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Anisotropy of exchange stiffness based on atomic-scale magnetic properties in the
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We examine the anisotropic properties of the exchange stiffness constant A for a rare-earth permanent magnet,
Nd2Fe14B, by connecting analyses with two different scales of length, i.e., Monte Carlo (MC) method with
an atomistic spin model and Landau-Lifshitz-Gilbert (LLG) equation with a continuous magnetic model. The
atomistic MC simulations are performed on the spin model of Nd2Fe14B constructed from ab initio calculations,
and the LLG micromagnetics simulations are performed with the parameters obtained by the MC simulations.
We clarify that the amplitude and the thermal property of A depend on the orientation in the crystal, which are
attributed to the layered structure of Nd atoms and weak exchange couplings between Nd and Fe atoms. We also
confirm that the anisotropy of A significantly affects the threshold field for the magnetization reversal (coercivity)
given by the depinning process.
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I. INTRODUCTION

In rare-earth permanent magnets such as Nd2Fe14B, SmCo5,
Sm2Fe17N3, and so on, the rare-earth elements and the tran-
sition metals combine in atomic scale to produce strong mag-
netic anisotropy and strong ferromagnetic order. The strong
magnetic anisotropy originated from the 4f electrons of the
rare-earth atom is maintained at room temperature (RT) by an
interaction with the strong ferromagnetic order of the transition
metals [1,2]. However, in Nd2Fe14B which is well known as the
highest performance permanent magnet at RT [3–5], improve-
ment of coercivity at high temperature is required for industrial
application [6] because it has a relatively low Curie temperature
(∼585 K) as compared with the other rare-earth magnets.

The coercivity mechanism of Nd2Fe14B and the other rare-
earth magnets has not been fully elucidated yet. To analyze
intrinsic magnetic properties of the rare-earth magnets (e.g.,
magnetization, magnetic anisotropy, exchange stiffness, Curie
temperature, etc.), we should consider the inhomogeneous
magnetic structures and thermal fluctuations in an atomic
scale (∼Å). The rare-earth magnets in the practical use are
polycrystalline materials composed of the main rare-earth
magnet phase (∼μm) and magnetic or nonmagnetic grain
boundary phases (∼nm). Therefore, the coercivity depends
on not only the intrinsic magnetic parameters, such as the
anisotropy energy of the main phase, but also on the magnetic
properties of the grain boundary and microstructure of the
main and grain phases [7,8]. For this reason, study of the
coercivity requires analyses from the atomic scale (∼Å) to
the macroscopic scale (∼μm). This fact has inhibited us to
elucidate the coercivity in a systematic manner.

Theoretically analyses for the coercivity in most have been
carried out with a continuum model that uses the magnetic
anisotropy constants Ku and the exchange stiffness constant
A as macroscopic parameters [see Eq. (2)]. In the junction
systems consisting of hard and soft magnetic phases [9–12], it
has been indicated that both Ku and A have a large effect
on incoherent magnetization reversals (i.e., nucleation and
depinning) which reduce the coercivity from the value of
the uniform reversal. In order to elucidate the coercivity
mechanism and improve the coercivity at high temperatures,
it is important to clarify the temperature dependences of Ku

and A. Therefore, many researchers in both experimental
and theoretical have studied the thermal properties of Ku

[13–18]. However, regardingA for Nd2Fe14B, experimentally,
the values are observed only at several temperatures [19–22],
and also there is no theoretical estimation of the temperature
dependence as far as we know.

The value of A is given as a macroscopic property of
exchange stiffness of continuous magnets at each temperature.
This quantity is related to the domain wall (DW) width
[23] and the critical (magnetization reversal) nucleus size
[7]. For some other magnetic materials, YCo5 and L10-type
magnets (CoPt, FePd, FePt), Belashchenko indicated using
ab initio calculation that A depends on the orientation in the
crystals [24]. Fukazawa et al. also pointed out the anisotropic
A for Sm(Fe, Co)12 compounds [25]. Recently, Nishino
et al. examined the temperature dependence of DW width
of Nd2Fe14B using an atomistic spin model constructed
from ab initio calculations and indicated that it also has
an orientation dependence [26]. Although, in Ref. [24], the
effect of anisotropic A on coercivity is also discussed in a
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phenomenological way, microscopic understanding of the
temperature and orientation dependences of A is essential for
the coercivity mechanism in the Nd2Fe14B magnet.

In the present paper, by a comparison of the results obtained
by a continuum model and those obtained by the atomistic
spin model constructed from ab initio calculations (same spin
model as Refs. [18,26,27]), we study the temperature and
the orientation dependence of A for the Nd2Fe14B magnet.
The comparison of the two different scale models is done by
making use of magnetic DW energy. This scheme has been used
successfully for FePt [28–30] and Co [31] magnetic materials.
We find that A has the anisotropic property in Nd2Fe14B.
Moreover, the reason for the anisotropy is attributed to the
weak exchange couplings of Nd and Fe atoms. Additionally, we
performed micromagnetics simulations on the configuration in
which a soft magnetic phase is attached to the (001) plane or
(100) plane of a grain of Nd2Fe14B. The simulations predict
that the anisotropy of A reduces the coercivity for the former
configuration because A of the z direction is larger than that of
the x direction, while it enhances the coercivity for the latter
configuration. The series of the calculation schemes in the
present study corresponds to the multiscale analysis [32,33]
that connects different scales from ab initio calculation to
coercivity as macroscopic physics.

II. MODELS AND METHOD

A. Atomistic spin model

To include the information of electronic states at an atom-
istic scale, we treat the (spin) magnetic moment of each atom
as a classical spin and then construct a classical Heisenberg
model. The atomistic Hamiltonian has the form:

H = −2
∑
i<j

J̃ij ei · ej

−
∑
i∈Fe

Di

(
ez
i

)2 +
∑
i∈Nd

∑
l=2,4,6

B
ml

l,i Ô
ml

l,i , (1)

where J̃ij is the Heisenberg exchange coupling constants
including the spin amplitudes (SiSj ) between the ith and j th
sites, and ei is the normalized spin moment at the ith site. The
coefficient Di in the second term denotes the strength of the
magnetic anisotropy of Fe sites. The third term is the magnetic
anisotropy of Nd sites, which is formulated by the crystal field
theory for 4f electrons [34,35], Bml

l,i is the crystal electric field
coefficient and Ôml

l,i is the Stevens operator. In the present study,
B

ml

l,i takes a fixed value, whereas Ôml

l,i depends on the state of
a total angular momentum of 4f electrons, J i . Here, we fix
J i parallel to the normalized spin moment on the ith site,
i.e., J i = Jiei (Ji = 9/2 for Nd atom). For simplicity, we
consider only the diagonal terms ml = 0.

For these input parameters of Nd2Fe14B magnet, we adopt
the same values in previous studies [18,26,27]. Exchange
coupling constants, J̃ij , were calculated with Liechtenstein’s
formula [36] on the Korringa-Kohn-Rostoker (KKR) Green’s-
function code, MACHIKANEYAMA (AKAIKKR) [37]. In the
present study, to reduce computational cost, we use only short-
range exchange couplings within the range of rcut = 3.52 Å,
in which primary Fe-Fe and Nd-Fe interactions are included.

FIG. 1. (a) Unit cell of Nd2Fe14B including 68 atoms [5]. Two
types of spin configurations for Nd2Fe14B atomistic spin model:
DW orientation is along (b) the yz plane (Type I) and (c) the
xy plane (Type II). The arrows in figures describe the antiparallel
(AP) boundary condition. These crystal structures were plotted using
VESTA [41].

Anisotropy terms, Di and B
ml

l,i , were determined from the
previous first-principles calculation [38] and the experimental
result [35], respectively. Consequently, the atomistic spin
model uses many input parameters in a unit cell which includes
68 atoms [see Fig. 1(a)]. The previous study [18] confirmed that
the model and parameters are highly reliable for the magnetic
properties of the Nd2Fe14B magnet.

B. Continuum model

Under the continuum approximation, the micromag-
netic energy of the exchange couplings and the magnetic
anisotropies at temperature T is expressed as follows [39]:

Econt =
∫

V
d3r

⎡
⎣ ∑

l=x,y,z

Al (T )(∇lm(r ))2

⎤
⎦

+
∫

V
d3r EK (T , θ (r )), (2)
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where m denotes a normalized magnetization vector, Al (T ) is
the exchange stiffness constant of each direction (x, y, z) in
the crystal, and EK is the magnetic anisotropy energy which is
usually expressed as:

EK (T , θ ) = K1(T ) sin2 θ + K2(T ) sin4 θ + K4(T ) sin6 θ,

(3)

where Ku(T ) (u = 1, 2, 4) are the magnetic anisotropy con-
stants and θ is the angle of magnetization measured from the
z axis. The continuum model uses the temperature-dependent
parameters to express the thermal effects instead of thermal
fluctuations in the atomistic model.

Micromagnetic simulations [39,40] have been carried out
based on the continuum approximation and Landau-Lifshitz-
Gilbert (LLG) equation which describes time evolution of
the magnetization relaxation process (see Sec. III C). In the
practical simulation, the real space in Eq. (2) is discretized with
a grid whose width should be smaller than a DW width and a
magnetostatic exchange length [39]. In most micromagnetic
simulations for Nd2Fe14B magnet, each grid size was set
to (1–2 nm)3, and as the input parameters, experimentally
observed values of Al (T ) and Ku(T ) were used. In the
continuum model, many input parameters of Eq. (1) in atomic
scale are expected to be renormalized in the few macroscopic
parameters of Eq. (2) at each temperature.

C. Methods for determining Ku(T ) and A(T )

In the present study, the macroscopic parameters are eval-
uated by comparing the energies of the DW and of the
magnetic anisotropy obtained by the above two models at each
temperature. We use a Monte Carlo (MC) scheme to calculate
Helmholtz free energies on the atomistic spin model. In order
to evaluate A, we consider the two quantities obtained from
DW energy: Edw(T ) andFdw(T ) [23,29]. Edw is the DW energy
in the continuum model, which is expressed by the following
formula:

Edw(T ) = 2
√
A(T )

∫ π

0
dθ

√
EK (T , θ ). (4)

To obtain A(T ), we need the values of Edw(T ) and EK (T , θ ).
We regard Edw(T ) to be equal to the DW free energy in
the atomistic spin model, Fdw(T ), which is expressed by the
following formula:

Fdw(T ) = T

∫ ∞

T

dT ′ Edw(T ′)
(T ′)2

. (5)

The DW internal energy, Edw(T ), is defined as an energy
difference between the internal energies obtained in different
boundary conditions with and without DW. For this calcula-
tion, we fix the boundaries in the direction antiparallel (AP)
or parallel (PA). Additionally, since the crystal structure of
Nd2Fe14B has anisotropy, we consider two models with the
two fixed boundaries depicted in Figs. 1(b) and 1(c). Thus,
we have two types of DWs [26]. One is a DW along the yz

plane (type I), and the other is along the xy plane (type II). We
set the periodic boundary condition in the yz(xy) plane for the
model of type I (type II).

To calculate EK (T , θ ), we adopt the constrained MC
(C-MC) method for the atomistic spin model. The C-MC
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FIG. 2. Magnetic anisotropy constants and FA as a function
of temperature for the system of 10 × 10 × 7 unit cells. Inset
shows FA(T ) for each system size, (Lx,Ly, Lz ) = (6, 6, 4), (8,8,6),
(10,10,7), and the extrapolation data (Lx ∝ N 1/3 → ∞).

method samples spin configurations under the condition of a
fixed angle of total magnetization, which allows us to calculate
the angle dependence of the spin torque and the free energy
[42]. By considering that EK is equal to the free energy
of magnetic anisotropy, we calculate EK from the atomistic
model. The previous study [18] showed the validity of the
C-MC methods for calculating Ku(T ) in EK (T , θ ) of the
Nd2Fe14B atomistic spin model. Note that if Eq. (3) is given
in the form EK = K1 sin2 θ (K2 = K4 = 0), Eq. (4) can be
integrated analytically and gives the well known relation:
Edw(T ) = 4

√
A(T )K1(T ).

In the present paper, the MC and C-MC simulations run
100 000–200 000 MC steps for equilibrium and the following
100 000–200 000 MC steps for taking statistical averages,
where a MC step corresponds to one trial for each spin to be
updated. We calculated the average of magnetic anisotropy
energies and DW energies from 8–20 different runs with
different initial conditions and random sequences.

III. RESULTS AND DISCUSSION

A. Magnetic anisotropy and domain wall energy

As mentioned above, the evaluation of the exchange stiff-
ness constant requires precise calculations of the magnetic
anisotropy constants and the DW energy. First, we show the
temperature dependence of the magnetic anisotropy constants
calculated by the C-MC method in Fig. 2, which qualitatively
agrees with previous experiments [14,15]. There, we used the
system of 10 × 10 × 7 unit cells imposing the periodic bound-
ary conditions. In uniaxial anisotropy, we study the quanti-
ties: FA(T ) ≡ EK (T , θ = π/2) = EK (T , π/2) − EK (T , 0) =∑

u Ku(T ). Figure 2 shows that FA(T ) rapidly decreases with
the temperature below 400 K. This temperature dependence
is understood as a result of fragile thermal properties of Nd
atoms. That is, while at low temperature, the anisotropy of Nd
atoms is dominant, the anisotropy of Nd atoms decreases with
the temperature more rapidly than that of Fe atoms, because the
exchange field of a Nd atom (sum of exchange couplings that

054418-3



TOGA, NISHINO, MIYASHITA, MIYAKE, AND SAKUMA PHYSICAL REVIEW B 98, 054418 (2018)

0.00 0.02 0.04 0.06

N− 1
3

0.84

0.88

0.92

0.96

1.00

FA(T )

0.00 0.02 0.04 0.06

N−

0.92

0.94

0.96

0.98

1.00

π

0
dθ EK(T, θ)

200K
300K
400K
500K
600K
700K
800K

1
3

FIG. 3. Finite size extrapolation of FA(T ) and
∫ π

0 dθ
√
EK (T , θ ).

Solid lines are linear fits to the Monte Carlo results for each system
size (N is the total number of spins). Vertical axes are normalized at
the values for N = 3264.

connect to a Nd atom) is much smaller (about 20–25%) than
that of a Fe atom (see also the detailed discussion in Ref. [18]).

Additionally, owing to the higher order terms of the Nd
anisotropy, B0

4 , B0
6 , the magnetization of Nd2Fe14B is tilted

from the z axis at low temperatures. This fact causes the
deviation from uniaxial anisotropy to occur in the region of
−2K2 < K1 < 0 [43]. Note that Eq. (4) is defined under the
condition of uniaxial anisotropy. Thus, in the present paper,
we discuss the DW energy and the exchange stiffness in the
region of T � 200 K.

As a matter of practice, finite-size effect of numerical results
about the magnetic anisotropy is significant for the evaluation
of the exchange stiffness and the DW width, especially at high
temperatures. To avoid this problem, we extrapolate FA(T )
and

∫ π

0 dθ
√
EK (T , θ ) [these are used in Eqs. (7) and (4)] to

the thermodynamic limit (N → ∞) using linear functions in
N−1/3. Figure 3 shows the typical fitting results which indicate
that the MC results are well fitted with the linear functions.
The extrapolated results for FA near the Curie temperature TC

are summarized in the inset of Fig. 2, where we fix as Ku =
0 above TC(= 870 K). We use these extrapolated results to
evaluate the exchange stiffness and the DW width.

Next, we focus on the DW energy. Figure 4 shows the
temperature dependence of the DW internal energy, Edw, for
the two DW types (see Fig. 1). We also plot Edw for three
different system sizes in the directions perpendicular to the
DWs, i.e., Lx = 14, 17, and 21 (Lz = 10, 12, and 15), for
type I (type II). From these results, it is confirmed that these
systems are large enough to calculate Edw. To analyze in detail
the temperature dependence, we divided Edw into the magnetic
anisotropy term (EK

dw) and the exchange term (EJ
dw) and plot the

contributions in Fig. 4. The DW energies of type I and type II
show a qualitatively similar temperature dependence. Both
energy terms naturally vanish for T � TC, because DW does
not appear even in the AP boundary condition. For T < TC, the
anisotropy term decreases monotonically as the temperature

FIG. 4. Temperature dependence of DW internal energy for three
system sizes (Lx, Ly, Lz ) in the DWs of (a) Type I and (b) Type II.
Total DW energy is divided into anisotropy and exchange terms,
Edw = EK

dw + EJ
dw, for the largest system size of each DW type.

increases whereas the exchange term increases and takes a
peak value at the temperature Th slightly below TC.

The temperature dependences are interpreted as follows.
The monotonic decrease of EK

dw is merely due to the decrease
of the thermally averaged magnetic moments, which also
corresponds to the decrease of FA(T ) in Fig. 2. The magnetic
anisotropy energy depends on the angle from the z axis of
each spin, whereas the exchange coupling energy depends
on the relative angle of spin pairs. Now, the DW energy is
defined as the difference of the internal energies between the PA
(EPA) and the AP (EAP) boundary conditions, i.e., Edw(T ) =
EPA − EAP. EJ

dw is the part coming from the exchange term,
thus it is influenced by the difference between the two boundary
conditions in the fluctuations of the relative angles of spin
pairs. In the configuration of the AP boundary condition, DW
exists. In the DW, the ferromagnetic order is weakened because
the spin configuration is forcibly twisted, and the DW has
a spiral noncollinear structure with the perpendicular (xy)
component at low temperatures. This fact gives the difference
of the energies EJ

dw. We expect that EJ
dw due to the formation of
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FIG. 5. Temperature dependence of DW free energy Fdw and
internal energy Edw [same as Figs. 4(a) and 4(b)], for each DW type.

the noncollinear structure would be enhanced near the critical
point where the width of DW increases.

At a temperature Th which is slightly lower than TC, the pro-
file of perpendicular (xy) moments is destroyed by the thermal
fluctuation. As a thermally averaged magnetic structure, the
noncollinear structure (the spiral structure) becomes a collinear
structure. At this point, EJ

dw takes the peak value at Th and then
decreases rapidly and approaches zero towards TC. This break
of the noncollinear structure was discussed in previous studies
as the disappearance of an xy magnetization inside the DW
[29,44,45].

By those internal DW energies and Eq. (5), we can calculate
DW free energies, Fdw. In Fig. 5, we plot the temperature
dependence of Fdw and Edw (the same data shown in Fig. 4)
for both DW types. The differences between Fdw and Edw cor-
respond to the contribution of magnetic entropy. The difference
in the DW energy between type I and type II naturally indicates
an anisotropy concerning the direction in which DWs are
generated. The DW prefers to be generated in the configuration
of type II. These observations imply the magnetization reversal
starts from the z plane. Moreover, the generation of the DW
in the magnets would also depend on the grain boundary
phase and the dipole-dipole interaction. We will discuss these
properties in a more realistic magnetization reversal process in
Sec. III C.

B. Exchange stiffness constant

The exchange stiffness constants A for the two directions
can be evaluated by using Eq. (4) and the numerical results
for the magnetic anisotropy and the DW energy, whose tem-
perature dependences are shown in Fig. 6. Here, we define the
value of A calculated from the configuration of type I (type II)
as the exchange stiffness constant of the x(z) direction, Ax(z).
Reflecting the anisotropy of the DW energy, the exchange
stiffness constant naturally has the anisotropy depending on the
direction in the crystal. For the comparison of A with exper-
imental values, it is reasonable to normalize the temperature
dependence with TC, because the spin model overestimates
(T MC

C = 870 K) compared to experiment (T EXP
C � 585 K). In

addition, as pointed out in the mean field approximation [46],
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FIG. 6. Temperature dependence of exchange stiffness constant
A for each DW type. Solid (dotted) lines are fitting results in the range
of 200–860 K (200–400 K) using A(T ) = CM (T )n. Inset shows the
renormalized values, Ã [see Eq. (6)], and the green bar denotes the
range of the experimental values at room temperature [21,22].

A is roughly proportional to TC, so that we also rescale the
values of A:

Ã(T ) = A(T )
T EXP

C

T MC
C

. (6)

The inset of Fig. 6 shows the rescaled data and experimental
values (green bar) at RT [21,22]. Although the experimental
values have some variation (6.6–12.5 pJ/m), the calculation
results are well consistent with the lower experimental values
at RT.

With A and Ku which have been obtained, the DW width
δdw is calculated from the following relation [15,23]:

δ
x(z)
dw (T ) = π

∂ω(T )

∂θ

∣∣∣∣
θ= π

2

= π

√
Ax(z)(T )

FA(T )
,

ω(T ) = √
Ax(z)(T )

∫ θ

0

dθ√
EK (T , θ )

. (7)

To confirm the validity of our evaluation procedure for A,
in Fig. 7, we compared our results (circle) with those of the
previous study (square) [26].

In the previous study, δdw was evaluated directly from the
snapshots of spin configurations using the same atomistic
Hamiltonian of the present study. Note that we set the periodic
boundary condition in the yz(xy) plane for the model of type
I (type II), whereas the previous calculation was performed
under the open-boundary conditions for both models. Our
results of δdw qualitatively agree with the previous results,
although they tend to take a smaller value because the thermal
fluctuation becomes smaller than the previous study due to the
difference of boundary conditions. The comparisons with the
previous experiments and the numerical study as mentioned
above guarantee our results concerning A.

Now, we study its thermal properties. The temperature
dependence ofA is often discussed in relation to magnetization
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FIG. 7. Temperature dependence of DW width, δdw, for each
DW type. Circle lines are our calculation results from Ku(T ) and
Fdw. Square points are the previous numerical results which are
evaluated directly from the snapshots of spin configurations while
in MC simulations.

by using the following expression:

A(T ) = A(0)

[
M (T )

M (0)

]n

, (8)

where M (T ) is the amplitude of the magnetization (not
shown, see Ref. [18]). Under a mean field approximation
with homogeneous spin systems, the exponent n is 2 [30,46].
However, under more accurate methods, the exponent takes
a value different from 2, for example, FePt: n = 1.76 [30],
hcp-Co: n = 1.79 [31]. Thus we estimate n to examine the
thermal properties for the Nd2Fe14B, by fitting A(T ) in Fig. 6
with the form CM (T )n, where C is a fitting constant.

Note that n depends on the fitting range of tempera-
ture nx(z) = 1.68 (1.84) in the range of 200–860 K, whereas
nx(z) = 1.46 (1.69) in the range of 200–400 K. Fitting lines of
the former and the latter are plotted by the solid and dotted lines
in Fig. 6, respectively. Microscopically, Fe and Nd show differ-
ent thermal properties. Indeed, Nd atoms have weak exchange
coupling and so do not have much influence on A, whereas
they have a large magnetic moment (∼2.87 μB/atom). The
magnetization of Nd atoms is decreased more rapidly with
temperature than that of Fe atoms, which largely affects
the temperature dependence of total magnetization. Thus,
intrinsically n depends on the fitting range largely. However,
the important point here is that nz always takes larger values
than nx regardless of the fitting range (we checked it). This
relation implies the macroscopic exchange coupling in the z

direction is weaker than that in the x direction, not only for the
coupling strength but also for thermal tolerance.

As the reason for the anisotropy of A to crystal orienta-
tion, the crystal structure of Nd2Fe14B is naturally invoked.
Nd2Fe14B has the layered structure of the Fe layer and
NdFe layer (B has little effect on magnetic properties) along
the z axis as shown in Fig. 1(a). In Nd2Fe14B, exchange
couplings [J̃ij in Eq. (1)] are mainly contributed by bond-
ing between Fe and Fe atoms, J̃Fe-Fe, and between Nd and
Fe atoms, J̃Nd-Fe (|J̃Nd-Nd| is negligibly small). Each bond
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FIG. 8. The anisotropy ratio of the exchange stiffness, Az/Ax , as
a function of temperature for the four models with different exchange
coupling between Nd and Fe, J̃Nd-Fe.

of J̃Fe-Fe has much larger amplitudes than J̃Nd-Fe (J̃Fe-Fe :
−4.35–22.34 meV, J̃Nd-Fe : −0.16–3.55 meV). Therefore, it
is anticipated that the anisotropy ofA comes from the inhomo-
geneous distribution of the exchange couplings and the atom
positions in the crystal structure. To support this anticipation
in detail, we examine the relation between the anisotropy and
the strength of J̃Nd-Fe.

Figure 8 shows the ratio of Az to Ax for four models with
different values of J̃Nd-Fe. Beside the default model (1.0J̃Nd-Fe,
the ratio is calculated from Fig. 6), we also calculate three other
cases with all the bonds J̃Nd-Fe reduced by half (0.5J̃Nd-Fe),
increased by half (1.5J̃Nd-Fe), and doubled (2.0J̃Nd-Fe). It is
clearly found that A gets close to isotropic (i.e., Az = Ax) as
J̃Nd-Fe increases in the whole temperature range.

As another feature, the ratio slowly decreases with the
temperature for all the cases, which indicates that the temper-
ature dependence of Ax and Az are different. This difference
corresponds to the difference between nx and nz in Eq. (8).
As the temperature increases, the contribution of J̃Nd-Fe to A
becomes smaller than that of J̃Fe-Fe because the spin moments
of Nd atoms are more easily broken by thermal fluctuations
compared with those of Fe atoms. From the above analysis, we
conclude that the reason for the anisotropy of A in Nd2Fe14B
comes from the weakness of J̃Nd-Fe and the layered structure
of Nd atoms.

C. Effect of anisotropic exchange on coercivity

Let us consider the effects of the anisotropy of A on the
coercivity. In actual rare-earth magnets which are composed of
main rare-earth magnet phase and (magnetic or nonmagnetic)
grain boundary phase, magnetization reversal is considered
to occur by nucleation near the interface and by the DW
propagation. Thus, to study magnetization reversal in such
a process, we carried out micromagnetic simulations for the
two-phase models composed of the soft magnetic phase and the
hard magnetic phase, depicted in Figs. 9(a) and 9(b). The soft
phase represents the grain boundary phase. The two models
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FIG. 9. Calculation models with open boundary conditions in
which the soft magnetic phase (SP) is placed on (a) (001) surface and
(b) (100) surface of the hard magnetic phase. (c) Coercivity without
dipole-dipole interaction evaluated using each model including the
MC results at 400 K as a function of soft phase thickness sl . Dashed
lines denote the analytical results of the depinning type coercivity
calculated form Eq. (11). (d) Hysteresis loops for the model (a) with
four different sl .

(a) and (b) are the same if we do not take into account the
anisotropy of A and the dipole-dipole interaction.

The simulations are based on the finite-difference method
and the LLG equation [39,40]:

d M i

dt
=− |γ |

1 + α2

[
M i × Heff

i + α

|M i | M i × (
M i × Heff

i

)]
,

(9)

where M i is the magnetization vector of the ith cell, γ is
the gyromagnetic ratio constant, and α is the Gilbert damping
constant. Both models (a) and (b) are discretized with a cubic
cell of (1.0 nm)3 and we set |γ | = 2.21 × 105 m/A sec (the
value of free electron) and α = 1 (coercivity does not depend
on α). Effective magnetic field on the ith cell, Heff

i , is defined
as the derivative of the micromagnetic energy, Econt

i [obtained
from Eq. (2)], with respect to M i [47]:

Heff
i = − 1

μ0

∂Econt
i

∂ M i

+ Hexteu

=
∑

j∈n.n.

2Aij

|M i |
mj − mi

d2
ij

+ 2Ki
1

|M i | (mi · eu)eu + Hexteu,

(10)

where μ0 is the magnetic permeability of the vacuum, Hext is
an external magnetic field, j represents six nearest neighbor
cells of the ith cell, mi = M i/|M i |, eu is the unit vector of
the easy axis, dij is the distance between the centers of the ith
and j th cells (i.e., dij = 1.0 nm), Aij is the exchange stiffness
constant, and Ki

1 is the magnetic anisotropy constant (terms of
Ki

2 and Ki
4 were omitted for simplicity).

In the present study, we determine the input model pa-
rameters in Eq. (10) from the MC results at 400 K. The
model parameters in the hard phases are set to |Mi | = 1.38 T,
Ki

1 = 2.63 MJ/m3,Aij = 12.21 pJ/m for the pairs of iz = jz,
and Aij = 9.10 pJ/m for the pairs of iz �= jz, where iz(jz)
is the position of the i(j )th cell in the z axis. In the soft
phases, the model parameters are set to |Mi | = 1.38 T, Ki

1 =
0 MJ/m3, and Aij = 9.10 pJ/m for all the pairs of (i, j ).
The difference of Aij in the direction for the hard phases
reflects the anisotropy of A in the MC results. In addition,
we assume Aij = 9.10 pJ/m for the bonds connecting the
soft/hard interfaces.

By applying the fourth-order Runge-Kutta algorithm [48] to
the LLG equation with the above-constructed models, we sim-
ulated the magnetization reversal dynamics and then evaluated
the coercivity. In the simulation, we set the Runge-Kutta time
step to 0.1 ps, the magnetic field (Hext) is reduced by 25 mT at
each field step, and the convergence condition under each field
is when the average of magnetization torque, |mi × Heff

i |, is
lower than 1.0 mOe. Also, to avoid the case of mi × Heff

i ∼ 0,
at the beginning of each field step, a disturbance is added
to the magnetization vector of every cell as mi → (mi +
v)/|mi + v|, where v is a random vector of length 10−4.
Using the simulation conditions, the magnetization reversal
of the hard phase (not including the soft phase) occurs at
4.80 T which is consistent with the Stoner-Wohlfarth limit,
2K1/Ms = 4.789 T.

In such two-phase models, a magnetization reversal is
expected to start from the soft phase. Thus, we also examine
the influence of soft phase thickness, sl . In Fig. 9(c), we plot
sl dependence of the coercivity for the models (a) and (b). It
is clearly seen that the coercivity of the model (a) is weaker
than that of the model (b) regardless of sl . The relation of the
coercivities between the two models is also consistent with that
of the magnitude of DW energy in each direction (see Fig. 5).
Since the models (a) and (b) are equivalent in the absence of
anisotropy of Aij in the hard phase, we can conclude that the
difference of the coercivity is attributed to the anisotropic A.

It is also seen that as sl increases, the coercivity decreases
and gradually approaches a certain value for each model, and
the difference between two models increases. As we will see
in the following two paragraphs, this behavior is explained as a
change in magnetization reversal mechanism from nucleation
type to depinning type. Here we define the nucleation type as
a magnetization reversal of the whole system that occurs by a
nucleation which starts from nucleation at the surface of the
soft phase without depinning at the interface of the soft and hard
parts, while in the depinning type, the reversed magnetization
in the soft phase is pinned at the interface until the magnetic
field reaches the threshold of the depinning.

Figure 9(d) shows the hysteresis loops (showing the only
upper part in the figure) for the model (a) with four different sl .
When the soft phase is thin (sl = 1, 3 nm), the magnetization
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of the hard phase is reversed at the same time as the nucleation
at the soft phase (i.e., the nucleation type), whereas when the
soft phase is thick (sl = 5, 7 nm), coercivity is determined
not from the nucleation but from the depinning (i.e., the
depinning type). The change between the nucleation type and
depinning type were also pointed out in the previous studies
for a one-dimensional model in which a soft phase of finite
width is sandwiched between hard phases [9–12] and a corner
defect model [49].

In the one-dimensional model an analytical solution of the
coercivity in the limit sl → ∞, which means the depinning
type, was also proposed as follows [10,11]:

Hdwp = 2KH
1

|MH|
1 − ASKS

1

AHKH
1(

1 +
√

AS|MS|
AH|MH|

)2 , (11)

where |MS(H)|, K
S(H)
1 , and AS(H) are the model parameters

of Eq. (10) in the soft (hard) phase. To apply Eq. (11) to the
three-dimensional models, as the value ofAH, we use the value
of Aij in the direction perpendicular to the soft/hard interface
and calculate Hdwp. Dashed lines in Fig. 9(c) indicate Hdwp

for the models, which seems to explain well the lower limit of
depinning type coercivity for our three-dimensional models.
Therefore, it is understood that the anisotropy of A has a large
effect on the coercivity of the depinning type compared with
that of the nucleation type.

Finally, we study the influence of the dipole-dipole interac-
tion on the coercivity in the two models. Magnetic field due
to the dipole-dipole interaction is incorporated in Heff

i as the
following form:

Hdip
i =

∑
j

K(r ij )Mj , (12)

where K(r ij ) is the demagnetization tensor [40], and r ij is
the distance vector between i and j cells. Here the strength
of the dipole-dipole interaction is determined automatically
according to the distance of the pair and the magnetization
vector of the cells. We calculate Hdip

i of all the cells in
O(NclogNc ) computational time (Nc is the total number of
cells) by solving convolution integral using the fast Fourier
transform method [50]. In the present study, we set the models
(a) and (b) in Fig. 9 as cubic regardless of sl and MH = MS ,
and thus the models (a) and (b) have the same shape magnetic
anisotropy.

Upper figures of Fig. 10 show sl dependence of coercivity
for the two models (a) and (b) with dipole-dipole interaction.
The red circles and the red dotted lines (Hdwp) represent the
values of the coercivity which are calculated using the same
input parameters (|Mi |, Ki

1, and Aij ) as those in Fig. 9(c).
Here, the difference of coercivity in the models (a) and (b) in
Fig. 10 is mainly attributed to the dipole-dipole interaction, and
the anisotropic A is a secondary effect. Because dipole-dipole
interaction prefers to construct the DW along the z axis (type
I), in the model (b), the coercivity decreases compared with
that in Fig. 9(c). Conversely in the model (a), the coercivity
increases in the region of sl � 3 nm. The dipole-dipole in-
teraction inhibits us to construct the DW (nucleation) in the
xy plane. For this reason, the coercivity with dipole-dipole
interaction depends on the arrangement of the soft phase, which

FIG. 10. (Upper figures) Coercivity with dipole-dipole interac-
tion for the models (a) and (b) in Fig. 9, as a function of soft phase
thickness, sl . Dashed lines represent Hdwp calculated from Eq. (11).
(Lower figures) Hysteresis loops for the two models in the cases of
Ax > Az (red circles in the upper figures) with four different sl .

works contrary to the effect of anisotropic exchange stiffness,
Ax > Az.

These behaviors are confirmed from the hysteresis loops
in lower figures in Fig. 10. In the model (b), magnetization
reversal is clearly separated into two parts, i.e., the small jump
at the lower magnetic field where only the soft phase is reversed
(nucleation) and the jump at the higher magnetic field where
the DW is depinned at the interface (depinning). In contrast, in
the model (a) they are not clearly distinguished. That is, in the
model (a), the magnetization reversal mechanism approaches
the nucleation type from the depinning type by the dipole-
dipole interaction. The dependence of the coercivity on the
arrangement of the soft phase was similarly discussed in the
most recent study (not including the anisotropy of A) [51].

It is difficult to clarify the effect of anisotropic A on the
coercivity under the dipole-dipole interaction by a simple
comparison of the models (a) and (b). Thus, we exchanged
the values of Ax,y and Az in the hard phase. Namely, we set
the input parameters of the hard phase as Aij = 9.10 pJ/m
for iz = jz and Aij = 12.21 pJ/m for iz �= jz. The values of
coercivity under these conditions are plotted by the blue circles
and the blue lines (Hdwp) in the upper figures of Fig. 10.
The anisotropy of A has a similar effect on the coercivity
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as the case without dipole-dipole interaction. However, in the
model (a), the difference in coercivity is relatively small. The
anisotropic A strongly affects the coercivity of the depinning
type compared with the nucleation type. On the other hand, the
magnetization reversal in the model (a) is the nucleation type
rather than the depinning type. Therefore, we may conclude
the dipole-dipole interaction in the model (a) suppresses
the effect of the anisotropy of A.

IV. CONCLUSION

Regarding the exchange stiffness constant A of Nd2Fe14B,
we examined the temperature and orientation dependences us-
ing the Monte Carlo simulations with the atomistic spin model
constructed from the ab initio calculation. We also conducted
the coercivity calculations based on the micromagnetics (LLG)
simulations using the continuum model with the parameters
obtained by the atomic scale MC results at finite temperatures.
In this way, we confirmed that the lattice structure in the
atomic scale affects the coercivity as macroscopic physics. We
found that A(T ) depends on the orientation of the crystal with
respect to not only the amplitude but also the exponent nx(z) in
the scaling behavior: Ax(z)(T ) ∝ M (T )nx(z) ; namely Ax (T ) >

Az(T ) and nx < nz. It is quantitatively confirmed that the
anisotropic properties of A come from the weak exchange
couplings between Nd and Fe atoms and the layered structure
of Nd atoms. Moreover, we also found that the anisotropic
A(T ) affects the coercivity of the depinning mechanism.

We focused on only Nd2Fe14B magnet in the present paper.
However, the essence of anisotropic A comes from the weak
exchange coupling between rare-earth atoms and transition
metals and the layered structure of rare-earth atoms. Thus,
the features discussion for Nd2Fe14B is probably applicable to
other rare-earth magnets. In fact, it was pointed out by ab initio
calculations that A have strong anisotropy for YCo5 [24] and
Sm(Fe,Co)12 [25].

Let us consider the coercivity from the viewpoint of the
exchange spring magnet [52,53] which is composed of hard
and soft phase and expected to realize the highest performance
magnet. Because realization of high performance requires
a large coercivity and a large thickness of soft phase, the
model (a) with Ax < Az [Fig. 10(a), blue line] is the most
suitable conditions in our modelings. Most strong permanent
magnets, Nd2Fe14B, YCo5, and also L10-type magnet (CoPt,
FePd, FePt), cannot reproduce the same condition because
Ax > Az [24], whereas Sm(Fe,Co)12 would do because the
anisotropy asAx < Az [25]. Therefore, Sm(Fe,Co)12 and other
R(Fe,Co)12-type compounds (R is a rare-earth element) may
have higher potential to realize strong performance exchange
spring magnet rather than the other magnets.

Finally, we point out another source of the anisotropy.
In a recent experiment, it has been observed that the grain

boundary phase takes different crystal structures and chemical
compositions depending on the orientation with the Nd2Fe14B
main phase, i.e., the Nd-rich crystalline paramagnetic phase
form on the xy plane of the main phase, whereas the Fe-rich
amorphous ferromagnetic phase is in the plane parallel to the
z axis [54]. In the present paper, we have studied the effect
of anisotropy of A on coercivity and of the orientation of
the interface with the soft phase changes by using the same
interaction for the interface. However, if the chemical structure
is different, the exchange interaction would be a difference
due to another source of the anisotropy, which is studied with
information of the structure in the future.

In the continuum model, Eq. (2), we used the values of
Ku and A obtained by the MC simulations which are the
values of the bulk system. There, changes in atomic scale of
magnetic anisotropy [55–57] and exchange coupling [58–61]
near the interface or surface were not taken into consideration.
The influences of interface and surface are important for the
coercivity [6]. Thus, the accuracy multiscale analysis needs
further development of connecting scheme from atomistic spin
model to macrospin model would be necessary.

Another point noted is the range of exchange interaction.
In the atomistic spin model, Eq. (1), of the present study, we
omitted the long-range contribution of J̃ij for simplicity and
reduction of calculation cost. However, the recent study [62]
reported that RKKY-type exchange coupling significantly
affects the DW width and pointed out the importance of the
long-range contribution. We also found that, by incorporating
long-range exchange couplings up to 10.6 Å, the difference
between type I and type II of Edw at 400 K reduces from 11.3%
(in Fig. 5) to 4.4%. However, to study the effect clearly, we
need precise information of the interaction at long distance,
and we postpone study of this problem to later work. Although
there are still problems with which we must be concerned,
we believe that the present paper will be helpful to elucidate
coercivity mechanism in rare-earth permanent magnets.
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