iDMI
field [37,42]. We do not find such an instability here. This
is linked to the initial state that we have considered, where ¢
is constant in the initial configuration whereas for a curved
domain wall ¢ can vary along the domain wall. The two sides
of facets have opposite slope (du/dy) and opposite angle ¢. To
create facets the angle ¢ needs to go continuously from positive
to negative value. For this, the domain wall needs to overcome
an energy barrier which is linked to the dipolar interaction: a
straight domain wall configuration is a metastable state. The
dipolar energy has two opposite effects: it broadens the region
where a straight wall is metastable and it tends to increase the
stability of the domain wall in this region by increasing the
energy barrier. For example, if we do not consider the dipolar
interaction [Eq. (8)] the two regions of instability in Fig. 2
merge into one region which is centered close to the iDMI
effective field.

We compared the analytical model with full micromagnetic
simulations using MUMAX3 [53]. The simulation consists of a
domain wall pinned in an anisotropy well where the uniaxial
anisotropy is increased by 10% outside the well. The width of
the anisotropy well is taken to be 80 nm. The dynamics are
induced by a pulsed magnetic field, with a time dependence
given by a sinc function, along the z direction localized at
the center of the frame. The cutoff frequency of the pulse is
10 GHz and the region where the pulse is appliedis 4 x 80 nm?.
The simulation geometry is given by a rectangular window
with dimensions of 8 umx125 nm, which is discretized
with 2048 x 64 finite-difference cells. The layer thickness is
1 nm and periodic boundary conditions are applied along the
y direction (along the domain wall). The Gilbert damping
constant is set to « = 0.015. Other micromagnetic parameters
are given earlier and are the same as for Fig. 2.
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FIG. 3. Detail of the dispersion relation for an applied field
woH, = —10 mT. It corresponds to the 2D Fourier transform of
the function u 4 i A¢ with respect to the time and the y variable.
The blue dotted line corresponds to the dispersion relation given by
Eq. (20).

In order to compute the full dispersion relation we extract
the domain wall position, u(y, t), and the angle of the magneti-
zation at the domain wall center, ¢(y, t). Linear extrapolation
is used to obtain values of the displacement smaller than
the cell size. The dispersion relation is then computed from
a two-dimensional Fourier transform of the complex-valued
function u + i A¢, as shown in Fig. 3. It allows us to select
the proper branch in the simulated dispersion relation even in
the case when the frequency is negative. This is the case when
instabilities occur. At this applied field, when the straight wall
is unstable, the energy difference between a straight domain
wall and the relaxed state is small, and we can still perform
micromagnetic simulations starting from a non-fully-relaxed
state.

In systems with iDMI the boundary conditions are mod-
ified [39,54] which can contribute to pinning. In order to
estimate the frequency wpi, [Eq. (27)] linked to the pinning
potential acting on the domain wall, we analyze the wall
displacement with a small out-of-plane field. We focus on
the quadratic pinning potential, Eq. (9), and the Zeeman
interaction, Eq. (6). Then, we minimize these two energy terms.
The pinning potential is related to the out-of-plane field and
the wall position by

2uoMH,
K= —>*%,
u

(29)

The pinning potential is then obtained by a linear fit to the
positive field branch, as shown in the inset of Fig. 4. The pin-
ning exhibits a strong dependence with respect to the applied
field. Its variation is similar to the domain wall width [47].
When the applied field is opposed to the wall chirality the wall
width is slightly reduced [47] in our simulation; as the width
of the anisotropy well is larger than the wall width the pinning
is reduced. From the pinning strength the resonant frequency
can be estimated.

0.35

o o
=N

0.3}

|J0Hz (mT)

0.25¢

0.2t

K (J mm™)

0.15;

0.1
-100

100

FIG. 4. Variation of the pinning constant « as a function of the
in-plane applied field. The vertical lines delimit the different domain
wall configurations for the angle ¢. The inset shows one example of
the fitting between the out-of-plane field with respect to the domain
wall position. We deduce the position pinning from this linear fit and
from Eq. (29).

A comparison is given in Fig. 5 for the frequency of
the uniform k = 0 mode, which appears due to the uniform
pinning potential as illustrated in Fig. 1. An expression for this
frequency is given by

nyD
Wgap = \/a)pin (MZ—A cos ¢pg — W €08 2¢y + Wy x COS ¢o)-
N

(30)

0.5

0.4}

0 R . .
-100 -50 0 50 100
|~|0Hx (mT)

FIG. 5. Influence of the in-plane field on the frequency of the
uniform mode, i.e., at k = 0. The solid line is derived from the
model and circles are the result of micromagnetic simulations.
The vertical lines show the different internal angles ¢ of the domain
wall at equilibrium.
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FIG. 6. Illustration of the magnetization state for two opposite
propagation directions in the case of a Bloch wall where ¢y = /2.
The “+” and “—” represent the excess of virtual magnetic charges
which appear for k < 0.

Besides setting the pinning potential to zero (i.e., K, = K1),
the frequency of the uniform mode can also vanish when
the applied in-plane field leads to changes in the domain
wall profile. This can be seen in Fig. 5 at around poH, =
—20 mT and —50 mT, where transitions toward the two
different chiral Néel domain wall states occur. A very good
agreement is obtained between the analytical model and the
micromagnetics simulations, both for the critical fields and
the uniform mode frequency. The frequency of the uniform
mode is obtained from the dispersion relation computed from
the micromagnetic simulation. The parameter wy;, is obtained
from « as shown in Fig. 4.

In this section we have seen that an in-plane field allows
us to modify the resonant frequency. To properly describe the
dynamics of flexural motion of the domain wall in domain
walls at relatively low frequencies, i.e., in the sub-GHz range,
we have to consider the effect of pinning in the flexural
modes.

IV. NONRECIPROCITY OF THE FLEXURAL MODE

In this section we discuss the nonreciprocal behavior of
the flexural mode. In the absence of dipolar interactions [40],
the frequency difference between two counterpropagating spin
waves is proportional to the iDMI constant D. However, as
seen in Eq. (21), dipolar interactions also lead to an additional
nonreciprocity. While the contribution from the iDMI is peri-
odic with respect to ¢, the nonreciprocity related to the dipolar
interaction is m-periodic [see Eq. (20)] and vanishes when
¢ = /4. This is related to the fact that the dipolar contribution
does not depend on the domain wall chirality but rather on the
presence of volume dipolar charges (i.e., whether the wall is
of the Bloch or Néel type), whereas the iDMI is sensitive to
the domain wall chirality. If we consider a Bloch wall and
only the in-plane component of the magnetization, the two
counterpropagating waves lead to two different configurations
as sketched in Fig. 6.

To have a better picture of this we can consider Eq. (18)
where only the exchange interaction and the uniaxial
anisotropy are present. In this case the dispersion relation
reduces to w = wy [see Eq. (24)] and Eq. (18) reads.

M . 5
2—iwgd + k“opu = 0. 31
14

In frequency-momentum space this equation simplifies to ¢ =
i/ Au where the underline denotes the complex amplitude. We

(a)15 (b) O
~ > o™ 0.5
10 =1 3
o 9O 1 2 .
g D - g T, T
hr 5 //. - Z] ’ c
< Z=hd -1.5 .
r .
0 -2 -
0 100 200 300 400 100 200 300 400

k (rad/pm) k (rad/pm)

FIG. 7. (a) Evolution of the nonreciprocity with respect to the
wave vector. In this simulation the cell size is 0.97 nm. Red dots are
results from micromagnetic simulation, the solid red line corresponds
to the case where the iDMI is the only source of nonreciprocity, while
the dotted blue line corresponds to the approximation to our model
where the demagnetizing field is taken locally. The vertical line is for
k = 1/A. (b) Difference between the simulated nonreciprocity and
the contribution of the iDMI.

can see that ¢ and u have a constant /2 phase difference.
Similarly, the angle x, which is the angle defined by the
tangent of the domain wall, is given by x = iku.Fork = 1/A
and ¢y = £/2, the in-plane magnetization is tangent to the
domain wall. More generally, it leads to two different behaviors
depending on the sign of k. For k > 0, the angle ¢ and x are
in-phase while for the opposite direction, k < 0, they have
opposite signs. This will modify the effect of the dipolar
interaction for these two cases; when the magnetization tends
to be tangent to the domain wall the dipolar energy is reduced.
A similar effect occurs for the iDMI. These two interactions
(iDMI and dipolar) couple the tilting of the domain wall, x,
with the in-plane magnetization, ¢, and are at the origin of the
nonreciprocity. This is similar to a gyrotropic string which also
exhibits a nonreciprocal behavior [55].

In the case of the iDMI energy is smaller than or comparable
to the dipolar energy,

7D ~2In2uoM2d, (32)

we cannot neglect the dipolar interaction to describe accurately
the nonreciprocity. For kA « 1, the function Aw = w(k) —
w(—k) is linear with respect to the wave vector due to both
the dipolar and the iDMI contributions. As seen in Fig. 7
the nonreciprocity does not follow the same linear trend for
larger wave vectors. When the product kA is close to unity, the
dipolar contribution to the nonreciprocity reduces [Fig. 7(b)].
This might be due to the nonlocal component of the dipolar
field which is not included in our description. For larger wave
vector the slope of the function Aw seems dominated by the
contribution from the iDMI.

In order to have a closer look at the contributions of
the different energy terms to the nonreciprocity we have
considered the group velocity, defined by v, (k) = dw/0k, as a
function of the in-plane magnetic field. We consider only small
wave vectors for the group velocity as we assume the kA < 1
limit. We plot the mean group velocity for two opposite
directions (i.e., [vg(0") + v5(07)]/2) versus the applied in-
plane field in Fig. 8. The two components of the nonreciprocity
shown (dotted lines) depend on the in-plane field H,, which
provides a means to modify the nonreciprocity of the domain
wall flexural modes. Micromagnetic simulations are in good
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FIG. 8. Evolution of the group velocity for small wave vector with
respect to in-plane field o H, along the x axis. Circles are results from
micromagnetic simulation; the black line corresponds to the model.
The two dotted lines correspond to the iDMI and to the dipolar field
contribution to the wall excitation nonreciprocity.

agreement with the model in the long-wavelength limit. As the
nonreciprocity is mainly related to the domain wall structure,
as soon as the domain wall saturates in one configuration
a change in the applied in-plane field no longer modifies
the frequency nonreciprocity. Our analytical model allows an
accurate description of the nonreciprocity in this case. This
long-wavelength regime might be probed in Brillouin light
scattering experiments [56] where the wavelength probed is
on the order of few hundred nanometers.

For a system where the iDMI interaction is larger (but below
Dy = 4/m+/AKyr), the in-plane magnetic field needed to
modify the domain wall orientation can be close to the effective
anisotropy field. In this case our model cannot describe the flex-
ural modes quantitatively due to the tilting of the magnetization
in the domains and the modification of the domain wall thick-
ness [47]. For large iDMI, the field range where the domain
wall is at an intermediate position between Bloch and Néel is
suppressed but instabilities of the straight domain wall close
to the effective iDMI field are still present and develop toward
a specific direction depending on the chirality of the domain
wall. The two instability regions merge in a single larger region

where the straight wall is unstable and creates facets [37]. The
angle of the facets will increase as the magnitude of the iDMI
increases. The tilting of the magnetization in the domains will
also affect the demagnetizing field and the nonreciprocity in
the domain wall modes. We gain insight from Fig. 8 in seeing
that the simulated group velocity at k = 0 deviates slightly
toward positive values. Compared to the nonreciprocity in a
Damon-Eshbach configuration, where the magnetization lies
in the plane and the spin waves propagate perpendicularly
to the magnetization direction, the nonreciprocity is smaller
in domain walls. The nonreciprocal part of the dispersion
relation is 2Dky /M for Damon-Eshbach modes [57] and
7 Dky /(2M;) for domain wall modes. In the Damon-Eshbach
configuration nonreciprocity can also occur due to the dipolar
field, but it depends on the difference between the top and the
bottom interface and is proportional to the thickness [58]. The
nonreciprocity in the domain wall originates from a different
process which is due to the coupling between the wall tilting
angle and the magnetization of the domain wall center.

V. CONCLUSION

We have developed an analytical model for domain wall
dynamics beyond the one-dimensional model by allowing
for inhomogeneous displacements of the domain wall under
the influence of a magnetic field. In our model we have
supposed that the domain wall structure remains rigid while
the domain wall profile is allowed to bend. This description
of a flexible domain wall allows for a quantitative analytical
description of the flexural mode propagation in the domain
wall at long wavelengths. We show that both the interfacial
Dzyaloshinskii-Moriya and dipolar interactions contribute to
the nonreciprocity of the flexural mode. We have studied the
influence of an in-plane field on the domain wall dynamics,
which allows the band gap induced by domain wall pinning
to be tuned. This field can also induce instabilities in the
flexural mode propagation, which take place at the Bloch-Néel
transition. This change in the internal wall structure also
modifies the direction and the amplitude of the nonreciprocity
of the flexural modes.
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