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Electronic phase separation has been increasingly recognized as an important phenomenon in understanding
many of the intriguing properties displayed in transition metal oxides. It is believed to produce fascinating
functional properties in otherwise chemically homogenous electronic systems, e.g., colossal magnetoresistance
manganites and high-Tc cuprates. While many well-known electronically phase-separated systems are oxides,
it has been argued that the same phenomenon should occur in other electronic systems with strong competing
interactions. Here we report the observation of electronic phase separation in molecular (ND4)2FeCl5 · D2O, a
type-II multiferroic. We show that two magnetic phases, one of which is commensurate and the other of which
is incommensurate, coexist in this material. Their evolution under applied magnetic field produces emergent
properties. In particular, our measurements reveal a field-induced exotic state linked to a direct transition from a
paraelectric/paramagnetic phase to a ferroelectric/antiferromagnetic phase, a collective phenomenon that hasn’t
been seen in other magnetic multiferroics.
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There is mounting evidence that electronic phase separation
is an intrinsic property of strongly correlated electron materi-
als [1–4]. The intricate interplay between spin, charge, orbital,
and lattice degrees of freedom often results in “electronically
soft” phases of matter with inhomogeneous and mixed order
in correlated materials leading to emergent properties [3].
Electronic phase separation has been shown to have a profound
effect on the macroscopic properties of a wide range of
materials including cuprates [5], iron pnictides [6,7], colossal
magnetoresistance manganites [3,8–11], and ferrites [12,13].
Recent work further demonstrates that the competing phases
in electronically phase-separated materials can be tuned and
controlled by spatial confinement [10,11], providing insights
on how to manipulate the collective phenomena. It is of
great interest to explore the exotic behaviours arising from
electronic softness in a large number of materials, particularly
in systems which allow direct comparison between theory and
experiments for a deeper understanding of their origin. Here we
report electronic phase separation in (ND4)2FeCl5 · D2O [14],
a molecular system that exhibits magnetically induced ferro-
electricity [15]. Our results show that two magnetic phases,
one commensurate and the other one incommensurate, coexist
in this material. Moreover, their competition gives rise to
fascinating phenomena under the influence of magnetic field.
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(ND4)2FeCl5 · D2O is a type-II multiferroic [16,17] that ex-
hibits intriguing magnetic and ferroelectric properties [15,18–
20]. At zero magnetic field, this system undergoes two suc-
cessive magnetic transitions upon cooling at TN = 7.3 K and
TFE = 6.8 K, with the latter accompanied by spontaneous fer-
roelectric polarization. The magnetic structure changes from
a collinear sinusoidal between TFE < T < TN to a cycloidal
spiral below TFE = 6.8 K [18] characteristic of a type-II
multiferroic with inverse Dzyaloshinsky Moriya interactions.
A very rich magnetic field versus temperature (H vs. T ) phase
diagram is obtained when applying a magnetic field parallel
to either the a or c axis. As shown in Ref. [15] for H ‖ a, a
modest magnetic field induces transitions to distinct magnetic
and ferroelectric phases. They are labeled as ferroelectric
I (FE I), ferroelectric II (FE II), and ferroelectric III (FE
III), respectively [15]. The magnetic structure associated with
the FE I phase is an incommensurate cycloidal (ICC), with
a characteristic wave vector k1 = (0 0 kz1), kz1 ≈ 0.23 at
1.5 K. The magnetic structures corresponding to FE II and
FE III phases are a distorted cycloid (C1) and a quasicollinear
structure (C2), described by commensurate wave vectors k2 =
(0 0 kz2) (kz2 = 0.25) and k3 = (0 0 0) [20]. The transition from
FE I to FE II at 2.8 T has been described as an incommensurate-
to-commensurate lock-in transition, and the transition from
FE II to FE III at 5 T has been identified as a spin-flop
transition [20]. The electric polarization P 1 associated with
the FE I phase is only slightly different from P 2 of phase FE II.
Both P 1 and P 2 lie in the ab plane and slightly tilt away from
the a axis, with �(P 1, a) � 7◦ in FE I and �(P 2, a) � 9◦ in
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FE II, indicating that these soft phases are very close in energy.
The electric polarization in phase FE III is very different: it
points along the c axis and is accompanied by a spin-flop
transition.

We note that this intriguing phase diagram contains features
that are not fully understood. For example, as pointed out
in Ref. [20], the incommemsurate-to-commensurate magnetic
transition [with changes in the magnetic wave vector from
(0 0 ≈0.23) to (0 0 0.25)] associated with the purported
lock-in transition at 2.8 T cannot be explained from the small
changes in the a axis due to magnetostriction [15]. Moreover,
the direct transition from a paraelectric/paramagnetic (PE/PM)
phase to a ferroelectric/antiferromagnetic (FE/AFM) phase
observed in a narrow range between 2 and 3 T is rather rare.
As in most cases, this transition occurs via an intermediate
paraelectric, antiferromagnetic state [21]. It has been suggested
that such a direct transition would require two simultaneous
order parameters [21–23]. In this paper, we show that both
features can be fully accounted for by the coexistence of soft
phases, with incommensurate (ICC) and commensurate (C1)
orders, respectively.

In prior work, we reported that the magnetic ground state
of (ND4)2FeCl5 · D2O is inhomogenous [19]. We observed
odd and even higher-order harmonics associated with the
incommensurate cycloid wave vector k1 and a coexisting
secondary magnetic phase described by the commensurate
wave vector. As shown in Fig. 1, the (0 0 0.25)-type com-
mensurate peak coexists with the primary (0 0 ≈0.23)-type
incommensurate peak in multiple scans at various Q positions.
Polarized neutron diffraction measurements indicate that they
are both magnetic in origin. Because their peak widths are
comparable, the ICC and C1 phases have similar magnetic
correlation lengths along the c axis. These results provide
concrete evidence that the ground state of (ND4)2FeCl5 · D2O
is intrinsically inhomogenous with coexisting incommensurate
and commensurate orders. Here, we illustrate the subtle effects
resulting from the strong phase competition between ICC and
C1 that shed light on the field-induced emergent phenomena
in this material.

Figure 2(a) compares the field dependence of the (0 1 0.23),
(0 1 0.25), and (0 1 0) magnetic peaks associated with three
distinct magnetic structures: ICC in FE I, distorted cycloid
(C1) in FE II and quasicollinear structure (C2) in FE III. At
first glance, two field-induced transitions are clearly observed
at 2.8 T and 5 T in agreement with Ref. [20], in which the 2.8 T
transition is attributed to an incommensurate-commensurate
lock-in transition from ICC to C1 with the peak center of
(0 1 0.23), gradually shifting toward (0 1 0.25). However, as
we examine the data in more detail, an anomalous dip in the
intensity of the (0 1 0.25) peak is observed around 1.5–2.5 T
before the ≈2.8 T transition. This is totally unexpected as
it is counter to the proposed incommensurate-commensurate
lock-in transition. For a lock-in transition from ICC to C1,
the peak position would gradually shift from (0 1 0.23) to
(0 1 0.25) and the peak intensity of (0 1 0.23) would gradually
decrease while the peak intensity of (0 1 0.25) would increase
monotonically with increasing field. To understand the origin
of the anomalous dip, we compare the L-scans measured
along (0 1 L) at 1 T and 2 T [Fig. 2(b)], which clearly
shows that the weak (0 1 0.25) peak disappears at 2 T. The

FIG. 1. L-scans along (a) (0 1 L) and (b) (2 0 L) directions
illustrate the coexistence of incommensurate (ICC, wave vector
k1 = (0 0 kz1), kz1 ≈ 0.23) and commensurate (C1, wave vector
k2 = (0 0 kz2), kz2 ≈ 0.25) phases at 1.5 K and 0 T.

data suggests that (0 1 0.23) and (0 1 0.25) merge into a
single peak at 2 T with enhanced peak intensity, indicating
the anomalous dip that anticipates a transition is an intrinsic
effect.

To reveal the subtle field-induced effects arising from phase
competition between ICC and C1, we further compare L-scans
measured along the (0 1 L)-direction at selected fields in
Fig. 3. The coexistence of C1 and ICC is clearly observed
at 1 T [Fig. 3(a)], 2.6 T [Fig. 3(c)], and 2.8 T [Fig. 3(d)] with
both (0 1 0.25) and (0 1 0.23) peaks present in the scan. As
the mixture of C1 and ICC evolves under applied magnetic
field, the total volume is conserved: the increase of the C1
volume is matched by a decrease of the ICC volume. This is
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FIG. 2. Neutron diffraction data measured with H ‖ a at 1.5 K. (a)
Neutron diffraction intensity as a function of magnetic field obtained
by counting at the peak position of (0 1 0.23), (0 1 0.25), and (0
1 0) magnetic peaks. The (0 1 0.23), (0 1 0.25), and (0 1 0) peaks
are associated with the incommensurate ICC, commensurate C1 and
C2 states as described in the text. The black arrow and the ellipse in
dashed line indicate an anomalous dip between 1.5 T and 2.5 T in the
data of the (0 1 0.25) peak. (b) L-scans along (0 1 L) measured at
μ0H = 1, and 2 T. The inset depicts the disappearance of the weak
(0 1 0.25) peak at 2 T.

unambiguously illustrated in Figs. 3(c) and 3(d) by comparing
the relative intensity between (0 1 0.23) and (0 1 0.25) at 2.6 T
and 2.8 T. These results clarify the nature of the transition
at 2.8 T. Compared to the relative volumes of ICC and C1
in the mixed state, the ICC phase is dominant at 2.6 T while
C1 is dominant at 2.8 T. The transition is accompanied by
modest magnetostriction [15], suggesting that the C1 phase is
coupled more strongly with the lattice than the ICC phase. The
ability to tune from ICC to C1 with a 2–3 T field indicates that
these phases are electronically soft and sensitive to external
perturbations, i.e., pressure, and magnetic field. As the field is

further increased, the ICC phase continues to shrink. The ICC
phase is completely suppressed at 4 T [Fig. 3(e)].

Other striking features observed at 2 T are the distinct single
peak shape, and the disappearance of higher-order harmonic
peaks [Fig. 3(b)] in contrast with the scans measured at other
fields. Higher-order harmonic peaks are clearly visible in the
scans measured at 1 T, 2.6 T, and 2.8 T in the mixed state of ICC
and C1 [the fifth-order harmonic peak is outside the plot range
in Fig. 3(a)]. The absence of the higher-order harmonic peaks
at 2 T suggests that the state between 1.5–2.5 T [corresponding
to the anomalous dip in Fig. 2(a)] is not a simple mixture of
ICC and C1 but is rather an exotic field-induced state. Our data
suggests that this exotic phase may be described as a bicritical
state emerging from the interplay between ICC and C1. It is no
coincidence that this exotic state seems to be closely related to
the unusual region in the H vs T phase diagram where a direct
transition from a PE/PM state to a FE/AFM state was reported
in Ref. [15]. The direct transition is also supported by our
neutron diffraction measurements [14]. It has been proposed
that such behavior requires two different order parameters
[21–23]. The coexistence of ICC and C1 orders suggests that
this hypothesis is realized in (ND4)2FeCl5·(D2O) [24].

These findings are also supported by magnetization results.
Figure 4 displays magnetization with field applied along the
a axis. Below TN = 7.3 K, a distinct step is observed in
the magnetization at 5 T, which has been attributed to a
spin-flop transition [15,20]. This type of anisotropy-driven
spin reorientation is typically first order [25–27], although
there are exceptions [28]. In (ND4)2FeCl5·(D2O), the spins
are mainly confined in the ac plane with no easy axes [15,20].
The spin-flop transition is accompanied by lattice changes,
indicating that the transition is mediated by spin-lattice cou-
pling. Careful examination of the (dM/dH )T curves, how-
ever, uncovers different and more complex behavior. The
derivative curves in Fig. 4(b) reveal an additional anomaly
at 4 T besides the spin-flop transition at 5 T. The step-
wise character of this curve is most evident at 0.62 K. It
persists to higher temperature and disappears entirely above
4.5 K. This anomaly coincides with the complete suppres-
sion of the ICC phase at 4 T from neutron measurements.
More interestingly, the transition at 4 T is also linked to a
change in electric polarization from P 1 to P 2. The electric
polarization is slightly reoriented toward the b axis, with
�(P 1, a) � 7◦ for μ0H < 4 T to �(P 2, a) � 9◦ for μ0H >

4 T [15].
To summarize, we performed neutron scattering and mag-

netization measurements to study the magnetic properties of
(ND4)2FeCl5·(D2O). We show direct evidence that the in-
commensurate ICC and commensurate C1 phases—associated
with two different ferroelectric states—coexist in this frus-
trated magnet [29], and that their interplay under applied
magnetic field produces intriguing properties. The subtle
field-induced effects presented here provide insights into the
emergent phenomena in (ND4)2FeCl5·(D2O). Our results in-
dicate the transition at 2.8 T is not a simple incommensurate-
commensurate lock-in transition but rather reflects the tuning
of two electronically soft phases by the magnetic field with the
ICC phase dominant below 2.6 T and the C1 state dominant
above 2.8 T. In particular, our measurements reveal an exotic
state linked to a direct transition from a PE/PM state to a
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FIG. 3. L-scans measured along (0 1 L) at selected fields,
T = 1.5 K. (a) μ0H = 1 T; (b) μ0H = 2 T; (c) μ0H = 2.6 T;
(d) μ0H = 2.8 T; (e) μ0H = 4 T. The intensity is plotted in
logarithmic scale. The blue and red arrows point to the third-order
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FIG. 4. Magnetization (a) and the first derivative of the magneti-
zation (b) measured with H ‖ a. Two peaks are observed in dM/dH

corresponding to the complete suppression of the ICC phase and the
spin-flop transition.

FE/AFM state in the H vs T phase diagram for H ‖ a. Our
data indicates that this exotic state is not a simple mixture
but rather an entangled, bicritical-state phase of ICC and C1.
This observation is reminiscent of the lattice strain effect
observed in La0.5Ca0.5MnO3 between TC and TN that was
attributed to the simultaneous presence in different domains
of several metastable states [30]. Indeed, the observation

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
and fifth-order harmonic peaks associated with the incommensurate
phase. The dotted red and cyan lines depict the peak centers associated
with the ICC and C1 phases at (0 1 ∼ 0.23) and (0 1 ∼ 0.25),
respectively. The solid green curves are fitting results to a squared
Lorentzian function. The data measured at 2 T in (b) can be fitted to a
single peak. For comparison, the data at 1 T, 2.6 T, 2.8 T, and 4 T are
also fitted to a single peak, with fixed constant background and peak
width using the same values obtained from the fitting to the 2 T data.
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of even-order harmonics associated with incommensurate
wave vector [19], the magnetostriction, and negative ther-
mal expansion [15] all indicate that spin-lattice coupling
plays a key role in coupling the magnetic and ferroelec-
tric properties in (ND4)2FeCl5·(D2O). Due to its “softness,”
(ND4)2FeCl5 · D2O can serve as a test bed for theoretical mod-
eling. The results presented here will motivate further inves-
tigations to uncover the fundamental nature of this collective
phenomenon.
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