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We study magnetization transport in anisotropic spin- 1
2 chains governed by the integrable XXZ model with

and without integrability-breaking perturbations at high temperatures (T → ∞) using a hybrid approach that
combines exact sum rules with judiciously chosen Ansätze. In the integrable XXZ model we find (i) superdiffusion
at the isotropic (Heisenberg) point, with frequency dependent conductivity σ ′(ω → 0) ∼ |ω|α , where α = −3/7
in close numerical agreement with recent t-DMRG computations; (ii) a continuously drifting exponent from
α = −1+ in the XY (gapless) limit of the model to α > 0 within the Ising (gapped) regime; and (iii) a diffusion
constant saturating in the XY coupling deep in the Ising limit. We consider two kinds of next-nearest-neighbor
integrability breaking perturbations—a simple spin-flip term (J2) and a three-spin assisted variant (t2), natural in
the fermion particle representation of the spin chain. In the first case we discover a remarkable sensitivity of σ ′(ω)
to the sign of J2, with enhanced low frequency spectral weight and a pronounced upward shift in the magnitude
of α for J2 > 0. Perhaps even more surprising, we find subdiffusion (α > 0) over a range of J2 < 0. By contrast,
the effects of the “fermionic” three-spin perturbation are sign symmetric; this perturbation produces a clearly
observable hydrodynamic relaxation. At large strength of the integrability breaking term J2 → ±∞ the problem
is effectively noninteracting (fermions hopping on odd and even sublattices) and we find α → −1 behavior
reminiscent of the XY limit of the integrable XXZ chain. Exact diagonalization studies largely corroborate these
findings over accessible frequencies.
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I. BACKGROUND AND OUTLINE

Localized deviations from thermal equilibrium in generic
strongly correlated many-body systems should relax quickly
[1]. However, if the disturbance contains a conserved density
the corresponding initial imbalance can only relax by spreading
slowly (“diffusing”) over the entire system as a long-lived
collective mode. The characteristic size of such a diffusing
distortion scales as a power law of time 〈(�x)2〉 ∼ t1−α ,
where α = 0 for ordinary diffusion. The presence of additional
conserved quantities can either slow down or speed up the
spread, e.g., in Anderson or many-body localized systems
〈(�x)2〉 ∼ t0, while in the presence of ballistically propagating
quasiparticles we expect 〈(�x)2〉 ∼ t2, i.e., effectively α = 1
and α = −1, respectively. A complimentary view of relaxation
processes is suggested by writing the linear response conduc-
tivity in terms of current fluctuations [2]

σ ′(ω) = 1 − e−βω

Lω

∫ ∞

0
dt cos(ωt )〈ĵ (t )ĵ (0)〉, (1)

where ĵ is the macroscopic current [see Eq. (10) below], β

is the inverse temperature, L is the system size, and 〈· · · 〉
denotes equilibrium average. The conductivity can include
both a regular dissipative component as well as a “ballistic”
zero-frequency component

σ ′(ω) = D δ(ω) + σreg(ω), (2)

with D commonly referred to as the “Drude weight” and given
by the long-time asymptotic value of the current autocorrela-
tion

πβ

L
lim
t→∞〈ĵ (t )ĵ (0)〉 = D � 0. (3)

There are several well studied examples of so-called inte-
grable lattice models with D > 0 [3–5], typically both at zero
and finite temperatures [6]. Our main focus is the compar-
atively less well understood regular part of the conductivity
at finite frequencies, which is usually finite in interacting
lattice models. The presence of additional conserved quantities
is expected to induce slow nonexponential decay of current
fluctuations in time, leading to interesting super- or subdiffu-
sive phenomena. The latter necessarily follows a very rapid
initial decay of the current that overshoots zero, and so the
final decay contains an overall negative sign—suppression
of conductivity at low frequency necessarily requires large
cancellations between long and short times in Eq. (1).

Our methodology, as summarized in Sec. II, makes no
explicit use of the detailed dynamical structure of the problems
we study, but the choice of models and Ansätze do. Our results
may be roughly divided into two categories: identification
of qualitatively new hydrodynamic behaviors (Secs. III and
V), and quantitative understanding of relatively conventional
hydrodynamics (Secs. IV and VI). Section III examines
the vicinity of the integrable Heisenberg point of the XXZ
chain. The latter appears perched near the boundary between
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super- and subdiffusive tendencies. The dominant effect of
weak nearest-neighbor spin-flip perturbation appears to be to
traverse this boundary. Section IV constructs a microscopic
description of the two-component dynamics response in the
so-called “classical” Ising regime (also referred to as the
“atomic” or gapped limit). Section V focuses on weakly inter-
acting fermion regimes in the generalized XXZ Hamiltonian,
exhibiting logarithmic (!) current relaxation

〈ĵ (t )ĵ (0)〉 ∼ − log t

over a broad dynamical regime. Section VI demonstrates a
highly accurate analytic approximation to the nonlinearity
induced long-time tails in strongly ergodic chains, realized
with the help of the “fermionic” t2 perturbation. Implications
for inelastic scattering experiments are discussed in Sec. VII,
with conclusions summarized in Sec. VIII. Several Appendixes
treat important further details and nuances.

II. DEFINITIONS, GENERAL CONSIDERATIONS,
RELEVANT PRIOR RESULTS

A. Hamiltonians, global symmetries, and currents

We consider spin chains of length L with periodic boundary
conditions (possibly with a twist, as explained below) and
dynamics governed by the Hamiltonian Ĥ0 of the nearest-
neighbor (nn) XXZ model, perturbed by one of two types of
next-nearest-neighbor (nnn) spin-flip terms (δĤ1 and δĤ2)

Ĥ0 =
L∑
j

J1

2
(Ŝ+

j Ŝ−
j+1 + H.c) + �

L∑
j

Ŝz
j Ŝ

z
j+1, (4)

δĤ1 =
L∑
j

J2

2
(Ŝ+

j Ŝ−
j+2 + H.c), (5)

δĤ2 =
L∑
j

t2

2
(Ŝ+

j Ŝz
j+1Ŝ

−
j+2 + H.c), (6)

where the raising and lowering spin operators (Ŝ+
j Ŝ−

j+i + H.c)
flip pairs of spins at sites j and j + i with amplitude Ji , and the
Ising coupling is � > 0. The t2 three-spin nnn perturbation ap-
pearing in δĤ2 is natural in the spinless fermion representation,
where it corresponds to nnn fermion hopping.

Although the Hamiltonian Ĥ0 is integrable via the Bethe
ansatz [7], each of the perturbations δĤ1, δĤ2 individually
breaks the integrability of the model (except when � = J2 =
0); therefore no longer can one rely on any analytical solu-
tion, and must resort to numerical and phenomenological ap-
proaches. Indeed for the low-frequency dynamical properties
of our interest, Bethe ansatz integrability does not help towards
a controlled analytical tractability even in the J2 = t2 = 0 case.

Let us now comment on the symmetries of the model(s):
the Hamiltonian Ĥ0 is invariant under spin rotations about
the z-axis m̂z, lattice translations T̂ , spin-inversion Ẑ, and
space reflection, or parity P̂ . The spin-inversion operator, with
eigenvalues z = ±1, is defined such as

ẐŜ±
j Ẑ = Ŝ∓

j , ẐŜz
j Ẑ = −Ŝz

j . (7)

Likewise the parity operator, with eigenvalues p = ±1, is
defined as

P̂ Ŝ
γ

j P̂ = Ŝ
γ

L−j , with γ = ±, z. (8)

Thus, in addition to the total energy, the total magnetization
along the z-axis “mz,” the total crystal momentum “K ,” the
z-parity “z,” and parity “p” are global conserved quantities of
the system. Note however that although δĤ1 is also invariant
under this set of operations, δĤ2 does not commute with Ẑ.

We define the total spin current operator for the full model
(Ĥ0 + δĤ1 + δĤ2) as ĵ z = ∑L

j ĵ z
l , where the local current

operator ĵ z
l satisfies the continuity equation

Ṡz
l = −i

[
Ĥ , Ŝz

l

] ≡ ĵ z
l − ĵ z

l−1, (9)

which then gives

ĵ z = i
∑

j

(
J1

2
Ŝ+

j Ŝ−
j+1+ J2 Ŝ+

j Ŝ−
j+2 + t2 Ŝ+

j Ŝz
j+1Ŝ

−
j+2

)
+H.c.

(10)

Note this operator is odd under both spin inversion (in the
absence of δĤ2) and parity, i.e.,

Ô ĵ z Ô = −ĵ z, for Ô = Ẑ, P̂ . (11)

B. Linear response conductivity, series expansion, and Ansätze

Following standard derivations [2,4] the Kubo conductivity
in the Lehmann representation is given by

β−1σ ′(ω) = π

LZ

∑
m,n

δ(ω − Em + En)
∣∣jz

mn

∣∣2
, (12)

here simplified to its high temperature limiting form, where Z

is the partition function of the model and jz
mn labels the matrix

elements of the current operator. This will be our main quantity
of interest.

In averaging current autocorrelations we have choices of
ensembles, e.g., averaging over states with fixed total mag-
netization or over all magnetization sectors, and of boundary
conditions, e.g., open vs periodic. As with thermodynamics,
we expect the finite frequency conductivity to be insensitive to
these choices (even as ω → 0), but only in the thermodynamic
limit. The choices we make in this work are guided by the
types of analytic and numerical tools at our disposal. The most
natural ensemble choice in the context of analytic moment
expansions (see next paragraph) is the infinite temperature
unbiased “grand canonical” average over all magnetization
sectors, which is what we will use in the main body of the
paper. Since the entropy density peaks near zero magnetization,
this averaging weighs contributions from mz ≈ 0 states the
highest. Boundary condition choices, on the other hand, are
guided by numerical exact diagonalization considerations. In
particular, residual symmetries, e.g., parity and spin inversion,
can slow down the convergence to the thermodynamic limit [8].
Periodic boundary conditions with an irrational flux threading
the ring is the standard way to remove such transient (see
also Appendix A). Free boundary conditions can in principle
play the same role, however, these tend to induce very strong
edge effects, especially in the strongly interacting regime of
interest here [9]. Thus in the bulk of the paper we adhere to
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grand canonical averaging and irrationally twisted boundary
conditions, but include additional results of our explorations
of ensembles and boundary conditions in Appendix A.

Frequency moments of the conductivity and short-time
series expansion of the current autocorrelation function are
related via

1

L
〈 ĵ z(t )ĵ z(0)〉 ≡

∞∑
n=0

μn

(2n)!
t2n (13)

and

μn =
∫ ∞

−∞

dω

2π
ω2nσ ′(ω). (14)

The coefficients μn are nested commutators of the current
operator with the Hamiltonian Ĥ describing the system, e.g.,
μ0 = 〈ĵ zĵ z〉/L and μ1 = 〈[[ĵ z, Ĥ ], Ĥ ] ĵ z〉/L. Odd terms are
necessarily absent in equilibrium. In practice it is often useful
to take advantage of the continuity relationship to obtain the
μn’s from the small q dependence of the “density-density”
correlator, i.e., using the identity

〈ĵ z(t )ĵ z(0)〉 = ∂2

q2∂t2
〈Ŝz(q, t )Ŝz(−q, 0)〉

∣∣∣∣
q→0

. (15)

Working with the density means we can start the expansion
with a very simple local term, e.g., a single Ŝz operator at the
origin of the spin chain, and take maximum advantage of the
locality of the Hamiltonian, as subsequent commutators grow
the spatial extent of the series linearly. The downside is that we
need an extra term in the series because of the time derivatives.
More explicitly, we use Eq. (15) to express the μn’s as thermal
expectation values, within the grand canonical ensemble, of the
product of a (2n + 2)-fold commutator with a spin operator

μn = lim
q→0

1

q2

∑
j

e−iqj
〈[ · · · [ [

Ŝz
j , Ĥ

]
, Ĥ

]
, . . . , Ĥ

]
Ŝz

0

〉
. (16)

Short-time series expansions are similar to but less well
studied than the high-temperature series expansion known
from classical statistical mechanics. Given a long series there
exist several inexact but useful techniques to try and recon-
struct the behavior of the function, e.g., Padé approximants.
This is ongoing work on which we hope to report in the
near future. Here, instead, we adopt a simpler ansatz-based
approach, where several qualitative features are not computed
but rather inserted by fiat into a relatively simple functional
form, motivated by prior numerical or analytic results as well as
general considerations, e.g., σ (ω) ∝ |ω|α exp(−a ω2), whose
parameters can be computed by requiring it to fulfill a few
low-order moments. If the results are relatively accurate some-
where in parameter space, we expect them to continue to be
accurate in the immediate vicinity, i.e., we can take (somewhat)
seriously the dependence of the ansatz’s parameters on the
coupling constants in the Hamiltonian.

C. Integrability vs ballisticity

In the nonintegrable (finite t2 or J2) cases the Drude
weight is expected to vanish in the thermodynamic limit—
exponentially with system size, with a J2(t2)-dependent expo-
nent, and indeed numeric simulations support this expectation

[4]. Finite t2 gives rise to nonlinear hydrodynamics at high tem-
peratures [10], whereas positive J2 yields frustration-enhanced
transport at low temperatures [11].

On the other hand, at J2 = t2 = 0 the model is integrable
and has a macroscopic number of local conserved quantities
{Q̂m}, some of which may have a finite overlap with the
spin current operator (i.e., 〈ĵ zQ̂m〉 �= 0) thereby preventing
current autocorrelations from completely decaying. This can
be seen clearly by examining the current autocorrelation
function in time; the Drude weight is given by the residual
nondecaying component of initial currents [see Eq. (3) above].
Thus provided the current operator has components along any
of the Q̂m’s, the Drude weight will be finite and transport will
be ballistic.

For Eq. (4) all these local conserved quantities are even
under spin inversion [5], whereas ĵ z is odd, and consequently
the thermal expectation value 〈ĵ zQ̂m〉 vanishes. However,
if spin inversion symmetry is broken by, e.g., an external
magnetic field, a finite magnetization density or a magnetic
flux—the latter only for finite spin rings, the expectation
value 〈ĵ zQ̂m〉 need not vanish. In fact, using an inequality
due to Mazur [12] it has initially been shown [5] that in the
high-temperature limit, and for finite magnetization densities,
the Drude weight has the finite lower bound

D � β

2

8 �2 m2
z

(
1/4 − m2

z

)
1 + 8 �2

(
1/4 + m2

z

) . (17)

Equation (17) accounts for the overlap of ĵ z with the
conserved local energy current [5], and entails the XXZ model
displays ballistic transport for � > 0 and finite mz.

At exactly zero magnetization Eq. (17) is inconclusive
and one needs to distinguish between three regimes with
different transport properties, namely the � < 1 XY regime,
the isotropic � = 1 point, and the � > 1 Ising regime.

Substantial progress has been formulated recently in this
regard for � � 1: first, by constructing a family of quasilocal
exact conserved quantities (which includes operators of odd
z parity having a finite overlap with ĵ z) and using Mazur’s
inequality, a finite lower bound for the Drude weight was found
[13,14] at anisotropies � = cos(πM/N ) < 1, with N,M ∈ Z
coprimes and N > M ,

D � 2π
β

16

sin2(πM/N )

sin2(π/N )

(
1 − N

2π
sin(2π/N )

)
. (18)

This result entails ballistic transport for � < 1. That this
bound is saturated was shown by an effective hydrodynamic
description of the quasiparticle densities from a nonequilib-
rium “partitioning protocol” [15], as well as by independent
numerical computations [8]. At � = 1 the global SU(2)
symmetry of the model can be used to construct a rigorous
upper bound for the Drude weight. This upper bound vanishes
with the magnetization, thus implying the absence of ballistic
transport at the isotropic point (� = 1) [16,17]. On the other
hand for � > 1, the Drude weight vanishes, as first suggested
by numerical simulations [4,18], and as later shown to follow
from the spin-reversal invariance of the system’s macrostates
in this limit [15].

Summarizing, transport at J2 = t2 = 0 is dominated at
late times (low frequencies) by the ballistic (Drude peak)
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response. The Drude weight vanishes for anisotropies � � 1
and zero magnetization density, where some (likely weaker
and/or anomalous) form of diffusion has been proposed and
observed in recent works.

D. Phase diagram notation

We close this section with a note on terminology. Whereas
the zero temperature phase diagram of the integrable XXZ
chain may be properly demarcated by whether the elementary
excitations of the model are gapped (long range ordered, Ising
coupling dominated phase, and � > 1) or gapless (power-
law ordered, Luttinger liquid phase, and � < 1), such a
characterization is of limited use at finite and especially infinite
temperature. We certainly do not expect anything striking in the
finite temperature thermodynamics of the model, but perhaps
there may be some vestige of the zero-temperature phase
diagram in its dynamics, e.g., in whether the Drude weight
is finite, or in the evolution of finite frequency anomalies as
� is varied. It is, however, quite clear that the conventional
gapless vs gapped characterization is misleading and should
therefore be avoided, especially at infinite temperature. Thus,
instead, we use XY and Ising to denote “XY dominated” and
“Ising dominated,” as in reference to the Hamiltonian itself.

III. ANOMALOUS RELAXATION WITH WEAK OR
NO BREAKING OF INTEGRABILITY

We start by setting t2 = 0 and displaying the first three
nonzero conductivity moments

μ0 = 1
8J 2

1 + 1
2J 2

2 , (19)

μ1 = 1
16J 2

1 �2 + 1
4J 2

2 �2 − 3
8J 2

1 J2� + 5
8J 2

1 J 2
2 , (20)

μ2 = 1
16J 2

1 �4 + 1
4J 2

2 �4 + 5
64J 4

1 �2 + 3
8J 4

2 �2

+ 5
2J 2

1 J 2
2 �2 − 11

16J 2
1 J2�

3 − 5
8J 4

1 J2�

− 27
32J 2

1 J 3
2 � + 7

8J 2
1 J 4

2 + 85
64J 4

1 J 2
2 . (21)

The information about σ (ω) that we aim to glean is the
overall integrated weight, the low-frequency anomaly, and the
high-frequency cutoff. This leaves a lot of freedom for its
frequency dependence which we explored somewhat but in
the end settled on the following simple functional form, whose
high-frequency envelope is taken to be Gaussian [19]

β−1σ ′(ω) = C ω−1−α
0

�
(

1+α
2

) |ω|α exp

(
−

∣∣∣ ω

ω0

∣∣∣2
)

, (22)

where the parameters α and ω0 are to be determined in terms of
the moments Eqs. (19)–(21), �(x) is the gamma function, and
the amplitude C is fixed by the first sum rule to be C = 2πμ0.
We choose a Gaussian ansatz because it leads to finite moments
at any order, and allows us to analytically solve the sum-rule
equations for the parameters determining the ansatz. Similar
ideas have been used before in the context of high-temperature
spin transport to obtain the diffusion constant of the integrable
model [20–22]. Equation (22) simply extends (corrects) the
ansatz to allow for anomalous diffusion.

Combining Eq. (14) with Eqs. (19)–(22) we obtain

μn

μ0
= ω2n−2

0

�
(

2n−1+α
2

)
�

(
1+α

2

) , (23)

α = −1 + 2μ2
1

μ0μ2 − μ2
1

, (24)

ω2
0 = μ2

μ1
− μ1

μ0
. (25)

Provided the overall shape of the true ac conductivity is sim-
ilar to that assumed in the ansatz, this crude approach can yield
useful insights and predict interesting trends in the dependence
on Hamiltonian parameters. In especially fortuitous cases it
might turn out to be quantitatively correct, as appears to be the
case for the Heisenberg chain, as described below. We shall
examine two particular paths through the two-dimensional pa-
rameter space—the integrable XXZ chains (J2 = t2 = 0) and
J2-perturbed nonintegrable Heisenberg point (J1 = � = 1).
At least near the Heisenberg point, we can confirm numerically
(see Fig. 1) that the true (numerical) conductivity and its
approximation are similar.

A. The integrable XXZ line, J2 = 0

In treating the integrable XXZ model we must differentiate
between the Ising (� > J1 = 1) and the XY (� < J1 = 1)
regimes—as already mentioned in Sec. II, the model has a
finite Drude weight on the XY side [13] which contributes
to the leading frequency moment, while on the Ising side
the Drude weight vanishes only in the statistically significant
magnetization sector (mz = 0).

a. XY regime, � < 1: For simplicity we may approximate
the Drude weight with the thermodynamic Bethe ansatz result
[23,24]

β−1D = 2π
γ − sin (2γ )/2

16γ
, (26)

with γ = cos−1 �, which is likely exact for interactions � =
cos π/M , with M ∈ Z [14], while only approximate (by
ignoring the delicate fractal nature of the Drude weight) away
from such points. Then by setting the leading moment of the
regular part of the conductivity to μ0 − D/π in Eq. (24) we
obtain [25]

α = 8�2 cos−1 �

(5 + 4�2) sin(2 cos−1 �) − 4�2 cos−1 �
− 1. (27)

This result implies the low-frequency spin conductivity
displays superdiffusive behavior alongside ballistic relaxation
that stems from the Drude peak

β−1σ ′(ω) ∼ D δ(ω) + ωα, (28)

with the exponent −1 < α < −3/7.
The seemingly important subtraction of the finite Drude

weight produces very mild corrections in α and ω0. In partic-
ular, in the limit � → 0 the leading behavior is governed by
the parametric smallness of μ2

1 ∼ �4 vs μ0μ2 ∼ �3 even after
the subtraction (and μ0μ2 ∼ �2 without it).
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FIG. 1. Left: Dynamical exponent (full line) characterizing the longitudinal spin damping limt→∞〈(�x )2〉 ∼ t1−α for � = 1 as a function
of J2. The range of J2 values for which α > 0 makes the system subdiffusive. The bottom line indicates the variation of ω−1

0 with J2, also
showing the asymmetry with the sign of J2. Center: Frequency dependence of the (normalized) conductivity ansatz, for � = 1 and three values
of J2. Note the asymmetry for the transport rates with respect to the sign of J2. Right: Normalized Kubo conductivity for a 20-site spin ring,
computed within the canonical ensemble for states with zero total magnetization, and the same set of parameters as for the memory function
(uniform binning, width = 0.01). All the given results are in units of J1.

b. Ising regime and Heisenberg point, � � 1: With the
Drude weight gone the formulas simplify

α = 2�2 − 5

2�2 + 5
, (29)

ω0 =
√

2�2 + 5

2
, (30)

amounting to a continuous redistribution of spectral weight
away from the low frequency divergence to high-frequency
tails, a physically sensible result. More intriguingly, the expo-
nent crosses zero at � = √

5/2 ≈ 1.6 with the conductivity
becoming subdiffusive, i.e., decreasing at lower frequencies
for larger �. Subdiffusion in clean many-body problems is
not natural, although perhaps not forbidden. However, a finite
lower bound on the diffusion constant in this regime has been
found recently [26], thus ruling out subdiffusive spreading. We
find the correct picture contains another peak forming on much
lower frequency scales, whose properties cannot be gleaned
within the simplistic ansatz employed thus far—we return to
focus on this issue in Sec. IV.

At the Heisenberg point (� = 1) Eq. (29) predicts anoma-
lous conductivity with the exponent α = −3/7, corresponding
to superdiffusive spread of initial distortions according to

〈(�x)2〉 ∼ t10/7 ≈ t1.43. (31)

c. Comparison with prior results and numerics. Superdif-
fusion at the isotropic point has been obtained previously, both
analytically with the scaling ∼t12/7 ≈ t1.71 in the continuum
limit [27], and numerically, by means of the recursion method
[28] (∼t1.26) and exact diagonalization [29] (∼t1.41).

Most recently, t-DMRG studies [30–32] also found su-
perdiffusive transport with 〈(�x)2〉 ∼ t4/3 ≈ t1.33.

Our prediction seems to fall in line with these past numerical
results. However there are claims, both old and recent, that spin
transport instead shows a nondivergent diffusion constant at the
isotropic point [20–22,33–35].

Here we find good (qualitative and quantitative) agreement
between the ansatz, Eq. (22), and our own numeric studies, as
can be seen in Figs. 1, 2, and 7. Figure 2, in particular, shows
the exact finite-size Kubo conductivity for different system

sizes. Note that already for these small systems the conductivity
data reaches the thermodynamic limit at mid-frequencies
(ω � 0.05) and agrees well with the power law predicted by
the ansatz.

See also Appendix A where we explore the significance of
averaging over magnetization sectors and threading with a flux
to lift unwanted symmetries, thereby carefully analyzing the
different finite size effects present in our data. There we also
examine the small � regime.

B. Perturbed Heisenberg chains

As already emphasized, it is useful and important to start
by visually assessing the overall validity of the three-parameter
ansatz, Eq. (22)—Fig. 1 illustrates its predictions at J1 = � =
1 and J2 = 0,±0.2, as compared to exact-diagonalization
(ED) computations. The first panel illustrates a surprising
sensitivity of the ansatz parameters on the sign of the next-
nearest-neighbor spin-flip: positive J2 values enhance su-
perdiffusion, whereas already for relatively small negative J2

long-time transport is suppressed and becomes subdiffusive.
These predictions are borne out in actual numerical results,
which can be compared to full ansatz line shapes (see, e.g.,
right and center panels of Fig. 1, where the ED computation is
averaged over the mz = 0 sector).

In order to alleviate finite-size effects we thread the system
with an irrational flux (implemented via a Peierls substitution)
and work within the grand canonical ensemble. Each of
the panels in Fig. 2 examine both the size and frequency
dependence of the Kubo conductivity at J2 = 0, 0.2, and
−0.2, from left to right. There are two apparent power laws
in each panel: (i) the asymptotic finite-size power law which
is either ω2 or |ω| for integrable or nonintegrable models,
respectively; the latter being a manifestation of random-matrix
like spectral correlations (see Appendix A for a detailed
discussion); and (ii) mid-frequency power law that persists in
the thermodynamic limit, whose dynamic range presumably
extends to zero frequency at J2 = 0, but otherwise is limited by
some finite ω∗(J2 → 0) → 0, which appears to be masked by
finite size effects in our simulations anyway. Quite remarkably,
the analytically predicted values for the latter power law,
displayed using solid lines, appear to match rather well both
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FIG. 2. Low-frequency Kubo (normalized) conductivity for spin rings of different length, pierced by an irrational magnetic flux and averaged
over all magnetization sectors. The parameters are � = 1 and J2 = 0.0 (left), 0.2 (center), and −0.2 (right). The black full lines in the plots
correspond to the power laws obtained with the sum-rule method, Eq. (24), whereas the dotted lines are proportional to either ω2 or ω. The
latter case signals the onset of level repulsion.

the direction and the magnitude of the drift (see also Fig. 7).
Finally, we notice that in the subdiffusive case (J2 = −0.2) a
new feature appears at very low frequency in the numerics,
consistent with a secondary peak forming at much smaller
frequencies. This low frequency feature might be an analog
of the low-frequency peak we find deep in the Ising regime
(see Sec. IV). It might also be due to strong finite-size effects
as we elaborate in Appendix A.

Caveats: Despite the apparent success of our ansatz, we
do not have any reason to doubt that ω∗, which demarcates
the crossover to ordinary diffusion, remains finite in the
thermodynamic limit at finite J2, although we do not know
how it depends on J2.

We note that similar anomalous transport properties at low
frequencies in thermal transport have also been observed in
perturbed Heisenberg chains with isotropic nnn coupling [36].
The anomalies were there shown to be inherited from the
integrable point and associated with near-conserved quantities.
However, in that study the thermal anomaly showed up as a
J−4

2 effect, which is manifestly independent of the sign of J2.
Similarly, a J−2

2 -dependent bound on spin dc conductivity was
obtained in a later study using nonlocal conserved quantities
in nonintegrable systems [37].

IV. TWO-COMPONENT RESPONSE
IN THE ISING LIMIT, � � 1

In the large � limit (for simplicity we only consider
J2 = t2 = 0—it is not clear whether integrability breaking is
important in this regime) the eigenstates of the model are
close to classical spin configurations, i.e., product states of
up-down fully magnetized spins. Due to the locality of the
current operator and the product state nature of the J1/� = 0
starting point, the conductivity is dominated by local spin flips
between, say, sites 2 and 3. We need to average these processes
over “background” configurations, i.e., spin configurations on
sites 1 and 4 of an infinite chain. The four possibilities are:
(i) · · · ↓↑↓↓ · · · , (ii) · · · ↑↑↓↑ · · · , (iii) · · · ↑↑↓↓ · · · , and
(iv) · · · ↓↑↓↑ · · · . Spin flips between the middle two sites
either change the configuration energy by a factor of �, or do
not change it at all. To leading order in J1, we ignore energy
corrections and simply compute the conductivity in the β → 0

limit as

β−1σ ′(ω) = A0δ(ω) + B0

∑
±

δ(ω ± �), (32)

with A0 = 2B0 = πJ 2
1 /8. More generally, at small but finite

J1/� we still expect to observe this two-component structure
of response, with the ω = 0 contribution broadened into a
Drude-like diffusive peak (with possible anomalies) and a
broad absorption peak near ω = �. From the point of view
of coarse phenomenological description, we are interested in
the evolution (with J1) of amplitudes, widths, and locations of
the two peaks in Eq. (32). Assuming the low-frequency peak
does not move away to a finite frequency, we therefore need
five microscopic inputs to extract the five parameters necessary
to describe the line shape, which we model with the following
simple ansatz:

β−1σ ′(ω) = Aδ̃A(ω) + B

2

∑
±

δ̃B (ω ± �̃), (33)

with δ̃A ≡ (ωA

√
π )−1exp[−(ω/ωA)2] and similarly for δ̃B .

This functional form may need to be refined once additional
nonperturbative insights (e.g., from numerics) into the dynam-
ics of this regime become available. As written, the ansatz
is consistent with the current belief of absence of ballistic
behavior within the Ising regime of the XXZ chain. Using
the five known moments for the XXZ chain [38] we obtain, by
means of Eq. (14) and (33),

A = π

8
J 2

1 + 3π

32

(
J 2

1

�

)2

, ωA =
√

3

2
J1,

B = π

8
J 2

1 − 3π

32

(
J 2

1

�

)2

, ωB = J1,

�̃ = � − 1

4

J 2
1

�
. (34)

With these results Eq. (33) predicts the diffusion constant
D := σ ′(ω → 0) ≈ 0.18J1 in the limit J1 → 0 (or � → ∞).
The limiting behavior of the diffusion constant as � → ∞ has
received considerable recent attention with earlier studies (e.g.,
Refs. [30,39]) coalescing around it vanishing D ∼ 1/� while
the more recent state-of-the-art t-DMRG studies (both linear
response and quench-based probes) giving convergence to a
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finite value [32,40] D ≈ 0.4J1, which is remarkably close to
our result, whose only assumption was that the overall shape
of the ac response is smoothly connected to the analytic result
in the extreme limit J1 → 0. Intuitively, the physical origin of
both the nonvanishing diffusion constant and even the presence
of the low frequency peak is in the finite density of thermally
excited voids in which magnetization can fluctuate.

V. NEARLY FREE FERMIONS

The model Hamiltonian Ĥ0 + δĤ1 has several free-fermion
limits. Here we examine two of them: �/J1 → 0 and J1/J2 =
�/J2 → 0.

� � 1 limit of the integrable chain—We have shown in
Sec. III the ansatz defined by Eq. (22) predicts the low-
frequency behavior σ ′(ω) ∼ D δ(ω) + |ω|α for the spin con-
ductivity for � < 1, interpolating monotonically from α =
−3/7 (Heisenberg chain) to α = −1 (XY chain), with � → 0
attained as

β−1σ ′(ω) ≈ 2π

5

�2

ω
1− 4�2

5J2
1

exp

(
−4

5
ω2

)
. (35)

Note that lack of normalizability of the |ω|−1 power law in the
limit � → 0 is avoided via a vanishing coefficient at the level
of the ansatz.

Large J2 limit—For large J2 � 1 (with J1 = � = 1) the
spin chains decouple into two independent chains. Moreover,
from the results shown in the left panel of Fig. 1, we expect the
±J2 dynamical responses to be identical as J2 → ∞, with
α → −1, as in the small � limit treated in the preceding
paragraphs. Note nevertheless that for 1 � J2 �= ∞ the system
is still nonintegrable and therefore normal diffusion is expected
at long times. In this limit, and for ω � ω0,

β−1σ ′(ω) ≈ π
κ

ω
1− κ

2J2
2

, (36)

with κ = 25J 4
1 +20J 2

1 �2+4�4

7J 2
1 +3�2 . This result has the same structure

as that of Eq. (35) when reinterpreted as perturbation theory in
1/J2.

Before we present numerical evidence supporting these
results, let us remark that |ω|−1 behavior is profoundly
different from the Lorentzian line shape we expect from
perturbative calculations [41]: in particular, it corresponds to
logarithmically slow decay in time! Such slow decay must
be related to the emergence of some conserved quantity we
have yet to identify. We also caution that the approach to the
noninteracting limit may or may not follow the prediction of
the ansatz in detail. For example, there may be a universal
(interaction independent) |ω|−1 tail, limited both at low and
high frequencies by interaction-dependent cutoffs, instead
of interaction-dependent exponent. Our numerical tests are
too coarse to differentiate this possibility from the varying
exponent.

Our studies are instead primarily focused on documenting
the decay of the conductivity, which approximately behaves as
|ω|−1 both near � = 0 and in the large J2 limit, with concomi-
tant logarithmic decay in temporal current autocorrelations.
The latter is depicted in Fig. 3 and appears rather compelling.
This figure also displays the remnant Drude peak in these
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FIG. 3. Temporal and size dependence of current autocorrelation
decay for weakly coupled even-odd sublattices (large J2 limit) on a
semi-log scale. The long-time plateau indicates a finite Drude weight
which decreases with increasing system size, whereas the straight line
decay (i.e., log t) becomes more pronounced.

finite-sized samples, which appears to decay exponentially
with system size, consistent with the lack of integrability in
that particular limit. In Appendix C we present data in the
frequency domain which corroborate this picture, albeit with
significantly stronger finite size effects for the integrable case.

VI. NONLINEAR HYDRODYNAMICS IN STRONGLY
ERGODIC CHAINS

Weakly nonintegrable, strongly Ising, and nearly noninter-
acting limits (Secs. III, IV, and V, respectively) all benefit
from some analytic insight to guide the ansatz-based approach
used in this work. Away from all such limits we expect current
autocorrelations to exhibit the least complicated structure pos-
sible for a nonconserved operator, i.e., monotonic decay with
no particular short or long transient time scales. Importantly,
such decays need not be simple exponential, e.g., as dictated by
conventional Drude line shape and textbook hydrodynamics.
Long-time tails can originate from nonlinear admixture of
“slow” conserved operators into everything else of interest,
including nominally “fast” currents. Intuitively, this may be
seen as follows: suppose we postulate ordinary diffusion with
concomitant local Fick law relationships between currents and
density gradients j and n, respectively (both in principle with
multiple components, e.g., magnetization, energy, etc.)

j (r, t ) = −D∇n(r, t ) + η(r, t ), (37)

with η denoting fast uncorrelated noise and D the diffusion
(matrix) constant.

More generally, however, D is itself a symmetry-
constrained operator D(r, t ) = D0 + Cn(r, t ) + · · · , where C

is a certain third rank constant, n(r, t ) denotes spatiotemporal
deviations of the conserved quantities from equilibrium, and
· · · denotes other higher powers of conserved quantities which
are less relevant near the diffusive fixed point. Thus D inher-
its slow fluctuations from the conserved quantities, thereby
inducing power-law corrections to the presumed fast current
decay. These nominally perturbative fluctuation effects have
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been known since the early 1970s [42] but their qualitative
and quantitative significance (especially in low-dimensional
and/or disordered media) is a subject of ongoing research. Most
relevantly, Mukerjee et al. [10] observed that nonintegrable
fermionic chains of the type defined above attain a strongly
nonlinear hydrodynamic regime, whereby the long-time tail

lim
β→0

β−1[σ ′(ω) − σ ′(0)] ∼ −√
ω (38)

completely dominates over most of the dynamical range. Thus,
to a good accuracy, after Fourier transforming the above
F (

√
ω) → t−3/2 and introducing a finite zero time cutoff [10]

〈ĵ z(t )ĵ z(0)〉 = a

(τ 2 + t2)3/4
, (39)

with a and τ both of order one in natural units. We note in
passing that this functional form also implies that the extreme
high-frequency tail must be exponential—this is indeed the
case but we defer discussing it to a later date.

We now proceed to provide a more microscopic account of
the conductivity in this regime. We start by displaying the first
three moments of the conductivity at J2 = 0,

μ1 = 2
(
t2
1 + 4 t2

2

)
, (40)

μ2 = V 2
(
t2
1 + 4 t2

2

)
, (41)

μ3 = V 2
[
5t4

1 + 24t4
2 + V 2

(
t2
1 + 4t2

2

) + 30t2
1 t2

2

]
, (42)

where we used the more familiar notation for the fermionic
model t1 = J1 and V = 2�.

The simple two-parameter ansatz in Eq. (39) may be Fourier
transformed as

β−1σ ′
1(ω) = a(τω)1/4K−1/4(τω), (43)

where Kn(x) is the modified Bessel function of the second
kind. The above expression correctly satisfies Eq. (38) for small
ω, as it should. However, this expression is overly simplistic
as it fixes both the high-frequency envelope and the amplitude
of the low-frequency nonanalyticity with a single constant.

Another more general ansatz, and one that separates low-
and high-frequency behaviors explicitly, may be devised, e.g.,

β−1σ ′
2(ω) = A exp(−b

√
ω − c ω). (44)

We can use the first two and all three of the moments
in Eqs. (40)–(42), respectively, to numerically extract the
parameters in both Ansätze and plot them together with the
exact (finite-size) conductivity. The two- and three-parameter
Ansätze are shown in Fig. 4. It is rather clear that both are very
close—the exact conductivity is subjected to finite-size effects,
most pronounced as the pseudogap at low frequency, but also
present elsewhere [10].

We conclude with some comments about the weak
integrability-breaking regime of this model, i.e., t2 → 0. First,
the presence of the additional Ŝz operator in the perturbation
carries an important constraint, namely it implies that
symmetric averages over positive and negative magnetization
sectors will be symmetric under t2 → −t2 transformations.
This may be seen very clearly already in the short-time
expansions, where terms odd in t2 are absent (unlike the J2

case). [See Eqs. (40)–(42).] This alone does not preclude,
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FIG. 4. Kubo conductivity for a spinless fermion model on
a 18-site chain with next-nearest-neighbor hopping amplitudes
t2 = ±1 and nearest-neighbor interaction V = 2 (uniform binning,
data normalized to one). The three lines are from two- and three-
parameter Ansätze (described in text).

of course, some version of the phenomena observed in
Sec. III, e.g., drifting exponents, which may be predicted
following the same steps as before. Our attempt to observe
shifting power laws using exact diagonalization (as we did
in Sec. III) failed—as best as we can tell the anomaly of the
Heisenberg point gives way to hydrodynamic behavior at
already relatively weak t2, with no discernible change in the
exponent over intermediate range of frequencies.

VII. IMPLICATIONS FOR EXPERIMENTS: THE
STRUCTURE FACTOR

We have presented several examples of low-frequency
conductivity anomalies, which may in principle be observed
in quasi-one-dimensional conductors, spin-chain compounds,
or cold atomic gases. The probing frequency should not be
too low, as there are numerous residual weak couplings to
the environment, e.g., phonons and disorder, which should
in principle modify the behavior at too low frequencies.
Quite generally, it is difficult to excite a many-body system
in a controlled linear response regime. It is often easier to
observe slow fluctuations, e.g., using inelastic light or neutron
scattering, time-of-flight techniques, etc. The relevant quantity
is the so called dynamic structure factor (Fig. 5), which may
be related (as shown in Appendix D) in the low-frequency
long-wavelength limit to the Kubo conductivity as

S(q, ω) = q2σ ′(ω)(
ω + q2

β

χ0
σ ′′(ω)

)2

+
(

q2

2

β

χ0
σ ′(ω)

)2 , (45)

with χ0 the static spin susceptibility and σ ′′(ω) the imaginary
part of the Kubo conductivity, related to σ ′(ω) through the
Kramers-Kronig relation for functions analytic in the upper
half of the complex plane [43]

σ ′′(ω) = P

∫
dω′

2π

σ ′(ω′)
ω′ − ω

,
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α = −3/7 and α ≈ −0.79, for J2 = 0, 0.2, respectively), as com-
pared to the normal diffusive case (J2 ≈ −0.162, α = 0).

where P indicates the Cauchy principal value. The nondiffu-
sive low-frequency anomalies discussed above, σ ′(ω) ∼ |ω|α ,
which are accompanied by

σ ′′(ω) ∼ sgn(ω)|ω|α tan
(
|α|π

2

)
+ ω

(
α − 3

4

)
�

(
α − 3

2

)
,

lead to very distinctive spectral signatures in S(q, ω):
a. Diffusion (α = 0) is the simplest case and results in a

Lorentzian spectral function with a finite offset at ω = 0,

lim
ω→0

S(q, ω) ∼ 1

Dq2
, (46)

where D is the diffusion constant.
b. Subdiffusion (1 > α > 0) results in a quasielastic Bragg-

like peak, with a doubly divergent form

lim
ω→0

S(q, ω) ∼ 1

q2|ω|α . (47)

c. Superdiffusion (−1 < α < 0) splits the central peak into a
doublet, which also disperses albeit nonballistically, with new
peak locations at

ω±(q ) ≈ ±
(

q2 tan
(|α|π

2

)
2 + |α|

) 1
1+|α|

∼ ±|q| 2
1+|α| . (48)

The structure factor in this case vanishes at the origin as
S(q, ω → 0) ∼ q−2|ω||α| and diverges at the peaks S(q →
0, ω±) ∝ ω−1

± . Unlike coherent peaks that exhibit asymptotic
narrowing and divergent quality factors (e.g., as arising from
Goldstone modes), here the quality factor remains finite, except
at α → −1.

We expect these qualitative differences to be helpful in
identifying anomalous behavior in future experimental and
numerical studies.

Let us close this section with two further comments: (i)
the analysis of S(q, ω) above heavily relies on the small
momentum (q → 0) expansion of the memory function in the

denominator. It is in principle possible that the analyticity in
q is compromised by the presence of nondiffusive behavior,
e.g., if higher order terms in q change the asymptotic behavior
at small frequencies. We have partially investigated and
addressed this concern by explicitly computing the next term
in the small-q expansion [following the same procedure as for
the q = 0 conductivity and using Eq. (16)] and estimating its
anomaly structure. We found that the anomaly is weaker than
that of the leading term, so the leading term (in the small mo-
mentum expansion) continues to dominate at low frequencies,
at this level of approximation; (ii) in addition to the “central”
Rayleigh peak (ω � q), conventional fluids also exhibit
“phonon” (Brillouin) peaks at frequencies ±c q (with c the
speed of sound) whose width vanishes as q2. It is worth recall-
ing that the presence of sound waves in conventional fluids nec-
essarily comes with a δ(ω) in the conductivity—both peaks are
mandated by the exact momentum conservation in free space.
This picture lends itself to the following generalization which
we believe takes place in integrable lattice models, where the
conductivity exhibits both regular and Drude components: at
finite momenta the coherent zero-frequency (Drude) weight
disperses rapidly to a relatively high-frequency ∼q, whereas
the regular part associated with (super-) diffusion is spread
out to a much lesser extent, e.g., q2 for ordinary diffusion. The
presence of dispersing quasi-Brillouin peaks is consistent with
earlier numerical studies [44] and also exact results on the
XY model [45,46]. Intriguingly, the additional superdiffusive
peaks we find above disperse parametrically slower than q and
therefore can in principle coexist with quasiphonon peaks in
the structure factor. Clearly the dynamical structure factor can
display a much richer behavior than q = 0 conductivity itself
and we plan to return to this subject in the near future [47].

VIII. DISCUSSION AND OUTLOOK

This work has assembled a set of diverse results on dynam-
ical signatures of transport anomalies in integrable, weakly
and strongly nonintegrable spin chains. The significance of
these results, many of which are new and some are surpris-
ing, is amplified by the fact that they appear in relatively
common quantum models at finite (high) temperature, and
may be directly observed in transport or scattering probes.
Particularly intriguing are the continuously drifting exponents
(Sec. III) in nearly integrable cases, and the logarithmic in time
relaxation (Sec. V) in weakly interacting chains (and ladders).
We have also included a detailed discussion of implications
of these results to the dynamical structure factor, including
likely existence of the additional phononlike Brillouin peak in
integrable cases, in Sec. VII.

There are several open questions and directions of inquiry
worth mentioning. To start, it is unclear whether the presence of
additional conservation laws leads to a hierarchy of dynamic
anomalies—certainly in the specific case of integrable XXZ
chains the exact conservation of the energy current implies that
the response of that particular channel remains purely ballistic
(no finite frequency absorption whatsoever). One potentially
natural way to approach these questions is from the vantage
point of generalized hydrodynamics, in terms of conserved
quantities and their effective velocities, as recently formulated
[48,49]. However, it is at present unclear whether that for-
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malism is capable of addressing the regimes of interests to us,
e.g., linear response near infinite temperature and for the entire
range of �. Recent results [15,50,51] appear encouraging,
although restricted to the nonregular component of the con-
ductivity. In the meantime it is also feasible to apply the same
methodology as in this work (e.g., moments+ansatz+exact
diagonalization) to other response functions, e.g., heat con-
ductivity and thermoelectric response, also finite momentum
response (including the dynamic structure factor) and as a
function of temperature, to provide further data for the more
macroscopic hydrodynamic theory. It would be interesting, in
particular, to explore the role of symmetries in determining the
anomaly structure. For example, empirically (and somewhat
surprisingly), we found no difference between perturbing the
Heisenberg point with nnn XY coupling vs nnn Heisenberg.

In separate follow-up projects we will present (i) detailed
studies of high-frequency tails of response functions, both
in integrable and strongly nonintegrable chains, using re-
summation techniques. Our current conjecture is while the
latter is generically simply exponential, integrable chains have
sufficiently sparse matrix elements to allow for functionally
distinct, e.g., Gaussian, fall-off of the response; and (ii)
linear response anomalies should also be accompanied by
nonequilibrium signatures, e.g., in current noise as probed by
nonequilibrium steady states’ fluctuations.

Lastly, our early motivation for this project came via
many-body localization in disordered chains (in turn motivated
by similar J2-sign effects on transport at zero temperature
discovered earlier [11]). Localization phenomena had to be
set aside as we kept unearthing rich structures in the clean
problem. We plan to re-engage many-body localization using
methods of this paper.
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APPENDIX A: KUBO CONDUCTIVITY: ENSEMBLE,
BOUNDARY, AND NNN-STRENGTH DEPENDENCIES

1. Role of symmetries

The infinite temperature conductivity at frequency ω is
computed from the Kubo formula Eq. (12), which includes
both the regular and Drude contributions.

a. Regular component

First, a few comments on practical aspects vis-á-vis imple-
mentation are in order. Given that m̂z and Ẑ commute with both
T̂ and P̂ , and that [T̂ , P̂ ] = 0 in the k = 0 sector and [m̂z, Ẑ] =
0 in the mz = 0 sector, one can use this set of symmetries
to block diagonalize the Hamiltonian [53]. For finite J2 and
large L the energy-level statistics of each of these symmetry
sectors are those of the Gaussian orthogonal ensemble (GOE)
[54]. However, as previously mentioned, the total spin current
operator ĵ z is odd under both parity and spin inversion and,
consequently, its only nonvanishing matrix elements are those
connecting symmetry subsectors with opposite (p, z). Thus, in
the presence of spin-inversion symmetry and parity, the energy
difference in the argument of the Dirac delta functions in the
Kubo formula mixes different GOE spectra. Figure 6 illustrates
the consequences of these observations: the filled squares show
the level statistics taken within each symmetry sector and then
averaged over; the correspondence with random matrix theory
is evident. Empty squares in Fig. 6, in contrast, correspond
to the level spacing distribution for the set of states mixed by
the current operator in the mz = 0 sector. The main aspect
to be noted here is the absence of level repulsion, which
entails that for frequencies much smaller than the average level
spacing, the conductivity, when computed in the canonical
ensemble within the zero-magnetization sector, will not display
the usual reduction due to the decrease of level pairs with such
energy differences. This means that there is no discernible
low-frequency |ω| drop in the conductivity, as can be clearly
seen in the center panel of Fig. 7 (wherein the average is done
in a spin-inversion symmetric sector, i.e., with mz = 0).

Now in the absence of parity and spin inversion, all many-
body states are mixed by the current operator and random
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FIG. 6. Filled squares: Level-spacing distribution for a 20-site
spin ring with � = 1 and J2 = 0.2 averaged over the different
symmetry subsectors with zero total magnetization (mz = 0). The
inset shows the usual low-frequency linear decay of the level spacing
distribution due to level repulsion. Empty squares: Level-spacing
distribution for the states mixed by the spin current operator, Eq. (10).
Note the absence of level repulsion in this case which will be reflected
in the conductivity. The ideal GOE distribution is shown as a full line
in both plots.
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FIG. 7. Mid-frequency power laws and ensemble dependence of the (normalized) high temperature conductivity. Left: Conductivity in
canonical (CE) and grand canonical ensemble (GCE) of the L = 18 integrable chain. A superdiffusive power law as obtained from the ansatz
gives a good fit before the low-frequency ω2 behavior sets in; the latter is consistent with the argument in Ref. [55] at low frequencies in the
integrable chains. Center: Conductivity in nonintegrable L = 18 chains in the mz = 0 sectors; the black lines correspond to power-law fits
from the ansatz, whose exponents are defined in the right panel of the figure. Note the behavior predicted by the ansatz is qualitatively and
quantitatively consistent with the drift, and often values, of the power laws as ±J2 is changed. Right: Same as the middle panel but in the grand
canonical ensemble. An extra peaking is observed at much lower frequencies in all J2 �= 0 cases, which is a remnant of the finite-L Drude peak
from the integrable limit (which is absent in the middle panel due to spin-inversion symmetry).

matrix theory effectively describes the spacing distribution
of energy levels. This is the case upon the application of a
flux: the flux breaks spin inversion, parity, and time-reversal
symmetry (here labeled as K̂) but preserves the symmetry
under the combined operation (K̂ × P̂ ). Level spacing statistic
thus belongs to the GOE [54]. Indeed, one can clearly identify
the onset of level repulsion in the center and right panels of
Fig. 2 of the main text (which correspond to fluxed chains),
as the linear drop of the conductivity at the lowest frequencies
(marked with dashed lines).

b. Drude component

As regards the ballistic contribution, the flux plays an
important role in accelerating convergence specially in the
integrable case [8]—this is due to the presence of additional
symmetries, partially identified as the sl2-loop symmetry. In the
absence of the flux the overwhelming contributors to the Drude
weight are states from these sl2-loop degenerate subspace of
off-diagonal current matrix elements jz

m,n, with m �= n. How
fast these degeneracies appear in our finite chains, however,
depends on the anisotropy value. Upon introduction of the
flux all the sl2-loop-related degeneracies disappear and the
relevant current carrying states are the diagonal ones, i.e.,
jz
m,nδm,n. Convergence to the thermodynamic limit is faster

in this case. Nevertheless, these two types of contributions in
the two situations (i.e., fluxed vs unfluxed) approach the same
value in the thermodynamic limit, irrespective of the anisotropy
�. For � � 1 or J2 �= 0 this thermodynamic limit is zero.

Now, all our finite-size spin chains have a finite Drude
weight (even for finite J2) in the symmetry sectors of finite
mz—if mz = 0 there are no current-carrying states due to spin
inversion! Breaking spin inversion with a flux yields a finite
Drude weight even within the zero total magnetization sector,
thereby enhancing the finite-size grand canonical ensemble
value of the Drude weight [8]. It follows that in fluxed
integrable chains the regular conductivity should drop at higher
frequencies as compared to unfluxed chains, for the optical sum
rule to hold. Comparing the left panels of Figs. 7 and 2 shows
this is indeed the case.

2. Role of ensembles

In Figs. 1 and 2 we demonstrated the qualitative and quan-
titative dependence of low-frequency power laws as a function
of J2, and their agreement with the numerical results. To
further study the long-time transport properties of our model,
as well as the validity of the predictions let us consider Fig. 7:
here we display the ensemble dependence of the conductivity,
computed using logarithmically spaced frequency bins in the
absence of a flux, together with the mid-frequency power-law
predictions from the memory function ansatz. We distinguish
between canonical (CE) and grand canonical (GCE) ensemble
calculations: in the former case we average over eigenstates
with mz = 0, whereas in the latter the average includes
eigenstates from all the different magnetization sectors. Let
us consider the integrable and nonintegrable case separately.

a. Integrable case

The left panel of Fig. 7 depicts the finite-size low-frequency
conductivity for an 18-site isotropic Heisenberg chain. The
first aspect one notes is that at frequencies lower than ω ∼ 0.1
the conductivity abruptly drops, a feature which has been
identify as a pseudogap in previous studies [56]. The difference
between the two ensemble calculations at these frequencies has
a simple explanation: at the isotropic point (� = 1) the Drude
weight of small chains is finite and vanishes polynomially
when increasing system size in the GCE, whereas it vanishes
identically for any L due to spin inversion in the CE. Hence
we expect the regular part of the GCE conductivity to drop at
higher frequencies—as compared with the CE calculation, in
order to preserve the optical f sum rule fixed by μ0. Since
in the thermodynamic limit the Drude weight vanishes, such
a difference between ensembles is nothing but a finite size
effect. At even lower frequencies we observe the onset of a
clear ω2 power law; such a ω2 low-frequency behavior has
been argued for in Ref. [55] for the integrable chain. However,
as we have already seen in Fig. 2 of the main text, the onset
of the ω2 behavior slowly moves towards lower frequencies
when increasing L, thus indicating it corresponds to another
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finite-size effect. Hence, for the system sizes considered here
we expect strong finite-size effects for frequencies ω � 0.1.

Note that there is strong numerical evidence for superdif-
fusion at the isotropic point [30–32]; in the main text this was
displayed in the left panel of Fig. 2. The same superdiffusive
power law, as obtained from our ansatz Eq. (22), nicely fits the
CE data as well (as shown in the left panel of Fig. 7) before
the sudden drop of the conductivity.

b. Nonintegrable case

Let us now consider the ensemble and J2 dependence,
focusing first on the center panel of Fig. 7, where we plotted
CE data for four J2 values. To begin with, note the strong
suppression of spectral weight at low frequencies for negative
J2, and the absence of level repulsion at the lowest frequencies
due to spin inversion and parity symmetries (see Fig. 6). Most
importantly, and focusing on frequencies ω � 0.1 (i.e., before
the finite-size effects observed in the integrable limit set in)
we see there is a frequency range over which the power laws
obtained from our ansatz, represented as black lines whose
legend is shown in the right panel of the figure, are qualitatively
consistent with the drift and power laws of the conductivity
data for both ±J2 cases. Pivotally one can clearly identify
from the exact-diagonalization data alone power-law behavior
which signals anomalous diffusion processes occurring on a
limited time domain.

The right panel of Fig. 7 shows similar results for the
conductivity computed in the GCE (system size dependence
was already displayed in the main text for a given J2 in the
GCE). For ω � 0.1 the qualitative agreement between the data
and the ansatz predictions persists. At frequencies ω � 0.1
however, the conductivity displays an additional peak which
could be interpreted as follows: for finite L the Drude weight
in the integrable limit is finite; breaking integrability transfers

the Drude peak’s spectral weight to finite frequencies so that
the optical sum rule is satisfied [9]. One might argue that such
a redistribution results in the low-frequency enhancement at
ω � 0.1, which then corresponds to a finite-size effect.

A bit more tricky is the increase with system size of the low-
frequency enhancement before the onset of level repulsion—as
shown in Fig. 2 of the main text. One can identify two
competing effects: first, and as pointed out above, breaking
integrability transfers the Drude peak’s spectral weight from
the integrable limit to finite frequencies; the strength of this
effect should decrease when increasing system size. Second,
the finite Drude weight of the nonintegrable chain itself rapidly
decreases with system size, the corresponding spectral weight
being shifted to finite frequencies. The combination of these
two effects yields the low-frequency enhancement of the
conductivity for ω � 0.1: it is unclear to us whether this will
survive in the thermodynamic limit.

In summary, we have seen that the power laws obtained
from the ansatz, Eq. (22), qualitatively describe the finite-
frequency conductivity power laws observed in both canonical
and grand canonical ensemble computation. These results
entail the possibility of mid-frequency anomalous diffusion
in nonintegrable systems.

APPENDIX B: SPECTRAL TRANSFER IN A TRIMER

Our ansatz-based results for the J2 dependence of the
conductivity attain a particularly simple form in the few-body
limit, e.g., a trimer. Consider a three-site spin chain, with two
up spins and one down spin. This system may be readily shown
to respond, through the current operator, Eq. (10), only at two
frequencies

ω± = 1

4

(
� − 3J2 ±

√
(� + J2)2 + 8

)
, (B1)

with the conductivity given by

β−1σ ′(ω) = π

9

{
4ω2

+δ(ω − ω+)

8 + (J2 + �)2 + (J2 + �)
√

(J2 + �)2 + 8
+ 4ω2

−δ(ω − ω−)

8 + (J2 + �)2 − (J2 + �)
√

(J2 + �)2 + 8

}
, (B2)

for small J2 � � and ω− < ω+—with this difference increas-
ing for J2 < 0. Thus for positive J2 the two frequency modes
are constrained to be closer to each other, and with about the
same spectral weight, whereas for negative J2 the two modes
separate out into a high- and a low-frequency mode, the latter
being spectrally suppressed in amplitude.

This means that in the presence of small negative next-
nearest-neighbor spin flips the system’s dynamics gets slower
due to the spectral redistribution. Such redistribution is pre-
dicted by our memory function ansatz and is vindicated by the
numerical linear response calculations, as shown in Fig. 1.

Note that setting � = 0 in the above Eqs. (B1) and (B2)
gives identical dynamical properties for both signs of J2.
This can also be seen directly in the first three moments,
Eqs. (19)–(21): the odd powers of J2 are always coupled to
�. Hence, it is really the competition between J2 and the
anisotropy that begets the anomalous dynamics. A similar
competition in the system’s ground state also gave rise to

increased ballistic transport in the frustrated (J2 > 0) case as
compared to the unfrustrated case [11].

APPENDIX C: APPROACHING FREE-PARTICLE LIMITS

The model Hamiltonian Eq. (4) becomes a free model when,
e.g., the anisotropy � is set to zero or, in the presence of δĤ1,
for large J2 → ∞. In Sec. V we showed how approaching these
free limits predicts the behavior σ ′(ω) ≈ ω−1 at the ansatz
level. Here we corroborate this prediction.

First consider the small � limit in the XXZ chain, wherein
the ansatz simplifies to Eq. (35). We contrast in the left panel
of Fig. 8 the Kubo conductivity between the isotropic point
and the small � limit. Two points are noteworthy: (i) there are
clear differences between the power laws about ω ≈ 0.1 for
the two cases, with σ (ω) ∼ ω−1 being approximately satisfied
for the small-� chain; (ii) also for � = 0.05 there is a �2 drop
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FIG. 8. L = 18 Kubo (normalized) conductivity of fluxed chains in the grand canonical ensemble for extreme limits of Hamiltonian
parameters. Left panel: The integrable chain comparing the small � limit with the isotropic point, with the former fitting a steeper power law
(≈ω−1) at mid-frequencies as predicted by the ansatz Eq. (35) before a �2 drop (which occurs well before the onset of ω2 finite-size effect as
in the isotropic point) sets in, which is also in turn in line with the ansatz prediction Eq. (35). Right panel: The nonintegrable chain for large
J2 limit where the ansatz [Eq. (24) and left panel of Fig. 1] predicts an insensitivity to sign of J2. This latter prediction and the associated
power-law ≈ω−1 given by Eq. (36) is vindicated by the displayed numerics at mid-frequencies.

between the end of the ω−1 power law and the onset of the ω2

finite-size power law; this is in contrast to the isotropic point
where the drop to the ω2 power law is immediate. Such a �2

drop is in line with the ansatz prediction, Eq. (35).
Now consider the large J2 limit for which the ansatz yields

Eq. (36). In this system the spin chain effectively decouples
into two independent chains with weak interchain hopping.
We expect, from the results shown in the left panel of Fig. 1,
the ±J2 dynamical responses to be identical as J2 → ∞,
with α → −1 (as in the small � limit treated above). This
restoration of the symmetry and the actual power law at mid-
frequencies being close to −1 is supported by the numerics, as
displayed in the right panel of Fig. 8.

Let us nevertheless remark once again that for 1 � J2 �= ∞
the system is still nonintegrable and therefore normal diffusion
is expected at long times.

APPENDIX D: CONSTRUCTION OF
THE MEMORY FUNCTION

In this Appendix we derive the so-called memory function
[21] of the spin autocorrelation which will allow us to (i) relate
the spin spectral function with the Kubo conductivity through
the exact expression (45) [see Eq. (D12)]; and to (ii) rederive
the generator of the sum-rule relation (15) [see Eq. (D15)]. We
follow the notation and procedure of Berne and Harp [57].

To construct the memory function consider the set {Q̂j }
of operators describing the slow modes of our model, with
Q̂0 ≡ Ŝz

q the Fourier transform of Ŝz
i and Q̂j >0 the (infinite)

set of local (or quasilocal) conserved quantities associated with
the integrable limit of the Hamiltonian, Eq. (4). Note that we do
not need to include into the set {Q̂j } the operator describing the
slow energy fluctuations of the system since it does not couple
to the magnetization, and hence the set {Q̂j } only includes Q̂0

in the nonintegrable case. We choose the Q̂j >0 to be orthogonal

to each other with respect to the scalar product in operator space

(Q̂i |Q̂j ) = Z−1Tr(Q̂iQ̂j ) = δi,j χi β
−1, (D1)

with χj = β(Q̂j |Q̂j ) the static susceptibility associated with
Q̂j and Z = Tre−βĤ the partition function of the model. Fur-
thermore, the {Q̂j } are so chosen that their ensemble average
are zero, that is 〈Qj 〉 = Z−1TrQ̂j = 0. We can then regard the
set {Q̂j } as a set of vectors in a Hilbert space and define the
projector operator P̂ onto the subspace spanned by {Q̂j } as

P̂ =
∑

j

βχ−1
j |Q̂j )(Q̂j |. (D2)

To study spin dynamics we consider the Heisenberg equa-
tion of motion ∂t |Q̂0(t )) = iL̂|Q̂0(t )), where L̂ is the Liouville
operator defined by iL̂Ô ≡ −i[Ô, Ĥ ]. This equation can be
rewritten as

∂t |Q̂0(t )) = iL̂P̂ |Q̂0(t )) + iL̂(1 − P̂ )|Q̂0(t )), (D3)

and so, the equation of motion describing the spin autocorre-
lation function S(q, t ) ≡ (Q̂0|Q̂0(t )) follows:

∂tS(q, t ) = (Q̂0|iL̂P̂ |Q̂0(t )) + (Q̂0|iL̂(1 − P̂ )|Q̂0(t )).

(D4)

The first term on the right-hand side of Eq. (D4) vanishes
since iL|Q̂j ) = δ0,j |iLQ̂j ), given that the Qj >0 are constants
of motion and (Q̂0|iL|Q̂0) = 0, which follows because Q0

is odd under time reversal. On the other hand, an expression
for the second term on the right-hand side of Eq. (D4) can be
obtained by acting with the operator (1 − P̂ ) on the left of
Eq. (D3) and solving for (1 − P̂ )|Q̂0(t )). This yields

(1 − P̂ )|Q̂0(t )) =
∑

j

∫ t

0
dτei(1−P̂ )L̂(t−τ )(1 − P̂ )iL̂|Q̂j )

×βχ−1
j (Q̂j |Q̂0(τ )). (D5)
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Noting that only the j = 0 contribution from the summation
above is finite, and that

ei(1−P̂ )L̂t (1 − P̂ ) = (1 − P̂ )ei(1−P̂ )L̂(1−P̂ )t , (D6)

we write Eq. (D4) as

∂tS(q, t ) = −
∫ t

0
dτ (Q̂0|iL̂(1 − P̂ )ei(1−P̂ )L̂(1−P̂ )(t−τ )

×(1 − P̂ )iL̂|Q̂0)βχ−1
0 S(q, t ). (D7)

Finally, using the continuity equation

iL̂Q̂0 = −iq ĵq, (D8)

where ĵq is the Fourier transform of the total spin current, one
can rewrite Eq. (D7) as

∂tS(q, t ) + q2
∫ t

0
dτ�(q, t − τ )S(q, τ ) = 0, (D9)

with �(q, t ) the memory function [21], defined here as

β−1χ0 �(q, t ) = (ĵq |(1 − P̂ )ei(1−P̂ )L̂(1−P̂ )t (1 − P̂ )|ĵq ).

(D10)

From Eq. (D10) we see the memory function differs from
the usual current-current correlation function in two aspects
[58]: first, the evolution operator determining the spectrum of
�(q, t ) has the intrinsic fluctuations of the slow modes {Q̂i}
projected out of it; second, only the components of the current
orthogonal to the subspace spanned by the {Q̂i>0} determine
the memory function.

In the long-wavelength limit, however, one can show the
projection operation has no effect [58] and so

lim
q→0

β−1χ0 �(q, t ) = lim
q→0

(ĵq |eiL̂t |ĵq ) = σ (t ), (D11)

with β−1χ0 = (Ŝz
q |Ŝz

q ) = 1/4 and σ (t ) the Kubo conductivity.
Equation (D11) implies the memory function displays

the same behavior as the Kubo conductivity in the long-
wavelength limit. That the memory function is well behaved

as q approaches zero follows since the total spin current
operator is a local operator and, consequently, its correlation
function falls off rapidly with distance. A bit more subtle is the
long-time limit, at which the memory function might become
nonanalytic due to, e.g., (i) the aforementioned presence of
local or quasilocal conserved quantities coupling to the current,
which contribute to �(q, t ) in the long-wavelength limit, or (ii)
mode-mode coupling of the conserved spin density, which may
be relevant even at finite wave vectors [58].

To derive Eq. (45) in the main text, consider the Laplace
transform of Eq. (D9)

S̃(q, z) = iβ−1

z + iq2�̃(q, z)
χ0 (Imz > 0), (D12)

and note that in the long-wavelength limit S̃(q, z) has a pole at
z = 0, which is a direct consequence of the fact that lim

q→0
S(q, t )

does not decay in time.
The spectral function is then given by

S(q, ω) = lim
ε→0

[S̃(q, ω + iε) − S̃(q, ω − iε)], (D13)

from which Eq. (45) directly follows, after using the limiting
expression Eq. (D11).

Now, using the representation

2πif̃ (q, z) =
∫

dωf (q, ω)(ω − z)−1, (D14)

for both S̃(q, z) and �̃(q, z) one can, in the limit of large z,
Taylor expand both sides of the dispersion relation, Eq. (D12),
in z−1 and equate the expansion coefficients to obtain a
set of identities relating the frequency moments of the spin
correlation function with those of the memory function. We
write these sum rules as

μn ≡ 1

q2

∫
dω

2π
ω2nS(q, ω)

=
∫

dω

2π
ω2n−2β−1χ0�(q, ω), (D15)

which are, of course, equivalent to Eq. (15).
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