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Spin superfluidity, i.e., coherent spin transport mediated by topologically stable textures, is limited by parasitic
anisotropies rooted in relativistic interactions and spatial inhomogeneities. Since structural disorder in amorphous
magnets can average out the effect of these undesired couplings, we propose this class of materials as platforms
for superfluid spin transport. We establish nonlinear equations describing the hydrodynamics of spin in insulating
amorphous magnets, where the currents are defined in terms of coherent rotations of a noncollinear texture.
Our theory includes dissipation and nonequilibrium torques at the interface with metallic reservoirs. This
framework allows us to determine different regimes of coherent dynamics and their salient features in nonlocal
magnetotransport measurements. Our work paves the way for future studies on macroscopic spin dynamics in
materials with frustrated interactions.
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I. INTRODUCTION

The idea of low-dissipation, topologically protected spin
transport emphasized here does not rely on the condensa-
tion of particle-like degrees of freedom, like in conventional
mass/charge superfluidity, but on the orientational dynamics
ascribed to certain forms of magnetic order [1]. Systems
where both phenomena coexist are, for example, superfluid
3He [2] and Bose-Einstein condensates of alkali atoms [3].
Recent advances in spintronics allow for the generation and
detection of spin supercurrents in solid-state systems. The
proposed platforms consist of electrically insulating easy-
plane (anti)ferromagnets [4–8], including the canted antifer-
romagnetic phase in the ν = 0 quantum Hall state of graphene
[9]. The spin superflow is hosted by a metastable spiraling
texture, whose dynamics can be triggered by spin-orbit torques
at an interface and subsequently detected via the reciprocal
pumping effects [5].

Akin to conventional superfluids, the collective spin flow
relies on the U(1) symmetry of the functional governing the
macroscopic dynamics. This symmetry, however, breaks down
in the presence of planar anisotropies. Collective macroscopic
transport is only possible beyond a certain current threshold, as
long as the strength of the easy-plane anisotropy exceeds that
of these detrimental perturbations [1,4]. Recent experimental
observations [10,11] suggest feasibility of such collective spin
transport in different classes of antiferromagnetic systems.
The practical importance of the U(1)-breaking anisotropies,
which are expected to be detrimental to spin conservation and
transport, however, is still not fully understood.

In this article, we exploit the fact that structural disorder
present in amorphous or polycrystalline materials can even-
tually frustrate these parasitic anisotropies in the exchange-
dominated limit for magnetic interactions. For example, strong
exchange interactions have been invoked to explain recent
nonlocal transport measurements in amorphous yttrium iron
garnet (YIG) [12]. We consider, in particular, noncollinear spin
textures below the freezing temperature that are smooth on
the (microscopic) scale of the grain size. This is the so-called

correlated spin glass (CSG) phase, which is schematically
depicted in Fig. 1(b) [13,14]. We describe the collective
spin dynamics in terms of a smoothly varying SO(3) order
parameter, subjected to topological constraints similar to those
of 3He-A [15] and the S = 1 ferromagnetic state of spinor
condensates [16]. The theory also applies to a broader class
of magnetically frustrated materials [17–19].

A. Correlated spin glass

Before we outline our main findings, let us describe the
physical scenario that we have in mind. The microscopic
interactions in amorphous magnets, particularly in rare-earth
transition-metal compounds, are usually described by the
Hamiltonian [20]

H = −J
∑
〈ij〉

Ŝi · Ŝj − D
∑

i

[ζ (�ri ) · Ŝi]
2, (1)

where Ŝi are the spin operators at positions �ri , separated by
the atomic distance a (the lattice constant of the original,
crystallographic material). J and D measure the strength of
the exchange and anisotropy couplings, respectively. The sign
of J is not relevant at macroscopic scales as long as it stabilizes
a collinear state (ferro- or Néel antiferromagnetic) in the parent
crystalline material below the ordering temperature, Tc ∼ J .
For our discussion, let us assume J > 0, so the exchange
interaction tends to order the spins (red arrows in Fig. 1)
ferromagnetically. The unit-length vectors ζ (�ri ) indicate the
direction of the local anisotropy axis (dashed lines in Fig. 1)
defined by the atomic arrangement around �ri . We assume that
the structural disorder of the magnet remains quenched and
that ζ follows a random distribution with no special preferred
direction, 〈ζ 〉 = 0. The components of these vectors can be
correlated over a few atomic sites, within the crystal grains of
typical size Ra, 〈ζα (�ri )ζβ (�rj )〉 ∼ e−|�ri−�rj |2/2R2

a δαβ .
In the crystalline material, the spins would be ordered along

the uniform easy axis, with domain walls of characteristic
width δdw = √

J/D a. Nevertheless, disorder in ζ breaks
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FIG. 1. Spin textures below Tf . (a) δdw < Ra : The spins (red
arrows) remain pinned to the anisotropy axes (dashed lines) defined
by the local atomic arrangement. Collective spin rotations cost energy.
(b) δdw > Ra : Exchange interactions stabilize a smooth spin texture
on the scale of the grain size. Collective spin rotations correspond to
soft modes. The hierarchy of length scales in this phase is shown at
the bottom.

the long-range magnetic order [21,22]. Below the freezing
temperature Tf � Tc, the system is generically a spin glass,
characterized by a nonzero value q of the Edwards-Anderson
order parameter [23],

qδαβ = 1

N

∑
i

〈
Ŝα

i

〉〈
Ŝ

β

i

〉
, (2)

where N is the total number of spins and 〈ς̂〉 denotes a statisti-
cal average. We can distinguish two different glassy phases
arising from the competition between the two mesoscopic
length scales of the model, Ra and δdw. When Ra > δdw, the
exchange interaction is predominantly frustrated and the local
magnetic moments remain pinned to the local anisotropy axis,
as sketched in Fig. 1(a). These textures receive the name of
speromagnet [24]. In the opposite limit, δdw > Ra , the CSG
spin texture is smooth on the scale of the correlation length
Rc ∼ Ra (δdw/Ra )4/(4−d ) > Ra , with d being the dimension-
ality of the system [13,14]. As depicted in Fig. 1(b), a uniform,
collective rotation of the CSG texture connects physically
distinguishable states with approximately the same energy. On
the contrary, rotations of the speromagnet always cost energy.
We are thus interested in the CSG regime appearing at not too
low temperatures below Tf , for which the magnetic medium is
expected to respond elastically to external perturbations [25].

B. Main results

Our main findings are synthesized in the equations of
motion describing the hydrodynamic flow of spin angular
momentum in the CSG phase:

ω = χ−1 m, (3a)

∂t m − A �∇ · �� + αsω = g

4π
(μ − h̄ω)δ(x). (3b)

Equation (3a) provides the constitutive relation between the
nonequilibrium spin density m and the angular velocity ω of
the order parameter, where the spin susceptibility χ plays the
role of the moment of inertia. Equation (3b) must be interpreted
as the continuity equation for the spin density, accounting for
losses due to dissipative processes in the bulk (parametrized by
the Gilbert damping constant α in the parent crystallographic
material [26], where s ≈ h̄S/ad and S is the length of the
microscopic spin operators) and at the interface (located at
x = 0 for concreteness). The latter is described by the source
term on the right-hand side, where μ is the spin accumulation
in the metal and g is a generalized spin-mixing conductance
[27]. The spin current is found to be

�J = −A �� = − iA
2

Tr[R̂T L̂ �∇R̂], (4)

where �� describes the spatial variation of the collective spin
rotation R̂ defining the instantaneous state of the magnet and
A ≈ Ja2−d is the stiffness of the order parameter, which
maintains the spatial coherence of such rotation along the
sample. Here, L̂ is a vector containing the generators of SO(3)
with matrix elements [L̂α]βγ = −iεαβγ .

We apply this set of equations to the device geometry
usually utilized in nonlocal transport measurements [12,28].
As depicted in Fig. 2, we focus on two specific configurations
defined by whether the heavy-metal contacts are deposited on
the lateral sides of the magnet [panel (a)] or on top of it [panel
(b)]. In open geometries, the precession of the spin texture
manifests itself as a drag signal decaying algebraically with
the length of the film, in contrast to the exponential decay of
(incoherent) magnon currents [28]. In the linear response, the
heterostructure is characterized by the resistivity (defined by
the ratio of the detected voltage, per unit length, to the injected
current density)

drag = (n̂i · n̂d )
ϑiϑdRQ

td
(
gi + gd + 4παsLt

h̄

) , (5)

where RQ = h/2e2 ≈ 12.9 k� is the quantum of resistance,
ϑi(d ) is the spin Hall angle in the injector (detector) metal, td
is the thickness of the detector strip, and Lt is the distance
between terminals. The prefactor determines the sign of the
drag effect, which is negative for lateral terminals (n̂i = −n̂d =
x̂) and positive for terminals on top (n̂i = n̂d = ẑ). Deviations
in the sign might reveal the presence of parasitic signals, like
current leakage from the injector to the detector.

In close geometries (insets of Fig. 2), the coherent spin
dynamics induces a nonlocal correction to the effective re-
sistivity that depends on the configuration of the external
circuit. For Pt contacts, the resultant magnetoresistance is
about 10% at room temperature. Furthermore, we argue that
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FIG. 2. Two-terminal geometries for the generation and detection of coherent spin transport in amorphous magnets. The precession of the
CSG state (red arrows) along the spin accumulation μ (green arrows) is depicted as a rotating triad of vectors, which represents the internal
spin frame of the texture adapted to the instantaneous state of the magnet. In the case of lateral contacts, there is a nonlocal correction to the
effective resistivity of the metals when the external circuit is closed in series (a1), whereas the texture remains static when the circuit is closed
in parallel (a2). This is just the other way around when the contacts are on top of the sample, since the sign of the drag changes in that case.

in short enough devices the spin currents are stable due to
the topology of the order-parameter manifold, the group of
proper rotations; in particular, current states are classified in
two distinct topological sectors. Spin supercurrents, however,
are only stabilized in the thermodynamic limit by additional
easy-plane anisotropies, i.e., when the random anisotropy
axes ζ lie predominantly within the plane of the film. This
anisotropy may arise due to applied/growth-induced strain or
electrical gating. In that case, the supercurrents decay through
thermally activated 4π -phase slips, which would be manifested
in nonlinear interference effects [29].

The rest of the article is structured as follows. In Sec. II,
we derive the Lagrangian describing the macroscopic spin dy-
namics in the CSG phase, from which Eqs. (3) are obtained. In
Sec. III, we apply these equations to study the linear response of
the systems in the two-terminal geometry of Fig. 2. Section IV
deals with the topological stability of the spin supercurrents
and their degradation by phase slips. Section V contains final
conclusions and suggestions for experiments. Some technical
details are given in Appendices A and B.

II. MACROSCOPIC DYNAMICS

The dynamics in the CSG phase is glassy, characterized by a
rough landscape of free-energy minima [30]. We are interested
only in nonequilibrium macroscopic deviations for which the
system remains within a given (local) minimum basin. The
latter is defined by the initial state G of (mutual) equilibrium
of the magnet in contact with metallic reservoirs and negligible
macroscopic magnetization. From this point forward, we
approximate the statistical averages in Eq. (2) by the (quantum-
mechanical) expectation value 〈ς̂〉G = Tr(ς̂ ρ̂G), where ρ̂G

represents the density-matrix operator of state G.
Following the conventional program in hydrodynamics

[31], we also consider states G′ = gG generated by the
symmetry operations that connect physically distinguishable
spin configurations with the same energy [32], i.e., the group
of proper rotations in the present case, g ∈ SO(3). Note that
there may be other states G′′ with approximately the same free
energy that are not connected to G by a proper rotation, for
example, a spatial or time inversion. We assume that these
states are disconnected by large free-energy barriers, so if

the system is initiated in G, there is a negligible probability
of reaching a different minimum basin G′′. Macroscopic
deviations from equilibrium are described then by ρ̂neq(t, �r ) =
Û (t, �r )ρ̂G Û †(t, �r ), where Û (t, �r ) is a slowly varying (in the
scale of Rc) SU(2) spin rotation.

A. Coarse-grained Lagrangian

Following Halperin and Saslow [33], we introduce the one-
body operator

R̂αβ (�r ) ≡ 1

qN�r

∑
i∈V�r

〈
Ŝ

β

i

〉
G
Ŝα

i . (6)

Here, N�r is the number of spins contained in V�r , the volume
element around �r defining our coarse-graining procedure,
such that N�r ≡ V�r/(Rc )d � 1. Note that we have divided
the above operator by the equilibrium value of the Edwards-
Anderson order parameter introduced in Eq. (2). For smooth
deviations we have 〈R̂αβ (�r )〉neq = Rαβ (t, �r ) + O(1/

√
N�r ),

where Rαβ (t, �r ) are the matrix elements of the SO(3) rotation
associated with Û (t, �r ). In order to describe the dynamics of
this order parameter, we have to introduce also auxiliary fields
related to the infinitesimal generators of spin rotations,

m̂(�r ) ≡ h̄

V�r

∑
i∈V�r

Ŝi . (7)

By construction, the macroscopic spin density is zero at equi-
librium, 〈m̂(�r )〉G = 0 + O(1/

√
N�r ), while nonequilibrium

deviations, 〈m̂(�r )〉neq ≡ m(t, �r ), vary smoothly on the scale
of V�r , |m(�r )|  s.

The dynamics of these variables is governed by the phase-
space Lagrangian density [34]

L[m, R̂] = m · ω − A
4

Tr[∂μR̂T ∂μR̂] − |m|2
2χ

, (8)

where summation over repeated spatial indices (μ) is implicit.
The first term enforces the conjugacy relations between R̂

and m, the latter playing the role of the canonical angular-
momentum density, m ≡ ∂L/∂ω [35]. The angular velocity is
defined through the equation of motion for the unitary rotation,
i∂t Û = (ω · Ŝ) Û ; introducing the associated SO(3) matrix and
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inverting this relation yields the compact expression

ω = i

2
Tr[R̂T L̂ ∂t R̂]. (9)

Note that the conjugacy relations between our hydro-
dynamical variables that follow from the above La-
grangian correspond to the classical limit {ς1(�r ), ς2(�r ′)} ≡
−(i/h̄) 〈[ς̂1(�r ), ς̂2(�r ′)]〉neq of the commutation relations be-
tween local (coarse-grained) quantum operators:

{mα (�r ), Rβγ (�r ′)} ≈ εαβλ Rλγ (�r )δ(�r − �r ′). (10)

The last two terms in Eq. (8) correspond to a phenomeno-
logical expansion (up to quadratic order) of the free-energy
cost of deviations from equilibrium within a given minimum
basin [36], which for the CSG can be coarse-grained from the
Hamiltonian in Eq. (1), adhering to the hierarchy of length
scales sketched in Fig. 1. Spatial variations of R̂(t, �r ) have a
cost in exchange energy provided by the stiffness of the SO(3)
order parameter, A, ultimately related to Tf (and therefore
corresponding to a fraction of Ja2−d ). The last term accounts
for the free-energy cost of a macroscopic (on a scale larger
than Rc) spin density in the CSG phase, inversely proportional
to its spin susceptibility [14],

χ ≈ h̄2(Rc/Ra )d/2

Dad
. (11)

Note that the last term incorporates the effect of both the
strength D and spatial distribution (through Ra) of the random
anisotropy.

Integration out of the slave variable m in Eq. (8) yields the
following Lagrangian of an O(4) nonlinear σ model [37],

L = 1

4

∫
d�r(χ Tr[∂t R̂

T ∂t R̂] − ATr[∂μR̂T ∂μR̂]
)
, (12)

which also describes the macroscopic dynamics of multilattice
antiferromagnets in frustrated lattices [17–19]. In its linearized
version, this model yields three independent soft modes with
velocity c = √

A/χ [33,35].

B. Dissipation and interfacial torques

Dissipation can be introduced by means of a Rayleigh
function R. We cast the power density dissipated in the bulk
of the magnet as a quadratic form in ω, Pbulk = 2Rbulk =
αsω2. The dimensionless parameter α can be assumed to
be close to the Gilbert damping constant [26] in the par-
ent crystallographic material. We also consider spin-transfer
torques and enhanced dissipation at the interface with a normal
metal. The interfacial dissipation rate per unit of area can be
generically written as P̄int = ωT ĝ ω, where ĝ is a symmetric
3 × 3 matrix parametrizing the heat flow from the magnet
into the metal [27]. Diagonalization of this matrix provides
three non-negative damping parameters associated with the
rotations along the principal axes of the interface, which define
a natural laboratory frame to study the spin dynamics. The
eigenvalues of the kernel ĝ generalize the concept of spin-
mixing conductance and, like in the case of collinear magnets,
they admit a microscopic expression in terms of the reflection
coefficients of the interface [27].

In the presence of a nonequilibrium spin accumulation μ,
the energy flow across the interface is modified by the work

exerted by itinerant electrons on the magnetic system: we have
to substitute ω by ω − μ/h̄ in the expression for P̄int, since the
system is in a state of mutual dynamic equilibrium when h̄ω =
μ [38]. In the limit of exchange-dominated interactions we
assume isotropy in spin space [as in Eq. (8)], ĝ = g1̂, and hence
the interfacial Rayleigh function for the CSG phase becomes

R̄int = h̄g

8π

(
ω − μ

h̄

)2
. (13)

III. NONLOCAL TRANSPORT

The equations of motion (3) are derived from the modified
variational principle δςL = δς̇R. Integrating Eq. (3b) over
an infinitesimal volume around the interface generates the
boundary condition for the spin current,

n̂ · �J = g

4π
(μ − h̄ω), (14)

where n̂ denotes the normal vector (to the metallic interface)
inwards the magnet.

We apply now these equations to the device geometry of
Fig. 2. Note first that we may interpret m/χ in the right-hand
side of Eq. (3a) as the analog of the chemical potential in the
Josephson frequency relation of mass superfluids. Therefore,
the angular velocity must be uniform and constant in the steady
state. In the open configuration, the charge current �j flowing
within the left terminal (injector) induces a nonequilibrium
spin accumulation μ at the interface via the spin Hall effect,
setting a coherent precession of the disordered texture. The spin
accumulation must be determined self-consistently by solving
the charge/spin continuity equations at the metal subjected to
suitable boundary conditions. We expect the spin accumulation
to be exponentially localized at the interface, in a length scale
of the order of the spin-diffusion length in the metal that we
assume much shorter than the terminal thickness. In this limit,
and assuming that the metal behaves as a perfect spin sink, the
spin current injected into the magnet reads [39]

n̂i · �Jα = h̄ϑi

2e
(n̂i × �j )α − h̄g

4π
ωα. (15)

With no external bias applied to the right terminal (detector),
Onsager reciprocity dictates the onset of a (charge-pumping)
electromotive force of the form Ei = (h̄ ϑd )/(2etd )(ω × n̂d )i
[39]. The heterostructure is then characterized by the drag
resistivity in Eq. (5). By taking typical values of α =
10−4, s/h̄ = 1028 m−3, ϑ = 0.1, and gL/R = 1018 m−2 for
Pt|YIG interfaces [40], we estimate |d | ≈ 10−2 μ� cm for
t ≈ 10 nm and Lt = 10 μm. As a result, nonlocal voltage
signals in the range of Vnl ≈ 0.1 mV could be achieved for
Pt-contact lengths of 1 mm and j = 109 A/m2, the current
densities applied in Ref. [12].

Alternatively, the external circuit can be closed, as sketched
in the insets of Fig. 2, leading to a nonlocal magnetoresistance.
When the spin accumulations are opposite, the texture remains
static and there is no correction to the effective resistivity of the
metals. On the contrary, if the spin accumulations are parallel,
the pumping electromotive force in favor of the external
battery reduces the effective resistivity by ρm = −2|ρdrag| =
−ϑ2RQ/t (g + 2παsLt/h̄) (assuming identical interfaces for
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FIG. 3. (a) Unit-radius cross sections of the quaternion hyper-
sphere represent all possible rotations by angle φ around n. Antipodal
points correspond to equivalent rotations, (φ, n) and (2π − φ,−n).
(b) Current states of even winding are mapped to loops starting and
ending at the same point. The texture can be smoothly deformed into
the ground state. (c) Current states of odd winding are mapped to
loops starting and ending at antipodal points. The minimum winding
|ν| = 1 cannot relax (smoothly) into the ground state.

simplicity). From the previous estimates we obtain ρm ∼
μ� cm for Lt  h̄g/2παs � 0.1 μm.

IV. TOPOLOGICAL STABILITY

The onset of a coherent spin precession does not exclude
the possibility of spin-current degradation by (thermal) fluctu-
ations. We can speak of spin supercurrents only if there is an
energy gap of topological origin that precludes the relaxation
of the current into a uniform state. In this section, we analyze
the topology of the order-parameter manifold SO(3) and the
proliferation of phase slips in macroscopic devices.

A. Order-parameter manifold

The topology of SO(3) is better understood through quater-
nions: a proper rotation R̂ is represented by two 4-dimensional
vectors q = (w, v) and −q satisfying ω2 + |v|2 = 1; see
Appendix A. The SO(3) manifold is then homeomorphic to
the topological space of lines passing through the origin in
R4, or equivalently, the unit hypersphere with antipodal points
being identified as the same. This hypersphere can be depicted
via spherical sections, where one of the components remains
constant. Quaternions lying on this section are of the form
q = (cos φ/2, sin φ/2 n), describing physical spin rotations by
angle φ around axis n; see Fig. 3(a).

The coherent precession of the spin texture along a fixed
axis (defined by the spin accumulation μ in the adjacent
metals) can be mapped to a geodesic loop, as represented in
Figs. 3(b) and 3(c). We consider fixed boundary conditions in
the geometry of Fig. 2(a). When the external circuit is closed
in parallel, the spin texture at the left/right terminal remains
fixed to a (quasi)static state of mutual equilibrium with the
lateral contacts. The internal spin frame of the texture (rep-
resented by a triad in Fig. 2) rotates by an angle �φ = 2πν

between terminals, where ν is the winding of the corresponding
rotation. States with even winding number (i.e., rotating a
multiple of 4π ) correspond to loops beginning and ending at
the same point, as illustrated in Fig. 3(b). These loops can be
smoothly deformed (i.e., they are topologically equivalent) to
a single point, and therefore they always relax into the ground
state in the absence of additional anisotropies. Current states
with odd winding correspond to loops beginning and finishing

at antipodal points, as represented in Fig. 3(c). This constraint
implies that a state with winding ν = 2n + 1 can decay to
a state with winding ν = 2n − 1, with n an integer, but not
to the ground state. This parity distinction is traced to the
fundamental group of the order parameter, π1(SO(3)) = Z2.

Since the order-parameter manifold is not simply con-
nected, we could argue that in short enough devices a spin
current of the order of 2π A/Lt (|ν| = 1) is stable. Super-
current states in the thermodynamic sense, however, are only
stable in the presence of additional easy-plane anisotropies, as
we analyze next.

B. Phase slips

In thin films like the ones considered in Fig. 2, rotations that
remove the spins from the plane of the film may have an extra
free-energy cost,

Fan = K
2

(
v2

x + v2
y

) = K
2

sin2 β

2
. (16)

The last expression corresponds to a parametrization of SO(3)
matrices in terms of proper Euler angles,

R̂[α, β, γ ] = e−iαL̂z e−iβL̂y e−iγ L̂z . (17)

The total (static) free-energy density of the CSG reads then

F[φ, θ, χ ] = A
2

[sin2 θ ( �∇φ)2 + cos2 θ ( �∇χ )2]

+ 2A( �∇θ )2 + K
2

cos2 θ, (18)

where we have introduced the following angular variables: φ ≡
α + γ, χ ≡ γ − α, and θ ≡ (π − β )/2. Only spin rotations of
the form R̂z[φ] = e−iφL̂z are soft, whereas the other two modes
develop a gap, ωx,y = c

√
|�q|2 + ξ−2; here ξ = 2

√
A/K is

a characteristic length scale associated with the remanent
anisotropy.

Consider, for example, the situation in Fig. 2(a). The z-spin
supercurrent injected by the spin accumulation μ ∝ z, �Jz =
−A �∇φ, becomes energetically unstable when the superfluid
phase changes in space faster than 2/ξ . This criterion defines
the Landau critical current∣∣ �J c

z

∣∣ = 2A/ξ =
√
AK, (19)

above which the energy barrier for the proliferation of smooth
(i.e., coreless) phase slips goes to zero; see Appendix B.
Figure 4 shows the most probable phase-slip events in the case
of long terminal separation, Lt � ξ , consisting of excursions
of the order parameter along a spherical section parametrized
by a constant value of χ . The changes in phase take place on
a scale of ξ and are always a multiple of 4π .

V. DISCUSSION

Landau’s criterion is a necessary but not sufficient condition
for the stability of the spin superfluid. Phase slips can be
thermally activated and monitored as jumps in the magne-
toresistance when the external circuit is closed in parallel (in
series for the on-top configuration) [41]. On the other hand,
jumps of 2π in the superfluid phase are only possible due to the
proliferation (nucleation and expansion) of vortex disclinations
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FIG. 4. Degradation of spin supercurrents in amorphous magnets. In panel (a), a supercurrent state with even winding (i) decays to the
ground state (iii) through a 4π -phase slip (ii) taking place in the macroscopic length scale defined by the remanent easy-plane anisotropy. Panel
(b) shows the analogous process for supercurrents with odd winding, which only relax into the ground state by proliferation (nucleation and
expansion) of disclinations in the order parameter (Z2 vortices shown in Fig. 5).

in the order parameter, as represented in Fig. 5. These topo-
logical defects are characterized by a Z2 charge, expressing
a fundamental difference between odd and even vorticity: in
the former case, the SO(3) order parameter is not properly
defined within the core, while in the latter case the singularity
in φ is avoided by a smooth rotation of the texture, like the
4π vortices in 3He-A [42]. The core radius corresponds to a
mesoscopic scale not captured by the macroscopic Lagrangian
in Eq. (8). When the superfluid phase changes on lengths
comparable to this mesoscopic scale, the system is no longer
robust against the proliferation of disclinations, or in other
words, our coarse-graining procedure breaks down.

FIG. 5. (a) Z2 (singular) vortex. The dashed lines represents the
essential branch cut where the SO(3) order parameter (represented
as a tetrad of vectors) is multivalued [antipodal points of the SO(3)
hypersphere are identified there]. (b) 4π (coreless) vortex. The
singularity is avoided by smooth rotation of the texture on the scale
of ξ . (c) A Z2 vortex crossing the superfluid streamlines induces
2π -phase slips.

In conclusion, we have established the nonlinear equa-
tions governing the macroscopic spin dynamics of insulating
amorphous magnets in contact with metallic reservoirs. The
onset of a coherent precession of a smoothly disordered,
noncollinear spin texture can be detected as a long-ranged
drag signal and related magnetoresistance effects in nonlocal
transport. A remanent easy-plane anisotropy in the CSG state
stabilizes spin supercurrents in the thermodynamic limit. These
currents decay through thermally activated 4π -phase slips,
characteristic of the emergent SO(3) order parameter. The
4π - vs conventional 2π -phase slips can be revealed through
the superfluid interference in a loop geometry, doubling the
periodicity of the critical current as a function of the control
parameters, as discussed in Ref. [29].
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APPENDIX A: QUATERNION REPRESENTATION

Unit-norm quaternions (so-called versors) provide a conve-
nient parametrization of rotation matrices: since SU(2) is the
universal (double) covering of SO(3) and also isomorphic to
the unit hypersphere in R4, we can represent a generic SO(3)
rotation via a 4-component unit vector q = (w, v) according
to

Û = w1̂ − iv · σ ≡ w1̂ − ixσ̂x − iyσ̂y − izσ̂z, (A1)

where σ = (σ̂x, σ̂y, σ̂z) is the vector of Pauli matrices and
v = (x, y, z) denotes the vectorial (imaginary) part of the
quaternion. Note that det Û = 1 is equivalent to w2 + v2 = 1.
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The SO(3) matrix R̂ associated with Û ∈ SU(2) reads as

Rαβ = 1

2
Tr[σ̂α Û σ̂β Û †] (A2)

= (1 − 2|v|2)δαβ + 2 vαvβ − 2 εαβγ w vγ . (A3)

Note that both q and −q parametrize the same R̂, so that
SO(3) ∼= RP3, i.e., S3 with antipodal points being identified
as the same.

The set {1̂,−iσ̂x,−iσ̂y,−iσ̂z} defines the basis of the
(vector) space of quaternions q over the real numbers, with
the usual Hamilton product:

q1 ∧ q2 ≡ (w1w2 − v1 · v2, w1v2 + w2v1 + v1 × v2), (A4)

which is inferred directly from the algebra of Pauli matrices.
Addition and multiplication by real numbers are as in R4.
The adjoint of q = (w, v) is q∗ = (w,−v), so that the norm√

q∗ ∧ q (=1 in this case) is a real number. The Hamilton
product provides a representation of the matrix product in
SO(3): q∗ corresponds to R̂T and R̂1 · R̂2 corresponds to q1 ∧
q2. Furthermore, the rotation of a vector u ∈ R3 also admits
a simple expression in terms of versors, R̂ · u = q ∧ u ∧ q∗,
with u = (0, u) denoting the embedding into the (vector) space
of imaginary quaternions.

The Lagrangian (12) can be written in terms of versors as

L = 2
∫

d�r (χ ∂tq∗ ∧ ∂tq − A ∂μq∗ ∧ ∂μq). (A5)

The analogy with bipartite antiferromagnets is clear by noting
that the versor q plays the same role as the staggered magne-
tization n in the expressions for the spin current,

�J = 2A q∗ ∧ �∇q, (A6)

where the Hamilton product replaces the cross product in �J ∼
�∇n × n. Analogously, the angular velocity reads as

ω = 2 ∂tq ∧ q∗. (A7)

APPENDIX B: LOCAL MINIMA AND SADDLE-POINT
SOLUTIONS

Local minima solutions of the free energy in Eq. (18) are of
the form

φ(s) = φ0 + kνs, (B1)

with the boundary conditions defined by the winding ν as

�φ = kν� = 2πν. (B2)

Here s ≡ x/ξ is the position in between terminals and � ≡
Lt/ξ denotes the separation in reduced units. These solutions
correspond to metastable superfluid states with persistent z-
spin current | �Jz| = Akν/ξ .

The saddle-point solutions depicted in Fig. 4 correspond to
phase slips localized at the middle of a long magnetic wire.
Their expressions are given by

φ(s) = φ0 + k̄νs + 2 arctan

√
4 − k̄2

ν tanh
√

4−k̄2
ν s

2

k̄ν

, (B3)

θ (s) = arccos

⎡
⎣

√
1 − k̄2

ν

4
sech

⎛
⎝

√
1 − k̄2

ν

4
s

⎞
⎠

⎤
⎦, (B4)

χ (s) = χ0, (B5)

where χ0 labels the spherical section and k̄ν satisfies the
following equation inferred from the boundary conditions:

k̄ν� + 4 arctan

√
4 − k̄2

ν tanh
√

4−k̄2
ν �

4

k̄ν

= 2πν. (B6)

The solutions of this equation verify kν−2 < k̄ν < kν . Note
also that the z component of the spin current in this state
reads | �Jz| = A sin2 θ∂xφ = Ak̄ν/ξ . We see then that phase
slips decrease the current, connecting superfluid states with
winding numbers ν and ν − 2. The energy barriers that prevent
these events can be estimated from the difference in free energy
of these solutions,

�Eν = AS
ξ

⎛
⎝k̄2

ν� − k2
ν� + 8

√
4 − k̄2

ν tanh
�

√
4 − k̄2

ν

4

⎞
⎠,

(B7)

where S is the interface area. There are other events localized
around different points of the wire, but we can neglect them in
our energetic analysis. These barriers vanish when

∣∣kc
ν

∣∣ = ∣∣k̄c
ν

∣∣ = 2 ⇔ ∣∣ �J c
z

∣∣ = 2A
ξ

=
√
AK, (B8)

which coincides with Landau’s criterion in Eq. (19).
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